Assembly of cyclic hydrocarbons from ethene and propene in acid zeolite catalysis to produce active catalytic sites for MTO conversion

Matthias Vandichel, David Lesthaeghe, Jeroen Van der Mynsbrugge, Michel Waroquier, Veronique Van Speybroeck*

Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium

QCMM alliance Ghent-Brussels

Corresponding author: Veronique.VanSpeybroeck@UGent.be

Abstract

The formation of cyclic hydrocarbons from smaller building blocks such as ethene and propene is investigated in protonated ZSM-5, using a 2-layered ONIOM(B3LYP/6-31+g(d):HF/6-31+g(d)) approach and an additional Grimme-type van der Waals dispersion correction term to account for the long range dispersion interactions. These cyclic species form precursors for active hydrocarbon pool species and play a key role in activating the acidic zeolite host for successful methanol-to-olefin (MTO) conversion. Starting from trace amounts of ethene and propene that are formed during an initial induction period or during the active phase, dimerization reactions allow for rapid chain growth. The products of these
reactions can be neutral alkenes, framework-bound alkoxide species or intermediate carbenium ions, depending on the zeolite environment taken into account. On the basis of rate constants for successive reaction steps, a viable route towards cyclization is proposed, which starts from the formation of a framework-bound propoxide from propene, followed by dimerization with an additional propene molecule to form the 2-hexyl carbenium ion which finally undergoes ring closure to yield methylcyclopentane. This cyclic species in turn forms a precursor for either an active hydrocarbon pool compound or for deactivating coke deposit.

Keywords

Coke formation, cyclization, oligomerization, molecular modeling, catalysis, DFT, MTO, methanol to olefins, ZSM-5, zeolite, ONIOM method, chemical kinetics, physisorption, dispersion interactions.
1. Introduction

In this study, the formation of hydrocarbon pool compounds for methanol to olefin conversion (MTO) in acid zeolites [1] is taken as a practical example for the creation of bulky organic compounds trapped in a confined space. For over 30 years there has been an ongoing dispute on the true nature of the reaction mechanism in MTO catalysis by both experimental and theoretical researchers [2-4]. Only recently, consensus has been achieved on an indirect olefin-producing cycle over direct coupling of C1 entities (like methanol or dimethylether) [5-7]. In this alternative “hydrocarbon pool” (HP) model the active site of a typical MTO catalyst is composed of a nm-sized inorganic channel or cage with a Brønsted acid proton, containing an essential organic compound, all interacting to form a supramolecular catalyst [8]. In a typical catalytic cycle, the HP species undergoes successive methylation steps by methanol and/or dimethyl ether and subsequently eliminates light olefins like ethene and propene [9-11].

The most often observed hydrocarbon pool species to date have been typically polymethylbenzenes, though linear alkenes might also function as active organic species during the MTO cycle [12]. Various related cyclic cationic intermediates have also been identified by in situ NMR spectroscopy during MTO conversion [13-15].

It remains unclear when and how these co-catalytic hydrocarbon pool compounds are formed either (i) from impurities in the initial methanol feed, e.g. ethanol, propanol or isopropanol, or rather (ii) through the incomplete calcination of templating agents, or, once full conversion has started, even (iii) from primary MTO products like ethene and propene [11]. Figure 1 shows compressed two-dimensional views of a catalyst particle (CHA-topology) during its lifetime [8]. The catalyst bed initially shows no activity because no cages contain any HP species. During the kinetic induction period sufficient methylbenzenes are formed to generate
an active MTO catalyst, resulting in primary formation of ethene and propene. This paper, however, will focus on the creation of secondary hydrocarbon pool compounds from these trace amounts of ethene and propene that were already generated in the preceding stage. During the active phase, a large number of HP species are present due to such secondary formation routes of cyclic intermediates. As time progresses, these species evolve into bicyclic species, which are less active towards olefin formation [16]. Finally, at the end of the catalyst lifetime, mass transport is severely restricted when as much as half of the cages contain polycyclic aromatic compounds. While the reactions studied in this paper are mainly targeted at generating active sites, they are ultimately also relevant for the process of deactivation.
Polymethylbenzenes (PMBs) have been commonly regarded as the most important hydrocarbon pool species, independent of the employed zeolite, though experimental evidence was mainly found in zeolites H-beta [14, 17-18] and H-SAPO-34 [19-20]. In H-ZSM-5, however, recent experiments have led to the proposal of a dual cycle mechanism, in

Figure 1: Two-dimensional views of a catalyst particle during its lifetime [8]
which the polymethylbenzene cycle competes with a parallel alkene cycle [12, 21]. In this proposal the polymethylbenzene cycle would yield predominantly ethene and the alkene cycle, consisting of successive methylation and cracking reactions would yield propene and higher alkenes. Originally, the extent to which they are coupled was not explicitly deduced.

