Advanced search
1 file | 677.16 KB Add to list

A toy model for higher spin Dirac operators

David Eelbode (UGent) and Liesbet Van de Voorde (UGent)
(2010) PHYSICS OF ATOMIC NUCLEI. 73(2). p.282-287
Author
Organization
Abstract
This paper deals with the higher spin Dirac operator Q(2,1) acting on functions taking values in an irreducible representation space for so(m) with highest weight (5/2, 3/2, 1/2,..., 1/2). This operator acts as a toy model for generalizations of the classical Rarita-Schwinger equations in Clifford analysis. Polynomial null solutions for this operator are studied in particular.
Keywords
higher spin, Clifford analysis, Dirac operator

Downloads

  • (...).pdf
    • full text
    • |
    • UGent only
    • |
    • PDF
    • |
    • 677.16 KB

Citation

Please use this url to cite or link to this publication:

MLA
Eelbode, David, and Liesbet Van de Voorde. “A Toy Model for Higher Spin Dirac Operators.” PHYSICS OF ATOMIC NUCLEI, vol. 73, no. 2, 2010, pp. 282–87, doi:10.1134/S1063778810020134.
APA
Eelbode, D., & Van de Voorde, L. (2010). A toy model for higher spin Dirac operators. PHYSICS OF ATOMIC NUCLEI, 73(2), 282–287. https://doi.org/10.1134/S1063778810020134
Chicago author-date
Eelbode, David, and Liesbet Van de Voorde. 2010. “A Toy Model for Higher Spin Dirac Operators.” PHYSICS OF ATOMIC NUCLEI 73 (2): 282–87. https://doi.org/10.1134/S1063778810020134.
Chicago author-date (all authors)
Eelbode, David, and Liesbet Van de Voorde. 2010. “A Toy Model for Higher Spin Dirac Operators.” PHYSICS OF ATOMIC NUCLEI 73 (2): 282–287. doi:10.1134/S1063778810020134.
Vancouver
1.
Eelbode D, Van de Voorde L. A toy model for higher spin Dirac operators. PHYSICS OF ATOMIC NUCLEI. 2010;73(2):282–7.
IEEE
[1]
D. Eelbode and L. Van de Voorde, “A toy model for higher spin Dirac operators,” PHYSICS OF ATOMIC NUCLEI, vol. 73, no. 2, pp. 282–287, 2010.
@article{969786,
  abstract     = {{This paper deals with the higher spin Dirac operator Q(2,1) acting on functions taking values in an irreducible representation space for so(m) with highest weight (5/2, 3/2, 1/2,..., 1/2). This operator acts as a toy model for generalizations of the classical Rarita-Schwinger equations in Clifford analysis. Polynomial null solutions for this operator are studied in particular.}},
  author       = {{Eelbode, David and Van de Voorde, Liesbet}},
  issn         = {{1063-7788}},
  journal      = {{PHYSICS OF ATOMIC NUCLEI}},
  keywords     = {{higher spin,Clifford analysis,Dirac operator}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{282--287}},
  title        = {{A toy model for higher spin Dirac operators}},
  url          = {{http://doi.org/10.1134/S1063778810020134}},
  volume       = {{73}},
  year         = {{2010}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: