A study of $(x(q+1), x ; 2, q)$-minihypers

I. Landjev and L. Storme

June 19, 2009

Abstract

In this paper, we study the weighted $(x(q+1), x ; 2, q)$-minihypers. These are weighted sets of $x(q+1)$ points in $\operatorname{PG}(2, q)$ intersecting every line in at least x points. We investigate the decomposability of these minihypers, and define a switching construction which associates to an $(x(q+1), x ; 2, q)$-minihyper, with $x \leq q^{2}-q$, not decomposable in the sum of another minihyper and a line, a $(j(q+$ $1), j ; 2, q)$-minihyper, where $j=q^{2}-q-x$, again not decomposable into the sum of another minihyper and a line. We also characterize particular $(x(q+1), x ; 2, q)$ minihypers, and give new examples. Additionally, we show that $(x(q+1), x ; 2, q)$ minihypers can be described as rational sums of lines. In this way, this work continues the research on $(x(q+1), x ; 2, q)$-minihypers by Hill and Ward [9], giving further results on these minihypers.

1 Introduction

Let \mathcal{P} be the set of points of the projective geometry $\operatorname{PG}(t, q)$. A multiset in $\mathrm{PG}(t, q)$ is a mapping $\mathfrak{K}: \mathcal{P} \rightarrow \mathbb{N}$. This mapping is extended in a natural way to the subsets of \mathcal{P} : for any subset \mathcal{Q} of \mathcal{P}, we set $\mathfrak{K}(\mathcal{Q})=\sum_{P \in \mathcal{Q}} \mathfrak{K}(P)$. The integer $\mathfrak{K}(P)$ is called the multiplicity of the point P and $n=\sum_{P \in \mathcal{P}} \mathfrak{K}(P)$ is called the cardinality of \mathfrak{K}. The support $\operatorname{supp} \mathfrak{K}$ of a multiset \mathfrak{K} is the set of all points of positive multiplicity. A multiset \mathfrak{K} is said to be projective if $\mathfrak{K}(P) \in\{0,1\}$ for all points P. Projective multisets can be considered as sets of points by identifying them with their supports.

Conversely, given a finite set \mathcal{Q} of points in $\operatorname{PG}(t, q)$, we define the characteristic multiset $\chi_{\mathcal{Q}}$ by:

$$
\chi_{\mathcal{Q}}(P)= \begin{cases}1 & \text { if } P \in \mathcal{Q}, \\ 0 & \text { if } P \notin \mathcal{Q}\end{cases}
$$

A multiset in $\mathrm{PG}(t, q)$ is called an $(n, w ; t, q)$-multiarc if
(a) $\mathfrak{K}(\mathcal{P})=n$;
(b) $\mathfrak{K}(H) \leq w$ for any hyperplane H;
(c) there exists a hyperplane H_{0} with $\mathfrak{K}\left(H_{0}\right)=w$.

A multiset \mathfrak{F} in $\mathrm{PG}(t, q)$ is called an $(f, m ; t, q)$-blocking multiset or ($f, m ; t, q$)-minihyper, if
(a) $\mathfrak{F}(\mathcal{P})=f$;
(b) $\mathfrak{F}(H) \geq m>0$ for any hyperplane H;
(c) there exists a hyperplane H_{0} with $\mathfrak{F}\left(H_{0}\right)=m$.

To avoid trivialities, we impose $m>0$ in the definition of an $(f, m ; 2, q)$ minihyper.

We can speak of (n, w)-multiarcs or (f, m)-minihypers if the geometry we consider is clear from the context. The characteristic multiset of a subspace of dimension u in $\operatorname{PG}(t, q)$ is a minihyper with parameters $\left(v_{u+1}, v_{u}\right)$, where $v_{u}=\frac{q^{u}-1}{q-1}$.

An (f, m)-minihyper \mathfrak{F} is called minimal if there exists no $(f-1, m)$ minihyper \mathfrak{F}^{\prime} with $\mathfrak{F}^{\prime}(P) \leq \mathfrak{F}(P)$ for all points P.

The sum $\mathfrak{F}=\mathfrak{F}_{1}+\mathfrak{F}_{2}$ of two minihypers \mathfrak{F}_{1} and \mathfrak{F}_{2}, where \mathfrak{F}_{i} has parameters $\left(f_{i}, m_{i} ; t, q\right), i=1,2$, is the $(f, m ; t, q)$-minihyper, with $f=f_{1}+f_{2}$, $m=m_{1}+m_{2}$, and with the multiplicity of a point P in \mathfrak{F} equal to the sum of its multiplicities in \mathfrak{F}_{1} and \mathfrak{F}_{2}. As a particular example of a minihyper which is the sum of minihypers, we note that the sum of any x (not necessarily distinct) lines is a $(x(q+1), x ; 2, q)$-minihyper.

An $(f, m ; t, q)$-minihyper \mathfrak{F} is called indecomposable or irreducible [7, Definition 2.5] if it cannot be represented as a sum $\mathfrak{F}=\mathfrak{F}_{1}+\mathfrak{F}_{2}$ of two other minihypers $\mathfrak{F}_{i}, i=1,2$, where \mathfrak{F}_{i} has parameters $\left(f_{i}, m_{i} ; t, q\right), i=1,2$. Note again that this implies that $m_{1}, m_{2}>0$.

Within this introduction, we also define two important substructures of a projective plane $\operatorname{PG}(2, q)$.

A hyperoval K in $\mathrm{PG}(2, q), q$ even, is a set of $q+2$ points, no three collinear. The classical example of a hyperoval in $\operatorname{PG}(2, q), q$ even, is the union of a conic and its nucleus; such a hyperoval is called a regular hyperoval. For q even, $q \geq 16$, in $\operatorname{PG}(2, q)$, there exist irregular hyperovals, i.e., hyperovals which are not the union of a conic and its nucleus. We refer to [11] for the list of the known infinite classes of hyperovals in $\mathrm{PG}(2, q), q$ even.

A maximal arc K of $\operatorname{PG}(2, q)$ is a set of points intersecting every line in zero or n points. For $1<n<q$, this necessarily implies that n is a divisor of q. Ball, Blokhuis, and Mazzocca proved that such maximal arcs cannot exist for q odd $[1,2]$. For q even, Denniston proved the existence of a maximal arc in $\mathrm{PG}\left(2,2^{h}\right)$ intersecting every line in 2^{i} points, for every i satisfying $1 \leq i \leq h-1[4]$.

We also refer to the standard reference of Hirschfeld [10] for more information on hyperovals and maximal arcs in $\mathrm{PG}(2, q), q$ even.

Consider a multiset \mathfrak{K} of $\operatorname{PG}(2, q)$; then to \mathfrak{K} corresponds the spectrum $\left(a_{i}\right)_{i \geq 0}$ of \mathfrak{K}. The spectrum $\left(a_{i}\right)_{i \geq 0}$ of \mathfrak{K} is the sequence of numbers $a_{i}, i \geq 0$, with a_{i} the number of lines of $\operatorname{PG}(2, q)$ intersecting \mathfrak{K} in i points.

2 Minihypers with parameters $(x(q+1), x)$

In [9], Hill and Ward consider minihypers with parameters $(x(q+1), x)$, $x<q$, in $\operatorname{PG}(2, q)$. They try to characterize all indecomposable minihypers with the above parameters. Hill and Ward restrict the values of x to $x<q$ so that the associated codes are Griesmer codes. In [3], this problem is studied for $x=q$ in the terms of multiarcs. The following result describes divisibility properties of $(x(q+1), x)$-minihypers and is a straightforward generalization of Theorem 5.1 in [3].

Theorem 1. ([9, Theorem 18]) Let \mathfrak{F} be an $(x(q+1), x)$-minihyper in $\Pi=$ $\mathrm{PG}(2, q), q=p^{m}, p$ prime, $m \geq 1$, with $x<q$, where p^{f} divides x. Then for each line L in $\Pi, \mathfrak{F}(L) \equiv x\left(\bmod p^{f+1}\right)$.

This theorem implies two useful corollaries.
Corollary 2. ([9, Theorem 20]) Every $(x(q+1), x)$-minihyper in $\mathrm{PG}(2, q)$, $q=p^{m}$, p prime, $m \geq 1$, with $x \leq q-\frac{q}{p}$, is a sum of x lines. In particular, if \mathfrak{F} is an indecomposable $(x(q+1), x)$-minihyper, then $x>q-\frac{q}{p}$ or \mathfrak{F} is a line.

We wish to stress that the preceding corollary implies that the only indecomposable $(x(q+1), x ; 2, q)$-minihypers in $\mathrm{PG}(2, q), q$ prime, with $x<q$, are the $(q+1,1 ; 2, q)$-minihypers, so are the lines of $\mathrm{PG}(2, q), q$ prime.

Corollary 3. ([9, Theorem 23]) Let \mathfrak{K} be an indecomposable $(x(q+1), x)$ minihyper in $\mathrm{PG}(2, q), q=p^{m}$, p prime, $m \geq 1$, for which $x \leq y<q$ and p^{f} divides y.
(i) For each line L, $\mathfrak{K}(L) \leq x+q-p^{f+1}$.
(ii) For each point P, $\mathfrak{K}(P) \leq x-p^{f+1}$.
(iii) If $q-p+1 \leq x \leq q-1$ and $\mathfrak{K}(P)>x-2 p$, then $\mathfrak{K}(P)$ is divisible by $\frac{q}{p}-1$.

A challenging problem is that of the classification of all indecomposable $(x(q+1), x)$-minihypers, $x<q$, in projective planes over arbitrary finite fields. This problem has been solved for $\operatorname{PG}(2,8)$ and $\operatorname{PG}(2,9)$ by Hill and Ward in [9]. In the same paper, they describe five families of indecomposable $(x(q+1), x)$-minihypers in the planes of square order.

3 Ball's construction

A nice class of indecomposable $(x(q+1), x)$-minihypers was found by Ball in an unpublished note. The class of Ball's minihypers is explained below.

Suppose that $q=2^{m}$ and consider two hyperovals \mathfrak{F}_{1} and \mathfrak{F}_{2} in $\operatorname{PG}(2, q)$ that meet in $q+2-x$ points. Let $\mathfrak{F}=\mathfrak{F}_{1}+\mathfrak{F}_{2}(\bmod 2)$, i.e. $\operatorname{supp} \mathfrak{F}$ is the symmetric difference of the supports of the two hyperovals \mathfrak{F}_{1} and \mathfrak{F}_{2}. Clearly, $|\mathfrak{F}|=2 x$ and $\mathfrak{F}(L)=0,2$, or 4 for every line L. If we dualize and regard 4 -lines as 2 -points, 2 -lines as 1 -points, and 0 -lines as 0 -points, we get an $(x(q+1), x)$-minihyper with spectrum

$$
a_{x}=q^{2}+q+1-2 x, a_{x+\frac{q}{2}}=2 x, a_{i}=0, \text { for } i \neq x, x+\frac{q}{2}
$$

This construction works in a more general setting. Assume that we are given a multiset \mathfrak{K} with $|\mathfrak{K}|=s x$ such that $\mathfrak{K}(L)=i s, i \in \mathbb{N}$, for every line L, i.e. the multiplicity of every line is a multiple of s. We define a multiset \mathfrak{F} in the dual plane in which lines of multiplicity is become points of multiplicity i. Then \mathfrak{F} is an $(x(q+1), x)$-minihyper. We prove this as follows.

Let $\left(a_{i}\right)_{i \geq 0}$ be the spectrum of \mathfrak{K}. By counting the flags $(P, L), P \in L$, we obtain

$$
s a_{s}+2 s a_{2 s}+\cdots=s x(q+1)
$$

This implies that $\sum i a_{i s}=x(q+1)$, which means that \mathfrak{F} has the desired cardinality. Let P be an arbitrary point. It has to be checked that $\sum_{i} i b_{i s}(P) \geq x$, where $b_{j}=b_{j}(P)$ denotes the number of lines through P that have multiplicity j. Assume that $\mathfrak{K}(P)=\varepsilon$. Then

$$
\begin{aligned}
b_{s}+b_{2 s}+\cdots & =q+1 \\
(s-\varepsilon) b_{s}+(2 s-\varepsilon) b_{2 s}+\cdots & =|\mathfrak{K}|-\varepsilon=s x-\varepsilon,
\end{aligned}
$$

which implies that

$$
b_{s}+2 b_{2 s}+\cdots=x+\varepsilon \frac{q}{s}
$$

This means that each line in the dual plane has multiplicity at least x since $\varepsilon q / s \geq 0$.

Example 1. In $\operatorname{PG}(2, q), q$ even, let \mathfrak{M} be a maximal arc of degree 2^{i} and let L be an external line to \mathfrak{M}. Define $\mathfrak{K}=\chi_{\mathcal{P} \backslash L}-\mathfrak{M}$. Clearly, $\mathfrak{K}(M)=0$, $q-2^{i}$, or q for every line M of $\operatorname{PG}(2, q)$ and

$$
|\mathfrak{K}|=q^{2}-q\left(2^{i}-1\right)-2^{i}=2^{i}\left(\frac{q^{2}}{2^{i}}-q+\frac{q}{2^{i}}-1\right) .
$$

If we set $s=2^{i}, x=\frac{q^{2}}{2^{i}}-q+\frac{q}{2^{i}}-1$, using Ball's construction, we get a minihyper with parameters

$$
\left(\left(\frac{q^{2}}{2^{i}}-q+\frac{q}{2^{i}}-1\right)(q+1), \frac{q^{2}}{2^{i}}-q+\frac{q}{2^{i}}-1 ; 2, q\right)
$$

Remark 4. In the general case, we do not know whether the minihypers constructed in Example 1 are indecomposable. This can however be proven in some special cases. For instance, if we start with a maximal arc of degree $q / 2, q \geq 4$, we arrive at a minihyper with

$$
x=\frac{q^{2}}{q / 2}-q+\frac{q}{q / 2}-1=q+1
$$

Note that in this case, the minihyper has $q+1$ 2-points, one 0 -point, and $q^{2}-11$-points. The 0 -point corresponds to the fixed external line L to the maximal arc \mathfrak{M}, and the $q+12$-points correspond to the other $q+1$ external lines to the maximal arc \mathfrak{M}. These $q+2$ external lines to the original maximal arc \mathfrak{M} form a dual hyperoval, and so consequently, the 0 -point and the $q+1$ 2 -points form a hyperoval in the plane where the $((q+1)(q+1), q+1 ; 2, q)$ minihyper \mathfrak{F} is embedded.

Assume that $\mathfrak{F}=\mathfrak{F}_{1}+\mathfrak{F}_{2}$, with \mathfrak{F}_{1} an $\left(f_{1}, x_{1} ; 2, q\right)$-minihyper and \mathfrak{F}_{2} an $\left(f_{2}, x_{2} ; 2, q\right)$-minihyper. Since there exists a 0 -point to \mathfrak{F}, then \mathfrak{F}_{1} and \mathfrak{F}_{2} also have a 0 -point. Considering all lines of $\mathrm{PG}(2, q)$ through this 0 -point, implies that $f_{1} \geq x_{1}(q+1)$ and $f_{2} \geq x_{2}(q+1)$, with $q+1=x_{1}+x_{2}$. Since $(q+1)(q+1)=f_{1}+f_{2} \geq(q+1)(q+1)$, necessarily $f_{1}=x_{1}(q+1)$ and $f_{2}=x_{2}(q+1)$. So \mathfrak{F}_{1} is an $\left(x_{1}(q+1), x_{1} ; 2, q\right)$-minihyper and \mathfrak{F}_{2} an $\left(x_{2}(q+1), x_{2} ; 2, q\right)$-minihyper.

Moreover, since $x_{1}+x_{2}=q+1$, necessarily $x_{1} \leq q / 2$ or $x_{2} \leq q / 2$. Assume that $x_{1} \leq q / 2$. Then Corollary 2 implies that \mathfrak{F}_{1} is the sum of x_{1} lines. Let L_{1} be one of these lines. Then reducing the weight of every point of \mathfrak{F}_{1} on L_{1} by one, a new $\left(\left(x_{1}-1\right)(q+1), x_{1}-1 ; 2, q\right)$-minihyper $\mathfrak{F}_{1}^{\prime}$ is obtained. But then $\mathfrak{F}_{1}^{\prime}+\mathfrak{F}_{2}$ is a $(q(q+1), q ; 2, q)$-minihyper. This is only possible if originally for $L_{1}, \mathfrak{F}\left(L_{1}\right) \geq q+1+q=2 q+1$. But L_{1} can contain at most two points of weight two, so $\mathfrak{F}\left(L_{1}\right) \leq q+1+2$. This contradicts $q \geq 4$. So \mathfrak{F} is indecomposable.

Example 2. Take a $(q+t, t)$-arc \mathfrak{K}^{\prime} of type $\left(0,2, t=2^{i}\right)$. These $(q+t, t)$-arcs of type $\left(0,2, t=2^{i}\right)$ have been studied in detail by Korchmáros and Mazzocca [12], and by Gács and Weiner [6]. For instance, a particular property of a $(q+t, t)$-arc \mathfrak{K}^{\prime} of type $\left(0,2, t=2^{i}\right)$ is that all the t-secants pass through a common point.

Let L be an external line to \mathfrak{K}^{\prime}. Set $\mathfrak{K}=\chi_{\mathcal{P} \backslash L}-\mathfrak{K}^{\prime}$. Then

$$
|\mathfrak{K}|=q^{2}-q-2^{i}=2 \cdot\left(\frac{q^{2}}{2}-\frac{q}{2}-2^{i-1}\right) .
$$

We have one 0 -line and secants of multiplicity $q, q-2$, and $q-2^{i}$. By the Ball construction, we get a minihyper with $x=\frac{q^{2}}{2}-\frac{q}{2}-2^{i-1}$.
Example 3. The complement of a unital. Consider $\operatorname{PG}(2, q)$, where q is a square. Let \mathfrak{U} be a unital and set $\mathfrak{K}=\chi_{\mathcal{P}}-\mathfrak{U}$. Here

$$
|\mathfrak{K}|=\sqrt{q}(q \sqrt{q}-q+\sqrt{q})
$$

with line multiplicities $q-\sqrt{q}$ and q. By Ball's construction, we get a minihyper with parameters

$$
((q \sqrt{q}-q+\sqrt{q})(q+1), q \sqrt{q}-q+\sqrt{q} ; 2, q) .
$$

In order to describe the fourth example, we need to define a linear blocking set in $\operatorname{PG}(2, q)$. We first of all introduce the notion of a Desarguesian spread.

By what is sometimes called field reduction, the points of $\operatorname{PG}(2, q), q=$ p^{h}, p prime, $h \geq 1$, correspond to $(h-1)$-dimensional subspaces of $\mathrm{PG}(3 h-$ $1, p)$, since a point of $\operatorname{PG}(2, q)$ is a 1 -dimensional vector space over \mathbb{F}_{q}, and so an h-dimensional vector space over \mathbb{F}_{p}. In this way, we obtain a partition \mathcal{D} of the point set of $\mathrm{PG}(3 h-1, p)$ by $(h-1)$-dimensional subspaces. In general, a partition of the point set of a projective space by subspaces of a given dimension k is called a spread, or a k-spread if we want to specify the dimension. The spread we have obtained here is called a Desarguesian spread. Note that the Desarguesian spread satisfies the property that each subspace spanned by two spread elements is again partitioned by spread elements.

Definition 1. Let \mathcal{D} be the Desarguesian $(h-1)$-spread of $\operatorname{PG}(3 h-1, p)$, corresponding to the points of $\mathrm{PG}\left(2, p^{h}\right)$ and let U be a subset of $\mathrm{PG}(3 h-$ $1, p)$, then $\mathcal{B}(U)=\{R \in \mathcal{D} \| U \cap R \neq \emptyset\}$. We identify the spread elements of $\mathcal{B}(U)$ with the corresponding points of $\mathrm{PG}\left(2, p^{h}\right)$.

Definition 2. We denote the ($h-1$)-dimensional spread element of PG(3h$1, p)$ corresponding to a point P of $\mathrm{PG}\left(2, p^{h}\right)$ by $\mathcal{S}(P)$. If U is a subspace of $\mathrm{PG}\left(2, p^{h}\right)$, then $\mathcal{S}(U):=\{\mathcal{S}(P) \| P \in U\}$.

Analogously to the correspondence between the points of $\mathrm{PG}(2, q), q=$ p^{h}, and the elements of a Desarguesian spread \mathcal{D} in $\operatorname{PG}(3 h-1, p)$, we obtain the correspondence between the lines of $\mathrm{PG}(2, q)$ and the $(2 h-1)$-dimensional subspaces of $\mathrm{PG}(3 h-1, p)$ spanned by two elements of \mathcal{D}. With this in mind, it is clear that any subspace U of dimension at least h of $\mathrm{PG}(3 h-1, p)$ defines a blocking set $\mathcal{B}(U)$ in $\operatorname{PG}(2, q)$. A blocking set constructed in this way is called a linear blocking set. Linear blocking sets were first introduced by Lunardon [14], although there a different approach is used. For more on the approach explained here, we refer to [13].

Example 4. The complement of a linear blocking set in $\mathrm{PG}(2, q), q=p^{h}, p$ prime, $h \geq 1$.

Such a linear blocking set $\mathcal{B}(U)$ in $\mathrm{PG}(2, q)$ intersects every line in 1 $(\bmod p)$ points. Suppose that e is the maximal integer such that every line of $\mathrm{PG}(2, q)$ intersects $\mathcal{B}(U)$ in $1\left(\bmod p^{e}\right)$ points. Then the complement of $\mathcal{B}(U)$ intersects every line in $0\left(\bmod p^{e}\right)$ points. If $|\mathcal{B}(U)|=q+k+1$, then the complement has size $q^{2}-k=p^{e}\left(q^{2} / p^{e}-k / p^{e}\right)$, so defines a $\left\{\left(q^{2} / p^{e}-\right.\right.$ $\left.\left.k / p^{e}\right)(q+1), q^{2} / p^{e}-k / p^{e} ; 2, q\right)$-minihyper.

4 Rational sums of lines

It has been noted that an $(x(q+1), x)$-minihyper is not necessarily a sum of lines. However this is always the case if we assume rational multiplicities for the points.

Theorem 5. Let \mathfrak{F} be an $(x(q+1), x)$-minihyper in $\operatorname{PG}(2, q)$. Then there exist lines L_{1}, \ldots, L_{s} and positive rational numbers c_{1}, \ldots, c_{s}, such that

$$
\mathfrak{F}=c_{1} \chi_{L_{1}}+\cdots+c_{s} \chi_{L_{s}},
$$

with $\sum_{i=1}^{s} c_{i}=x$.
Proof. Assume that there exists a line L with $\mathfrak{F}(L) \geq x+q$. Then $\mathfrak{F}^{\prime}=\mathfrak{F}-\chi_{L}$ is an $((x-1)(q+1), x-1)$-minihyper and we get the result by induction on x. Hence, without loss of generality, we can assume that all lines have multiplicity at most $x+q-1$.

Let P be a point of multiplicity ε. Denote by a_{i} the number of lines through P that have multiplicity i. We have

$$
\begin{aligned}
\sum_{i=0}^{q-1} a_{x+i} & =q+1 \\
\sum_{i=0}^{q-1}(x+i-\varepsilon) a_{x+i} & =x(q+1)-\varepsilon
\end{aligned}
$$

which implies

$$
\sum_{i=0}^{q-1} \frac{i}{q} a_{x+i}=\varepsilon
$$

Therefore,

$$
\mathfrak{F}=\sum_{i=0}^{q-1} \sum_{L: \mathfrak{F}(L)=x+i} \frac{i}{q} \chi_{L}
$$

which had to be proven.
Example 5. Consider $\operatorname{PG}(2, q), q$ even. Then this projective plane contains hyperovals.

Consider a dual hyperoval $\left\{L_{1}, \ldots, L_{q+2}\right\}$ in $\operatorname{PG}(2, q), q$ even. Then the rational sum

$$
\frac{1}{2} L_{1}+\cdots+\frac{1}{2} L_{q+2}
$$

is a $\left(\left(\frac{q}{2}+1\right)(q+1), \frac{q}{2}+1 ; 2, q\right)$-minihyper in $\mathrm{PG}(2, q), q$ even.
We know from Theorem 1 that if \mathfrak{F} is an $(x(q+1), x)$-minihyper in $\Pi=\mathrm{PG}(2, q), q=p^{m}, p$ prime, $m \geq 1$, with $x<q$ where p^{f} divides x, then for each line L in $\Pi, \mathfrak{F}(L) \equiv x\left(\bmod p^{f+1}\right)$.

This allows us to describe more in detail the rational coefficients of the rational sum.

Corollary 6. Let \mathfrak{F} be an indecomposable $(x(q+1), x)$-minihyper in $\Pi=$ $\mathrm{PG}(2, q), q=p^{m}$, prime, $m \geq 1$, with $x<q$ where p^{f} is the maximal power of p that divides x, then

$$
\begin{aligned}
\mathfrak{F}= & \sum_{L^{(1)}} \frac{1}{p^{m-f-1}} \chi_{L^{(1)}}+\sum_{L^{(2)}} \frac{2}{p^{m-f-1}} \chi_{L^{(2)}}+\cdots+ \\
& \sum_{L^{\left(p^{m-f-1}-1\right)}} \frac{p^{m-f-1}-1}{p^{m-f-1}} \chi_{L^{\left(p^{m-f-1}-1\right)}}
\end{aligned}
$$

with $L^{(1)}$ the lines intersecting \mathfrak{F} in $x+p^{f+1}$ points, with $L^{(2)}$ the lines intersecting \mathfrak{F} in $x+2 p^{f+1}$ points, ..., and with $L^{\left(p^{m-f-1}-1\right)}$ the lines intersecting \mathfrak{F} in $x+\left(p^{m-f-1}-1\right) p^{f+1}$ points.

5 A construction for $x=\frac{3 q}{4}$

If \mathfrak{K} is a $\left(q^{2}+q+2, q+2\right)$-arc in $\operatorname{PG}(2, q)$, then $\mathfrak{K}(P) \leq 2$ for all points P [3]. Thus the correspondence $\mathfrak{K} \leftrightarrow 2 \chi_{\mathcal{P}}-\mathfrak{K}$ establishes a one-to-one correspondence between such arcs and $(q(q+1), q ; 2, q)$-minihypers \mathfrak{F} for which $\mathfrak{F}(P) \leq 2$ for all points P. Thus the examples of [2, Section 2] provide $(q(q+1), q ; 2, q)$-minihypers having this added restriction. In particular, the 3 -line construction from [3, Theorem 2.3] leads to the following results.
Theorem 7. Let G be a subgroup of the additive group $\left(\mathbb{F}_{q},+\right)$. Let \mathcal{A}, \mathcal{B}, and \mathcal{C} be cosets of G in $\left(\mathbb{F}_{q},+\right)$ with $\mathcal{A}+\mathcal{B}+\mathcal{C} \neq G$. Set

$$
\mathcal{A}^{\prime}=-\mathcal{B}-\mathcal{C}, \mathcal{B}^{\prime}=-\mathcal{A}-\mathcal{C}, \text { and } \mathcal{C}^{\prime}=-\mathcal{A}-\mathcal{B}
$$

Define in the following way a multiset \mathfrak{K} in $\operatorname{PG}(2, q)$:

2-points | $(a, 0,-1)$ | for $a \in \mathcal{A}^{\prime}$, | |
| :--- | :--- | :--- |
| | $(b,-1,0)$ | for $b \in \mathcal{B}^{\prime}$, |
| | $(c, 1,1)$ | for $c \in \mathcal{C}^{\prime}$, |
| 0-points | $(a, 0,-1)$ | for $a \in \mathcal{A}$, |
| | $(b,-1,0)$ | for $b \in \mathcal{B}$, |
| | $(c, 1,1)$ | for $c \in \mathcal{C}$, |
| | $(1,0,0)$ | |

1-points the remaining points.
Then the multiset \mathfrak{K} is a $\left(q^{2}+q, q\right)$-minihyper. Conversely, every $\left(q^{2}+\right.$ $q, q)$-minihyper for which the 2-points lie on three lines meeting in a 0-point is isomorphic to \mathfrak{K}.

Now consider the special case $q=2^{r}, r \geq 2$. Let G be a subgroup of $\left(\mathbb{F}_{q},+\right)$ of order 2^{r-1}. If \mathfrak{K} is the minihyper defined in Theorem 7 , the lines in $\operatorname{PG}(2, q)$ have the types described in Table 1 below.

	multiplicity	\# of such lines	\# of 2-pts	\# of 1-pts	\# of 0-pts
(A)	q	3	$q / 2$	0	$q / 2+1$
(B)	q	$3 q^{2} / 4$	1	$q-2$	2
(C)	q	$q-2$	0	q	1
(D)	$q+4$	$q^{2} / 4$	3	$q-2$	0

Table 1

The points of $\operatorname{PG}(2, q)$ can be divided into four classes with respect to the types of the lines they are incident with. The possible types of the points are described in Table 2.

			\# lines of type			
	multiplicity	\# of such points	(A)	(B)	(C)	(D)
(α)	2	$3 q / 2$	1	$q / 2$	0	$q / 2$
(β)	1	$q^{2}-2 q$	0	$3 q / 4$	1	$q / 4$
(γ)	0	$3 q / 2$	1	q	0	0
(δ)	0	1	3	0	$q-2$	0

Table 2
Now we define a new multiset \mathfrak{F} in the dual plane of $\operatorname{PG}(2, q)$ by

$$
\mathfrak{F}(l)= \begin{cases}q / 4 & \text { if } l \text { is of type (A); } \tag{1}\\ 1 & \text { if } l \text { is of type (B); } \\ 0 & \text { if } l \text { is of type (C) or (D). }\end{cases}
$$

Theorem 8. The multiset \mathfrak{F} is a 2-weight minihyper with parameters $\left(\frac{3 q}{4}(q+\right.$ 1), $\frac{3 q}{4}$) and spectrum

$$
a_{3 q / 4}=q^{2}-\frac{q}{2}+1, a_{5 q / 4}=\frac{3 q}{2}, a_{i}=0 \text { for } i \neq \frac{3 q}{4}, \frac{5 q}{4} .
$$

Proof. The proof is immediate from Table 2. Points of type $(\alpha),(\beta)$, and (δ) become lines of multiplicity $3 q / 4$, while lines of type (γ) become lines of multiplicity $5 q / 4$. Table 2 implies also the values of $a_{3 q / 4}$ and $a_{5 q / 4}$.

For $r=2$, this construction gives a projective (15,3)-minihyper with 3 - and 5 -lines which is the complement of the hyperoval in $\operatorname{PG}(2,4)$. For $r=3$, the theorem gives a $(54,6)$-minihyper with 6 - and 10 -lines which is an "orphan" minihyper obtained in [9, Theorem 31]. For $r=4$, the construction gives a $(204,12)$-minihyper with lines of multiplicity 12 and 20 . For $r \geq 4$, these minihypers do not come from Ball's symmetric difference construction since they have points of multiplicity $2^{r-2}>2$, while in Ball's construction all points have multiplicity 0,1 , and 2 .

This construction can be reversed: from a minihyper with three collinear points of multiplicity $q / 4$ (the remaining points on the line being 0 -points), $3 q^{2} / 4$ points of multiplicity 1 and $q^{2} / 4+q-2$ points of multiplicity 0 , one can obtain back the $(q(q+1), q)$-minihyper and the $\left(q^{2}+q+2, q+2\right)$-arc from the 3 -line construction.

6 Indecomposable minihypers

In [9], Hill and Ward consider plane $(x(q+1), x)$-minihypers with $x<q$ only. The reason is that such minihypers give rise to Griesmer codes via the well-known construction of Hamada [5, 8]. If \mathfrak{F} is an $(x(q+1), x ; 2, q)$ minihyper and s is the maximal multiplicity of a point, then $s \chi_{\mathcal{P}}-\mathfrak{F}$ is an $\left(s\left(q^{2}+q+1\right)-x(q+1), s(q+1)-x ; 2, q\right)$-arc. The code associated to this arc has parameters $\left[s\left(q^{2}+q+1\right)-x(q+1), 3, s q^{2}-x q\right]$ and is easily checked to meet the Griesmer bound for $x<q$.

In what follows, we consider minimal, indecomposable $(x(q+1), x ; 2, q)$ minihypers without imposing an explicit restriction on x. It turns out that the indecomposability requirement implies an upper bound on x.

Theorem 9. Every $(x(q+1), x ; 2, q)$-minihyper, with $x \geq q^{2}-q+1$, is decomposable.

Proof. Assume that \mathfrak{F} is an indecomposable $(x(q+1), x)$-minihyper. There exists a point P in $\operatorname{PG}(2, q)$ that is of multiplicity 0 . Otherwise \mathfrak{F} can be represented as the sum of $\chi_{\mathcal{P}}$ and an $((x-q-1)(q+1)+q, x-q-1)$-minihyper, a contradiction to the indecomposability condition.

Note that all lines through the 0 -point P are x-lines. Moreover the multiplicity of any line L cannot be larger than $x+q-1$ (otherwise, the minihyper is represented as the sum of χ_{L} and an $((x-1)(q+1), x-1)$ minihyper). Counting the flags (P^{\prime}, L^{\prime}), with $P^{\prime} \in L^{\prime}$, we get

$$
x(q+1)^{2} \leq x(q+1)+q^{2}(x+q-1) .
$$

This implies $x \leq q^{2}-q$.
Theorem 10. For an indecomposable $(x(q+1), x ; 2, q)$-minihyper with $x \leq$ $q^{2}-q$, all points of $P G(2, q)$ have weight at most $q-1$.

Proof. Consider a point P of weight e, and now consider all the lines through P. Since they all have weight at most $x+q-1$, we obtain the inequality

$$
q e+x(q+1) \leq q(x+q-1)+x,
$$

where we used the fact that every line has weight at most $x+q-1$, and there is at least one x-secant through P. Namely, there is at least one point P^{\prime} having weight zero, and the line $P P^{\prime}$ is an x-secant to the minihyper.

This leads to $e \leq q-1$.

Corollary 11. There is no indecomposable $(x(q+1), x ; 2, q)$-minihyper with $x=q^{2}-q$.
Proof. Assume otherwise and let \mathfrak{F} be an indecomposable $\left(\left(q^{2}-q\right)(q+1), q^{2}-\right.$ $q ; 2, q)$-minihyper. Then by the counting argument from Theorem 9 , we get that all points other than the 0 -point P have multiplicity $q-1$ and $\mathfrak{F}=(q-1) \chi_{\mathcal{P} \backslash\{P\}}$. But $\chi_{\mathcal{P} \backslash\{P\}}$ itself is a $(q(q+1), q ; 2, q)$-minihyper, a contradiction to our initial assumption.

Remark 12. Using the same arguments, we can improve on the bound for x if we assume the existence of a certain number of 0 -points. For example, if we assume that there are two 0 -points, then the number of x-lines becomes at least $2 q+1$ and the double counting argument gives

$$
x(q+1)^{2} \leq x(2 q+1)+\left(q^{2}-q\right)(x+q-1),
$$

whence $x \leq q^{2}-2 q+1$.

7 A switching construction

Consider an indecomposable $(x(q+1), x ; 2, q)$-minihyper with $x \leq q^{2}-q-1$. Then all points have weight smaller than or equal to $q-1$ (Theorem 10), and for every line $L, \mathfrak{F}(L) \leq x+q-1$. Then this minihyper has at least one 0 -point; see the proof of Theorem 9 . Let us fix such a 0 -point, P say. All the lines through P are of multiplicity x. Set $x=q^{2}-q-y, 0<y$, and define a new minihyper \mathfrak{F}^{\prime} in the following way:

$$
\mathfrak{F}^{\prime}(Q)=\left\{\begin{align*}
q-1-\mathfrak{F}(Q) & \text { if } Q \neq P ; \tag{2}\\
0 & \text { if } Q=P
\end{align*}\right.
$$

We say that \mathfrak{F}^{\prime} is obtained from \mathfrak{F} by using switching with respect to P. We have

$$
\begin{align*}
\left|\mathfrak{F}^{\prime}\right| & =\sum_{Q: Q \neq P}(q-1-\mathfrak{F}(Q))=\left(q^{2}+q\right)(q-1)-\sum_{Q: Q \neq P} \mathfrak{F}(Q) \tag{3}\\
& =\left(q^{2}+q\right)(q-1)-x(q+1)=y(q+1) . \tag{4}
\end{align*}
$$

Furthermore, all lines through P have multiplicity $y=q(q-1)-x$. For the remaining lines L, one has

$$
\mathfrak{F}^{\prime}(L) \geq(q+1)(q-1)-(x+q-1)=q(q-1)-x=y .
$$

Hence, \mathfrak{F}^{\prime} is a $(y(q+1), y)$-minihyper.
It is clear that switching \mathfrak{F}^{\prime} with respect to P, we again obtain \mathfrak{F}.

Lemma 13. Let \mathfrak{F} be an $(x(q+1), x ; 2, q)$-minihyper, with $x \leq q^{2}-q$, having a 0 -point P and such that $\mathfrak{F}(L) \leq x+q-1$ for every line L. Let \mathfrak{F}^{\prime} be the $(y(q+1), y ; 2, q)$-minihyper, $y=q^{2}-q-x$, obtained from \mathfrak{F} by switching with respect to P. Then $\mathfrak{F}^{\prime}(L) \leq y+q-1$ for every line L. In particular, \mathfrak{F}^{\prime} is not a sum of lines.

Proof. For every point $Q, \mathfrak{F}^{\prime}(Q) \leq q-1-\mathfrak{F}(Q)$, so

$$
\mathfrak{F}^{\prime}(L) \leq(q+1)(q-1)-\mathfrak{F}(L) \leq q^{2}-1-x=y+q-1 .
$$

Theorem 14. Every $(x(q+1), x ; 2, q)$-minihyper, with $x \geq q^{2}-2 q+\frac{q}{p}$, is decomposable.

Proof. Assume otherwise and let \mathfrak{F} be an indecomposable minihyper with parameters $(x(q+1), x), x \geq q^{2}-2 q+\frac{q}{p}$. Then $x \leq q^{2}-q$ by Theorem 9 . By the switching construction, we get a $(y(q+1), y)$-minihyper \mathfrak{F}^{\prime} with $y \leq\left(q^{2}-q\right)-\left(q^{2}-2 q+\frac{q}{p}\right)=q-\frac{q}{p}$. Since \mathfrak{F} is indecomposable, $\mathfrak{F}(L) \leq x+q-1$ and, by Lemma $13, \mathfrak{F}^{\prime}(L) \leq y+q-1$. This contradicts Corollary 2.

8 Two characterization results

8.1 A first characterization result

Consider $\operatorname{PG}(2, q), q$ even; then there are two known ways to construct $\left(\left(\frac{q}{2}+1\right)(q+1), \frac{q}{2}+1 ; 2, q\right)$-minihypers. First of all, there is the sum $L_{1}+\cdots+$ $L_{q / 2+1}$ of $q / 2+1$ lines $L_{1}, \ldots, L_{q / 2+1}$, and secondly there is the rational sum $\frac{1}{2}\left(L_{1}+\cdots+L_{q+2}\right)$, where $\left\{L_{1}, \ldots, L_{q+2}\right\}$ is a dual hyperoval of $\operatorname{PG}(2, q)$.

We now show that all $\left(\left(\frac{q}{2}+1\right)(q+1), \frac{q}{2}+1 ; 2, q\right)$-minihypers arise from these two constructions.

Theorem 15. Every $\left(\left(\frac{q}{2}+1\right)(q+1), \frac{q}{2}+1 ; 2, q\right)$-minihyper \mathfrak{K} in $P G(2, q), q$ even, is either:
(1) a sum $L_{1}+\cdots+L_{q / 2+1}$ of $q / 2+1$ lines $L_{1}, \ldots, L_{q / 2+1}$, or
(2) a rational sum $\frac{1}{2}\left(L_{1}+\cdots+L_{q+2}\right)$, where $\left\{L_{1}, \ldots, L_{q+2}\right\}$ is a dual hyperoval.