The role of alkenes such as propene can be twofold: various methylation and dimerization reactions can lead to the formation of secondary cyclic HP species but also to the formation of higher alkenes, which can further be cracked into the main product distribution olefins. Recently a low energy pathway for the production of the major olefins in ZSM-5 was identified by means of theoretical calculations [22].

In this article, we will focus on the formation of cyclic hydrocarbons from primary ethene and propene molecules providing a link between both active cycles [21]. A range of reactions, such as alkoxide formation, oligomerization and cyclization has been theoretically evaluated. We will deduce how various oligomerization reactions occur and weigh them off against homologation by successive methylation as studied in other work [23]. Since the HP intermediates are often cationic in nature and quite bulky compared with typical zeolite pore dimensions, the stabilizing and steric effects of the zeolite topology must be taken into account in the analysis. We have previously shown that the topology is of utmost importance: some reaction steps become feasible only when the molecular environment is taken into account [24-25]. Taking this into consideration our results are based on large zeolite clusters which account for the MFI-topology of H-ZSM-5.

Another factor which cannot be neglected is the effect of dispersion interactions. Recently Svelle and co-workers showed that enthalpy barriers for methylation reactions of various olefins in H-ZSM-5 could be calculated with near chemical accuracy [23]. It was shown that dispersion interactions can add up to 20 kJ/mol for energy barriers and to 70 kJ/mol for physisorption energies [23, 26], depending on the specific reaction under study. To account
for these potentially important long range effects, we have added an empirical dispersion term to the energies obtained from Density Functional Theory (DFT) calculations. This approach as developed by Grimme and co-workers – often referred to as the DFT-D approach – has been shown to improve accuracy on a variety of systems [27]. All our conclusions will be drawn on reaction barriers as well as on rate coefficients.

Based on the obtained results, we will propose a new low energy pathway to cyclization which does not assume prior dehydrogenation. While it is obvious that a myriad of reaction cycles could form cyclic intermediates, this study proposes one plausible route without claiming exclusivity. Basically this study is a proof of concept for the formation of secondary HP species from already formed olefinic species.

It is important to note that, next to being catalytically active species, these cyclic hydrocarbon pool compounds are also coke precursors. Formation of this species will, therefore, not only provide an active catalyst, but also ultimately deactivate it again [28] (as also illustrated in Figure 1).
2. Methodology:

Geometry optimizations were first performed on pentatetrahedral (5T) clusters with the Gaussian03 package [29] at the B3LYP/6-31+g(d) level of theory [30-32]. Consequently, transition states of 5T cluster results were used as an initial guess for the transition state in the zeolite environment. Starting from transition state geometries, the quasi-IRC approach allowed the product geometries to be acquired [33]. In the quasi-IRC approach the geometry of the transition state is slightly perturbed in the direction of the reactants and products. Subsequent full geometry optimizations yield the reactants and products directly linking the transition state. A 8T:46T ONIOM method was used on a cluster cut out of the MFI crystallographic structure of ZSM-5 [24, 34-35]. The active site was located at the T12 position [36] at the intersection of the straight and sinusoidal channels, which allows bigger molecules to be formed through bulky transition states. The outer hydrogen atoms of the cluster were constrained in space to prevent unphysical deformations due to the neglect of the full molecular environment. All stationary points and transition states were further localized using the ONIOM(B3LYP/6-31+g(d):MNDO) method in which the high level is composed of an 8T cluster and the rest of the cluster is treated at the lower level. The true nature of the stationary points was confirmed by a normal mode analysis, which yields only positive frequencies for all minima and only one negative frequency for each transition state. These energies were refined by single point energy calculations on the stationary points using the ONIOM(B3LYP/6-31+g(d):HF/6-31+g(d)) level of theory. As shown previously by Svelle and co-workers [23] on the methylation of various olefins in H-ZSM-5, dispersion interactions can not be neglected for the type of reactions under consideration in this paper. A computationally feasible method to introduce these energy contributions is by adding an empirical –C₆R⁻⁶ correction to the energy obtained from the Density Functional Theory calculations. This is called the DFT-D approach and provides high accuracy in a variety of
simulations [27, 37]. For some of the methylation reactions studied by Svelle and co-workers [23], our method gives values which are in very good agreement with the periodic calculations using the PBE functional and augmented with the semi-empirical dispersion term.

Using standard notation LOT-E/LOT-G (LOT-E and LOT-G being the electronic levels of theory used for the energetics and geometry optimizations, respectively), all results discussed in this paper are obtained with the method which is denoted as ONIOM(B3LYP/6-31+g(d):HF/6-31+g(d))-D//ONIOM(B3LYP/6-31+g(d):MNDO) [38-39]. The van der Waals correction in conjunction with the B3LYP functional as developed by Grimme [37] was calculated using the ORCA program [40]. The above scheme is a viable alternative to more computationally expensive periodic calculations, as also demonstrated by other studies [16, 23, 41].

The 46T clusters are constrained by the outer hydrogen atoms to prevent unphysical deformation of the cluster. We used the PHVA method [42-46] as previously applied for kinetics [16, 25]. This procedure is now implemented in an in-house developed software module TAMKIN, which will be released shortly [47]. Rate coefficients k were obtained by using transition-state theory (TST) by calculating the partition functions at 673 K. For an estimation of the uncertainties on the pre-exponential factor A and activation energy E_a in a temperature interval from 623-723 K we refer to the Supporting Information.

3. Results and discussion

The cyclization of olefin like species is not straightforward as it involves a variety of reactions that are all coupled in a complex reaction network. Starting from the olefins already
formed in the zeolite cages, following reaction families can be distinguished (as schematically shown in Figure 2):

(i) oligomerization to higher olefins

(ii) isomerization

(iii) cracking of higher olefins

(iv) cyclization

(v) dehydrogenative aromatization

In this paper, we will only study (i) chain growth through oligomerization and (iv) cyclization of the formed chain, labeled as reaction classes A and B respectively in Figure 2. The oligomerization reactions studied in this work include the coupling of two C2 species and a variety of couplings between two C3 species.

Several other types of chain growth mechanisms have been already thoroughly investigated: methylation of alkenes by methanol [23, 33, 48-52], or oligomerization of ethene and propene [53]. Svelle et al. [51] found experimental proof that propene dimerization might dominate over chain growth by successive methylation. The obtained longer alkene can be dehydrogenated, followed by a diene cyclization [54-59] or can form a naphtene by cyclization prior to further dehydrogenation steps to yield catalytically active species [25].

![Figure 2: Overview of various reaction classes for alkene conversion in acidic zeolites.](image-url)
It has been shown both experimentally [60] and theoretically [61-62] that the stable intermediates resulting from olefin chemisorption form covalent bonds with the basic oxygen atoms, leading to the formation of framework bound alkoxides rather than free carbenium ions, depending on both olefin size and the local geometry of the active site. Therefore alkoxide formation of ethene and propene will be studied as they are possible intermediate steps for the oligomerization reactions.

3.1 Reaction Class A: Alkoxide formation and oligomerization

Chain growth mainly occurs through dimerization of olefins formed during the primary induction phase [51]. The possible ethene dimerization and propene dimerization reaction steps will be investigated and serve as a general model for other oligomerization reactions. Two different mechanism types should be considered: concerted and stepwise [53]. In the concerted coupling of alkenes, protonation and C-C coupling occur simultaneously, while the stepwise oligomerization proceeds via initial alkoxide formation [63-64] followed by C-C bond formation. Dimerization reactions have been modeled earlier on 4T clusters, but it is still unclear how the surrounding framework affects the reaction kinetics [53]. Cracking reactions, which are in fact the reverse process of dimerization reactions, have also been modeled in gas phase or on small clusters [65-67]. In Figure 3, a summary of the studied dimerization reactions is shown.
Figure 3: Investigated oligomerization reactions with kinetic coefficients at 673 K and fitted Arrhenius parameters in the temperature interval 623-723 K calculated on a 46T cluster at the ONIOM(B3LYP/6-31 + g(d):HF/6-31 + g(d))-D level of theory including van der Waals corrections.
Alkoxide formation (reactions A1, A2 and A3):

Figure 4: Energy diagram for alkoxide formation.

