A common NYX mutation in Flemish patients with X linked CSNB

B P Leroy, B S Budde, M Wittmer, et al.

doi: 10.1136/bjo.2008.143727

Updated information and services can be found at:
http://bjo.bmj.com/content/93/5/692.full.html

These include:
Supplemental Material
http://bjo.bmj.com/content/suppl/2009/04/08/93.5.692.DC1.html

References
This article cites 17 articles, 9 of which can be accessed free at:
http://bjo.bmj.com/content/93/5/692.full.html#ref-list-1

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic collections
Articles on similar topics can be found in the following collections

Optic nerve (471 articles)
Vision (424 articles)
Neurology (2000 articles)
Optics and refraction (320 articles)
Epidemiology (4809 articles)

Notes

To order reprints of this article go to:
http://bjo.bmj.com/cgi/reprintform

To subscribe to British Journal of Ophthalmology go to:
http://bjo.bmj.com/subscriptions
A common NYX mutation in Flemish patients with X linked CSNB

B P Leroy,1,2 B S Budde,3 M Wittmer,4 E De Baere,2 W Berger,4 C Zeitz4

ABSTRACT
Aims: The Schubert–Bornschein type of complete congenital stationary night blindness (CSNB) is a genetically heterogeneous retinal disorder. It is characterised by a non-progressive disease course, often associated with high myopia and nystagmus. So far, mutations in two genes, NYX (nyctalopin) and GRM6 (metabotropic glutamate receptor 6) have been associated with this form of CSNB. The purpose of this study was to identify the genetic defect in affected male patients from Flemish families with complete CSNB.

Methods: Probands with CSNB from three large Flemish families underwent ophthalmological examination. DNA was extracted from peripheral blood, and the coding region of NYX along with parts of the 5'UTR and 3'UTR and intronic regions covering the splice sites were PCR amplified and sequenced.

Results: In the affected individuals of three Flemish families with the complete form of CSNB a novel NYX mutation, c.855delG was identified. This deletion is predicted to lead to a frameshift mutation, p.Asp286ThrfsX62 causing a premature stop codon.

Conclusion: Previously, both single families with different mutations in NYX as well as different families with an identical mutation, suggestive of a founder mutation, have been described. The c.855delG deletion in NYX seems to be a common mutation associated with CSNB in the Flemish population from Belgium. Thus, we suggest performing diagnostic testing for CSNB in the Flemish population initially directed towards the identification of this mutation. Subsequent screening for other mutations in NYX or GRM6 could be performed as a second step.

The Schubert–Bornschein type of congenital stationary night blindness (CSNB) is characterised by a distinctly shaped dark-adapted combined rod–cone electroretinogram (ERG) to a single bright white flash: the amplitude of the a-wave is normal and larger than that of the b-wave, leading to its electronegative aspect. Under psychophysical dark adaptation, rod adaptation is dramatically reduced or completely absent, and cone adaptation may show variable threshold elevations in most patients.1–4 Miyake and coworkers further divided this type of CSNB into two subtypes, incomplete and complete.5 The incomplete form of CSNB is characterised by a reduced rod b-wave as well as a substantially reduced cone response, while the complete type of CSNB is associated with either absent or very low amplitudes of the rod b-wave response and normal cone amplitudes. Both types can be inherited as an X linked (XL-CSNB) or autosomal recessive (ar) trait. Mutations in CACNA1F (Xp11.23) and CABP4 (11q13.1) lead to the incomplete form, while mutations in NYX (Xp11.4) and GRM6 (5q35) are associated with the complete form of CSNB.6–13

To date, the majority of mutations have been identified in two X linked genes, CACNA1F and NYX, which are assumed to play a role downstream of the phototransduction cascade in transmitting the signal from the photoreceptors to the adjacent bipolar cells.14 NYX comprises three exons and codes for a protein, nyctalopin, which belongs to the small leucine-rich proteoglycan family. Although immunofluorescence and western blot analyses have shown that the protein is attached to the cell surface via a GPI anchor,15 16 and plays a role in transmitting the biochemical signal from the photoreceptors to the adjacent bipolar cells, the exact role of this protein still has to be discovered.14 Up to now, 37 different mutations in NYX have been associated with the complete type of CSNB.14 From this total of 37 mutations, 24 single families have been associated with a different mutation. The remaining 13 mutations represent different recurring mutations, most notably a 24 bp deletion, p.Arg29_Ala56del, identified in seven families originating from the USA with a common founder.9

The objective of this study was to identify the disease-causing mutation in three apparently unrelated large Flemish families with complete CSNB.

MATERIALS AND METHODS

Patients
Informed consent was obtained from the participants, in accordance with guidelines established by the Declaration of Helsinki.

Clinical assessments of patients
All affected members of the three families underwent an extensive ophthalmological evaluation, including Snellen visual acuity testing, slit-lamp biomicroscopy, funduscopy, Goldmann visual fields, colour vision examination, International Society for Clinical Electrophysiology of Vision standard electroretinography and on–off responses (total flash duration of 200 ms), and infrared, autofluorescence and red-free imaging. Blood was taken from all family members by venesection and genomic DNA extracted according to accepted procedures (Puregene, Gentra, Minneapolis).