Proof. Let $x=q / 2+1$ and $y=3 q / 4$. Assume first of all that \mathfrak{K} is indecomposable. This implies in particular that the weight $\mathfrak{K}(L)$ of every line L is at most $q / 2+1+q-1$. Then the following properties are valid.

Add a sum of $q / 4-1$ lines to \mathfrak{K} to obtain a $((3 q / 4)(q+1), 3 q / 4 ; 2, q)$ minihyper \mathfrak{K}^{\prime}. Then Theorem 1 implies that for every line $L, \mathfrak{K}^{\prime}(L) \equiv 3 q / 4$ $(\bmod q / 2)$. Subtracting the contribution of the sum of the $q / 4-1$ lines in $\mathfrak{K}^{\prime}-\mathfrak{K}$, this implies that for every line $L, \mathfrak{K}(L) \equiv x \equiv q / 2+1(\bmod q / 2)$. Since for every line $L, \mathfrak{K}(L) \equiv x(\bmod q / 2)$, and since $\mathfrak{K}(L) \leq x+q-1$, this implies that $\mathfrak{K}(L) \in\{q / 2+1, q+1\}$.

Again, since $x=q / 2+1 \leq y=3 q / 4=q / 2+q / 4$ and since $q / 4$ divides y, for every point $P, \mathfrak{K}(P) \leq q / 2+1-q / 2=1$ (Corollary 3). So \mathfrak{K} only has points of weight one.

Let P be a point of \mathfrak{K}, let P belong to $\alpha(q / 2+1)$-secants and to β $(q+1)$-secants to \mathfrak{K}, then

$$
\left\{\begin{aligned}
\alpha+\beta & =q+1 \\
\alpha \cdot \frac{q}{2}+\beta \cdot q & =\left(\frac{q}{2}+1\right)(q+1)-1=\frac{q^{2}}{2}+\frac{3 q}{2}
\end{aligned}\right.
$$

This implies that $\beta=2$. So every point of \mathfrak{K} belongs to two $(q+1)$-secants to \mathfrak{K}. This implies that there are in total $2(q / 2+1)(q+1) /(q+1)=q+2$ different $(q+1)$-secants. Denote them by L_{1}, \ldots, L_{q+2}. Then since every point of \mathfrak{K} belongs to two of the lines L_{1}, \ldots, L_{q+2}, the lines L_{1}, \ldots, L_{q+2} necessarily define a dual hyperoval of $\operatorname{PG}(2, q), q$ even.

Assume now that \mathfrak{K} is decomposable. Then the same arguments as in Remark 4 show that $\mathfrak{K}=\mathfrak{K}_{1}+\mathfrak{K}_{2}$, with \mathfrak{K}_{1} an $\left(x_{1}(q+1), x_{1} ; 2, q\right)$-minihyper and with \mathfrak{K}_{2} an $\left(x_{2}(q+1), x_{2} ; 2, q\right)$-minihyper with $x_{1}+x_{2}=x=q / 2+1$. But since $x_{1} \leq q / 2$ and $x_{2} \leq q / 2, \mathfrak{K}_{1}$ and \mathfrak{K}_{2} are respectively a sum of x_{1} and x_{2} lines (Corollary 2), so \mathfrak{K} is a sum of $x=q / 2+1$ lines.

8.2 A second characterization result

Consider again $\mathrm{PG}(2, q), q$ even. Then we have already three constructions for $((q / 2+2)(q+1), q / 2+2 ; 2, q)$-minihypers. The first construction is via a sum of $q / 2+2$ lines, the second construction via a $(q+4,4)$-arc of type $(0,2,4)$ (Example 2), and the third construction is via the sum of a line and a $\left(\left(\frac{q}{2}+1\right)(q+1), \frac{q}{2}+1 ; 2, q\right)$-minihyper arising from a dual hyperoval in $\operatorname{PG}(2, q), q$ even (Example 1).

We now prove that these are the only three constructions for $((q / 2+$ $2)(q+1), q / 2+2 ; 2, q)$-minihypers.

Theorem 16. Every $\left(\left(\frac{q}{2}+2\right)(q+1), \frac{q}{2}+2 ; 2, q\right)$-minihyper \mathfrak{K} in $P G(2, q), q$ even, $q \geq 8$, is either:
(1) a sum $L_{1}+\cdots+L_{q / 2+2}$ of $q / 2+2$ lines $L_{1}, \ldots, L_{q / 2+2}$, or
(2) a $\left(\left(\frac{q}{2}+2\right)(q+1), \frac{q}{2}+2 ; 2, q\right)$-minihyper constructed via a $(q+4,4)$-arc of type $(0,2,4)$, or
(3) the sum of a line and a $\left(\left(\frac{q}{2}+1\right)(q+1), \frac{q}{2}+1 ; 2, q\right)$-minihyper arising from a dual hyperoval in $P G(2, q), q$ even.

Proof. Assume first of all that \mathfrak{K} is indecomposable, then again in particular, the weight of every line is at most $q / 2+2+q-1$. Then the following properties are valid.

We again use that $x=q / 2+2 \leq y=3 q / 4=q / 2+q / 4$. Since $q / 4$ divides y, for every point $P, \mathfrak{K}(P) \leq q / 2+2-q / 2=2$ (Corollary 3). So \mathfrak{K} only has points of weight one and two.

Using the same technique as in the proof of the preceding theorem, Theorem 1 implies that for every line $L, \mathfrak{K}(L) \equiv q / 2+2(\bmod q / 2)$, and since $\mathfrak{K}(L) \leq q / 2+2+q-1$, this implies that $\mathfrak{K}(L) \in\{q / 2+2, q+2\}$. We first determine the numbers $a_{q / 2+2}$ and a_{q+2} of ($q / 2+2$)-secants and ($q+2$)-secants. The standard equations are:

$$
\begin{aligned}
a_{q / 2+2}+a_{q+2} & =q^{2}+q+1, \\
(q / 2+2) a_{q / 2+2}+(q+2) a_{q+2} & =(q / 2+2)(q+1)^{2},
\end{aligned}
$$

leading to $a_{q / 2+2}=q^{2}-3$ and $a_{q+2}=q+4$.
The third standard equation is [9]:

$$
(q / 2+2)^{2} a_{q / 2+2}+(q+2)^{2} a_{q+2}=(q+1)^{2}(q / 2+2)^{2}+q\left(p_{1}+4 p_{2}\right)
$$

where p_{1} is the number of points in \mathfrak{K} of weight one and p_{2} the number of points in \mathfrak{K} of weight two. This leads to $p_{1}+4 p_{2}=q^{2} / 2+3 q+4$.