In what follows we will give a short overview of what has already been published in literature on alkoxide formation and of what can serve as a guideline for the validation of our results presented in this article.

The interaction of the olefin double bond with the zeolite Brønsted acid site results in the formation of a physisorbed π-complex. The alkoxide formation is considered at a Brønsted acid site associated with the T12 crystallographic position. Moreover, the physisorbed π-complex is located at the oxygen situated right at the intersection of the sinusoidal and
straight channel and represents the most accessible site for adsorption in the ZSM-5 lattice. Earlier calculations by Bhan et al. [63] studied the influence of the location of both the framework aluminum and the charge-compensating proton on physisorption and chemisorption of propene. They confirmed that the T12 location used in this work is the accessible position for the acidic proton. A recent combined experimental and theoretical study by Sklenak and co-workers, showed that the actual distribution of Aluminum in MFI is not random and is controlled by the actual conditions of the zeolite synthesis procedure [68]. The T12 position imposes the least steric constraints for formation of bulky intermediates and was therefore used in our theoretical calculations.

The mechanism for alkoxide formation has been studied before by a variety of theoretical models. The results are heavily dependent on the theoretical method used and the model size used to model the solid catalyst [61-62, 69-70]. The mechanism of alkoxide formation is schematically depicted in Figure 4: starting from the physisorbed complex, protonation of the olefin through a carbenium-like transition state results in the formation of chemisorbed covalently bonded alkoxide species. Previous theoretical results showed that the stability of the formed alkoxide is primarily determined by the olefin size [61, 63] whereas the activation energies for protonation are determined by the order of stability of primary, secondary and tertiary carbenium-like transition states. Stabilization of the transition state is also determined by electrostatic interactions, and might also be influenced by dispersion interactions, which have been unaccounted for so far in ZSM-5. Sauer and co-workers found that for the protonation of isobutene both the dispersion corrections and the entropic contributions are important to decide on the stability of carbenium ions. At temperatures higher than 120 K the tert-butyl cation was found to be more stable over the chemisorbed species [26, 71].
Experimental evidence has been given for the existence of the physisorbed π-complex and alkoxide by studying the oligomerization reactions of ethene and propene by means of fast FTIR spectroscopy [72]. A downward shift of the O-H stretching frequency of the Brønsted acidic site was observed of 389 1/cm by interaction with ethene at small contact times during which no protonation of the olefin had occurred. Similarly a downward shift of the C=C double bond frequency of 11 1/cm in ethene was noticed when brought in contact with the acidic site compared with the gas phase spectrum. Our theoretical calculations were able to reproduce these shifts: the O-H and C=C frequencies shifted 334 and 10 1/cm compared to the corresponding vibrations in an empty zeolite and a gas phase ethene molecule. The small downward shift of the double bond frequency can be attributed to the reduced density of charge of the carbon-carbon double bond. The O-H shift is shifted due to interaction with the carbon-carbon double bond to form hydrogen bonded precursor complexes or physisorbed π-complexes.

The physisorption energies of ethene and propene are given in Table 1. As all physisorbed complexes were found by performing a quasi-IRC calculation from the transition state for protonation, the values for the physisorbed complex derived from the i-propoxide is slightly different than the value derived from 1-propoxide. In all geometries of the physisorbed complexes the bridging hydroxyl is closer to the primary carbon atom that is going to be protonated than to the carbon atom that will interact with the basic oxygen (see Figure 4). The physisorbed energies without van der Waals corrections amount to -28.3 and -41.3 kJ/mol which are in relatively good agreement with the results found by Bhan et al. [63] and Zheng et al. [73]. All of these physisorption energies are, however, too small compared to experimental data due to the neglect of dispersion interactions as will be shown later in this section [74]. The larger value for propene can be attributed to two effects. Firstly, the interaction with the acidic proton is stronger: the distance between the Brønsted acidic proton
and the primary carbon atom that is going to be protonated (C_a in Figure 4) amounts to 2.341 and 2.083 Å for ethene and propene respectively whereas the distance between the other carbon atom (C_b in Figure 4) and the acid site are more or less similar for ethene and propene.