Mutation analysis
Four PCR fragments containing the exons 1–3 of NYX were amplified with primers previously described,17 using DNA polymerase (HotFirePol,
Figure 1 Pedigrees of patients showing a c.855delG mutation in the \textit{NYX} gene, which is predicted to lead to a frameshift mutation, p.Asp286ThrfsX62. Males are represented by boxes, females by circles. Filled boxes indicate that the patient is affected; dots indicate a carrier status; “wt” means “wild type”; arrows indicate patients examined.

Figure 2 (A) Composite fundus image of the right eye of individual IV_{6} of family B: note the tilted optic disc with temporal peripapillary chorioretinal atrophy and macular hypoplasia with increased visibility of the choroidal vasculature. (B) On–off responses of three affected individuals as indicated on left (LE, left eye; RE, right eye); representative normal control at bottom for purposes of comparison; note the absence of an on–response in all patients, with preservation of the off-response. (C) Composite infrared image of the fundus of the left eye of individual III_{14} of family A: note the tilted disc, pronounced peripapillary atrophy and macular hypoplasia. (D) Autofluorescence image of the fundus of the right eye of individual III_{14} of family A: background autofluorescence is normal.
Soli Biodyne, Tartu, Estonia), 1.5 mM MgCl₂ (exon 1–2, fragments B and C of exon 3) or 2.5 mM MgCl₂ (fragment B of exon 3) and an annealing temperature of 56°C (exons 1–2) or 58°C (all fragments of exon 3) in the presence of Q-solution (Qiagen, Hombrechtikon, Switzerland). Purification and sequencing were performed with the appropriate primers as described earlier. The DNA of 43 Flemish females and 51 Flemish unaffected males served as controls for this study.

Table 1 Haplotype analysis of the patients with the c.855delG mutation in NYX

<table>
<thead>
<tr>
<th>Marker</th>
<th>Position cM</th>
<th>Alleles of patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYX</td>
<td>66.88</td>
<td>[c.855delG] [c.855delG] [c.855delG] [c.855delG]</td>
</tr>
</tbody>
</table>

Figure 3 International Society for Clinical Electrophysiology of Vision standard full-field flash electroretinography (ERG) of four representative congenital stationary night blindness patients (LE, left eye; RE, right eye) as indicated on the left, and representative normal control at the bottom: note the typical Schubert–Bornschein complete type abnormalities with: absent or residual rod-specific responses, electronegative mixed rod–cone responses; absent scotopic oscillatory potentials, cone-specific responses to transient flash with normal amplitudes but broadened a-wave due to loss of photopic oscillatory potentials (slight delay in individual III14 of family A), and (near-) normal cone responses to 30 Hz flickering stimulus.
RESULTS AND DISCUSSION

All seven affected family members of the three Flemish families have been diagnosed as having complete CSNB (fig 1). The diagnosis was based on a combination of congenital night blindness without photophobia, subnormal best-corrected visual acuity with nystagmus but (near-) normal visual fields, a documented personal or family history of stationary disease, fundus changes limited to myopia with macular hypoplasia, absence of hyperautofluorescence on autofluorescence imaging (fig 2) and Schubert–Bornschein complete type ERG abnormalities (figs 2, 3 and supplementary table 1). All patients are males and have a family history compatible with X linked inheritance. The three families are apparently unrelated (fig 1). They had all been diagnosed in their first few years of life, after failing to fix and follow at the age of 3 months, in the presence of nystagmus. Normal fundus autofluorescence imaging, which was performed in six patients, further supported the stationary nature of the disease.

The DNAs from seven male patients from the three different families were screened for mutations in the NYX gene. In all of them, a c.855delG was identified (fig 4).

Additionally, also the carrier status of four unaffected females of these families has been investigated (A-IV-15, A-IV-16, B-IV-2, C-IV-7) (fig 1). Only B-IV-7 did not carry the mutation. These studies clearly showed that the mutation c.855delG co-segregates within these families. None of the 157 control alleles from the same population revealed this mutation. The deletion is predicted to lead to a shift in the open reading frame, p.Asp286ThrfsX62, and causes a premature stop codon. Microsatellite screening of markers near the NYX locus revealed that all affected individuals of the three Flemish families share the same haplotype in the 6.1 cM region limited by the markers DXS993 and DXS8035 (see table 1). The haplotypes of a close located marker DXS1068 at position 60.25 cM are distinct in the different families but also within the same family, indicating that recombination occurred (data not shown).

These studies suggest that a common founder mutation of NYX is associated with the complete form of CSNB in the Flemish population of Belgium. Consequently, molecular testing in Flemish patients with a suspected diagnosis of complete CSNB should be directed first towards identification of this common mutation by sequencing only the respective part of exon 3 of NYX. After exclusion of this common mutation, screening for other mutations in either NYX or GRM6 can be performed as a second step.

Acknowledgements: The authors would like to thank G Mátys, for his support of DNA sequencing, and E Kirst, for her technical assistance in genotyping of the microsatellite markers.

Funding: This study is supported by FWO Flanders grants 1.2.843.07.N.01, 1.5.244.05 (EDB), OZP 3G004306 (EDB, BPI), the Forschungskredit of the University of Zurich and the Fondation Voir et Entendre (C2).

Competing interests: None.

Patient consent: Obtained.

REFERENCES