But we also have the equations

$$
\begin{aligned}
p_{0}+p_{1}+p_{2} & =q^{2}+q+1 \\
p_{1}+2 p_{2} & =(q / 2+2)(q+1)
\end{aligned}
$$

leading to $p_{0}=q^{2} / 2-5 q / 4, p_{1}=q^{2} / 2+2 q$, and $p_{2}=q / 4+1$.
We now check how the secants pass through a point of weight zero, one, or two. A 0 -point only lies on $(q / 2+2)$-secants. Suppose that a 1 -point lies on $x_{q / 2+2}$ different $(q / 2+2)$-secants and on x_{q+2} different $(q+2)$-secants. Then

$$
\begin{aligned}
x_{q / 2+2}+x_{q+2} & =q+1 \\
(q / 2+2) x_{q / 2+2}+(q+2) x_{q+2} & =(q / 2+2)(q+1)+q,
\end{aligned}
$$

leading to $x_{q+2}=2$ and $x_{q / 2+2}=q-1$. So a point of weight one lies on exactly two of the $(q+2)$-secants.

Suppose that a 2-point lies on $x_{q / 2+2}^{\prime}$ different $(q / 2+2)$-secants and on x_{q+2}^{\prime} different $(q+2)$-secants. Then

$$
\begin{aligned}
x_{q / 2+2}^{\prime}+x_{q+2}^{\prime} & =q+1 \\
(q / 2+2) x_{q / 2+2}^{\prime}+(q+2) x_{q+2}^{\prime} & =(q / 2+2)(q+1)+2 q
\end{aligned}
$$

leading to $x_{q+2}^{\prime}=4$ and $x_{q / 2+2}^{\prime}=q-3$.
A $(q+2)$-line is completely contained in \mathfrak{K}, and hence contains one point of weight two and q points of weight one.

This all leads to the conclusion that a point of weight zero lies on zero of the $(q+2)$-lines, a point of weight one lies on exactly two of the $(q+2)$ secants, and a point of weight two lies on exactly four of the $(q+2)$-secants. This implies that the $(q+2)$-secants form a dual $(q+4,4)$-arc of type $(0,2,4)$. This shows that the minihyper arises from the construction of Example 2.

Assume now that \mathfrak{K} is decomposable, then $\mathfrak{K}=\mathfrak{K}_{1}+\mathfrak{K}_{2}$, with \mathfrak{K}_{1} an $\left(x_{1}(q+1), x_{1} ; 2, q\right)$-minihyper and with \mathfrak{K}_{2} an $\left(x_{2}(q+1), x_{2} ; 2, q\right)$-minihyper with $x_{1}+x_{2}=x=q / 2+2$. Assume that $x_{1} \geq x_{2}$. If $x_{2} \geq 2$, then $x_{1} \leq q / 2$ and $x_{2} \leq q / 2$, so \mathfrak{K}_{1} and \mathfrak{K}_{2} are a sum of respectively x_{1} and x_{2} lines, implying that \mathfrak{K} is a sum of $x=x_{1}+x_{2}=q / 2+2$ lines. If $x_{1}=q / 2+1$ and $x_{2}=1$, then \mathfrak{K}_{1} is as described in the preceding theorem and \mathfrak{K}_{2} is a line.

Acknowledgements. This research was supported by the Project Combined algorithmic and theoretical study of combinatorial structures between the Fund for Scientific Research Flanders-Belgium and the Bulgarian Academy of Sciences. This research is also part of the FWO-Flanders project nr. G.0317.06 Linear codes and cryptography.

The authors also wish to thank the referees for their suggestions for a clearer exposition of the results discussed in this article.

References

[1] S. Ball and A. Blokhuis, An easier proof of the maximal arcs conjecture. Proc. Amer. Math. Soc. 126 (1998), 3377-3380.
[2] S. Ball, A. Blokhuis, and F. Mazzocca, Maximal arcs in Desarguesian planes of odd order do not exist. Combinatorica 17 (1997), 31-41.
[3] S. Ball, R. Hill, I. Landjev, and H. Ward, On $\left(q^{2}+q+2, q+2\right)$-arcs in the projective plane PG(2,q). Des. Codes Cryptogr. 24 (2001), 205-224.
[4] R.H.F. Denniston, Some maximal arcs in finite projective planes. J. Comb. Theory 6 (1969), 317-319.
[5] S. Ferret and L. Storme, A classification result on weighted $\left\{\delta v_{\mu+1}, \delta v_{\mu} ; N, p^{3}\right\}$-minihypers. Discrete Appl. Math. 154 (2006), 277293.
[6] A. Gács and Zs. Weiner, On $(q+t, t)$-arcs of type $(0,2, t)$. Des. Codes Cryptogr. 29 (2003), 131-139.
[7] N. Hamada, A characterization of some $[n, k, d ; q]$-codes meeting the Griesmer bound using a minihyper in a finite projective geometry. Discrete Math. 116 (1993), 229-268.
[8] N. Hamada and F. Tamari, On a geometrical method of construction of maximal t-linearly independent sets. J. Combin. Theory Ser. A $\mathbf{2 5}$ (1978), 14-28.
[9] R. Hill and H. Ward, A geometric approach to classifying Griesmer codes. Des. Codes Cryptogr. 44 (2007), 169-196.
[10] J.W.P. Hirschfeld, Projective geometries over finite fields. Oxford Mathematical Monographs. Oxford: Clarendon Press 1998.
[11] J.W.P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces: update 2001. Developments in Mathematics Vol. 3, Kluwer Academic Publishers. Finite Geometries, Proceedings of the Fourth Isle of Thorns Conference (Chelwood Gate, July 16-21, 2000) (Eds. A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel and J.A. Thas), pp. 201-246.
[12] G. Korchmáros and F. Mazzocca, On $(q+t, t)$-arcs of type $(0,2, t)$ in a desarguesian plane of order q. Math. Proc. Camb. Phil. Soc. 108 (1990), 445-459.
[13] M. Lavrauw, Scattered spaces with respect to spreads, and eggs in finite projective spaces. PhD Dissertation, Eindhoven University of Technology, Eindhoven, 2001. viii +115 pp.
[14] G. Lunardon, Normal spreads. Geom. Dedicata 75 (1999), 245-261.

Ivan Landjev
ivan@moi.math.bas.bg
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8, Acad. G. Bonchev, 1113 Sofia, BULGARIA
New Bulgarian University i.landjev@nbu.bg
21 Montevideo str., 1618 Sofia, BULGARIA
Leo Storme
ls@cage.ugent.be
Department of Pure Mathematics and Computer Algebra,
Ghent University, Krijgslaan 281-S22, Ghent 9000, BELGIUM
http://cage.ugent.be/~ls