Secondly, coordination of the methyl group with the basic oxygen next to the aluminum site results in additional stabilization. As this interaction is primarily governed by dispersion interactions, the van der Waals interaction of the physisorbed propene (-51 kJ/mol) is substantially larger than for the physisorbed ethene (-36 kJ/mol). Boronat et al. found smaller values ranging from -8 to -16 kJ/mol in mordenite [61]. This confirms that the physisorption energy critically depends on the zeolite topology. The effect of dispersion interaction is considerable, contributing to an extra stabilization of -36.2 and -51.2 kJ/mol for ethene and propene respectively. This gives final physisorption energies of -64.6 and -92.4 kJ/mol for ethene and propene. Sauer et al. also found dispersion corrections of this order of magnitude for the π-physisorbed butene complex in ferrierite (-78 kJ/mol) [26]. Our results also show that the dispersion interactions are dependent on the size of the hydrocarbon considered [75-78], which was also found by De Moor et al. on basis of QM-Pot(MP2//B3LYP) calculations in faujasite [79].

The reaction barriers without ZPVE corrections for alkoxide formation are also given in Table 1. For the formation of ethoxide, n-propoxide and i-propoxide they amount to 56.3, 75.3 and 31.3 kJ/mol without inclusion of van der Waals corrections. The reaction is concerted: the primary carbon atom (or secondary in case of i-propoxide formation) is protonated by the zeolite and simultaneously the positive charge on the other carbon atom of the double bond interacts with one of the basic oxygens of the zeolite, resulting in the formation of a covalently bonded alkoxide complex. The reaction barrier is directly related to the ability of this carbon atom to stabilize the positive charge. Hence the barrier for formation of i-propoxide is smaller than for ethoxide, corresponding with a secondary and primary
Theoretical calculations and structural optimizations were performed using the Gaussian 09 program (Frisch et al., 2016). The electronic structure was treated using the DFT method with the PBE functional and the 6-31G(d) basis set. The van der Waals interactions were included using the D3 and D4 corrections. The geometry of the complex was optimized until the forces on all atoms were less than 0.001 au.

The stability of the final formed alkoxides is marked by the olefin size, which predicts ethoxide to be more stable than i-propoxide followed by n-propoxide. The effect of dispersion interactions on the covalently bonded complex is substantial, yielding corrections from -16.6 to -24.9 kJ/mol. These results show that the formation of the i-propoxide is kinetically favored over the n-propoxide complex under the same reaction conditions. Also thermodynamically i-propoxide is slightly preferred over n-propoxide, which can be deduced from the total chemisorption energies of -179.4 and -196.0 kJ/mol respectively.

Table 1: Electronic energies (in kJ/mol) of various consecutive steps: alkoxide formation, dimerization and cyclization.

<table>
<thead>
<tr>
<th>Alkoxide formation</th>
<th>(\Delta E^\dagger)</th>
<th>(\Delta E_r)</th>
<th>(\Delta E_{\text{phys,1}})</th>
<th>(\Delta E_{\text{chem,1}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 (ethoxide formation)</td>
<td>56.3</td>
<td>-104.0</td>
<td>-28.4</td>
<td>-132.4</td>
</tr>
<tr>
<td>A2 (n-propoxide formation)</td>
<td>75.3</td>
<td>-69.6</td>
<td>-41.2</td>
<td>-110.9</td>
</tr>
<tr>
<td>A3 (i-propoxide formation)</td>
<td>31.3</td>
<td>-81.3</td>
<td>-38.5</td>
<td>-119.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimerization (stepwise)</th>
<th>(\Delta E^\dagger)</th>
<th>(\Delta E_r)</th>
<th>(\Delta E_{\text{phys,2}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4 (1-butene formation)</td>
<td>101.3</td>
<td>-32.6</td>
<td>-8.9</td>
</tr>
<tr>
<td>A5 (2-hexyl carbenium ion formation)</td>
<td>83.5</td>
<td>7.7</td>
<td>0.6</td>
</tr>
<tr>
<td>A6 (4-methyl-1-pentene formation)</td>
<td>94.7</td>
<td>43.1</td>
<td>-58.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimerization (concerted)</th>
<th>(\Delta E^\dagger)</th>
<th>(\Delta E_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4 (1-butene formation)</td>
<td>91.7</td>
<td>-30.3</td>
</tr>
<tr>
<td>A5 (2-hexyl carbenium ion formation)</td>
<td>68.8</td>
<td>2.8</td>
</tr>
<tr>
<td>A6 (4-methyl-1-pentene formation)</td>
<td>94.4</td>
<td>54.6</td>
</tr>
</tbody>
</table>

The stability of the complex is improved by the formation of covalent bonds. The covalent bond formation lowers the reaction barriers (without ZPVE) by approximately 10 kJ/mol.
A7 (2-hexyl carbenium ion formation) & 111.1 & -5.4 & with van der Waals correction
A7 (2-hexyl carbenium ion formation) & 98.5 & -26.9

<table>
<thead>
<tr>
<th>Cyclization</th>
<th>ΔE^\ddagger</th>
<th>ΔE_r</th>
</tr>
</thead>
</table>
| B1 (methylcyclopentene formation) | 37.1 & -126.5
| B2 | 155.6 & 33.9
| B3 | 72.3 & 3.2 & with van der Waals correction
| B1 | 29.1 & -117.0
| B2 | 165.2 & 111.7
| B3 | 70.1 & 5.4

ΔE^\ddagger is the electronic energy difference between transition state and reactants. ΔE_r (reaction energy) is the energy difference between the products and reactants. $\Delta E_{\text{phys},1}$ and ΔE_{chem} are the physisorption and chemisorption energies without temperature corrections calculated relative to the gas phase olefins and the empty zeolite cluster as defined in Figure 4. $\Delta E_{\text{phys},2}$ is the physisorption energy of the second alkene calculated relative to the gas phase olefin and the already formed alkoxide. All energies are calculated at the ONIOM(B3LYP/6-31+g(d):HF/6-31+g(d)) level of theory with and without inclusion of van der Waals corrections.

Stepwise dimerization (reactions A4, A5, A6)

Three stepwise dimerization reactions (A4-A6) were considered as shown in Figure 3: dimerization of ethene and two dimerizations of propene. The latter reaction can start from the n-propoxide or i-propoxide. All three reactions require physisorption of a second alkene to the alkoxide. The physisorption energies of this step ($\Delta E_{\text{phys},2}$) are given in Table 1 with and without van der Waals interactions. As for the physisorption of the first alkene, the values without dispersion interactions are seriously underestimated. For ethene and propene physisorption, van der Waals corrections of around 30 kJ/mol and 60 kJ/mol are found. In the work of Svelle et al. [53], values were found of around 0-5 kJ/mol with DFT schemes and 15-20 kJ/mol at the post-Hartree Fock level but with usage of a small 4T cluster. The geometries of the physisorbed complexes illustrate that various van der Waals contacts are made not only
with the basic oxygen atoms next to the aluminum site but also with other framework oxygen atoms.

The various physisorption energies point towards a very stable i-propoxide co-adsorbed with a propene intermediate, from which only slow reactions can be expected.

After physisorption of the second alkene, the next step of the stepwise dimerization is the formation of a new C-C bond. For coupling between ethoxide and ethene, the reaction profile is shown in Figure 5.
Reaction A4

Energy (kJ/mol)

Reaction coordinate

ONIOM(B3LYP/6-31+G(d):HF/6-31+G(d))-D

Z-H
Figure 5: (a) Visualization of the stepwise ethene dimerization on a 5T cluster; (b) Energy diagram of the stepwise ethene dimerization in zeolite environment (Reaction A4); (c) Schematic representation of the post transition state optimization after stepwise coupling of two ethene molecules.

Without inclusion of an extended cluster model for the zeolite framework (but using a small 5T cluster instead), butene was not formed, but proton back donation to the cluster resulted in the formation of methylcyclopropane instead [53]. This cyclopropane species can easily undergo opening by protonation (the activation barrier for this additional reaction turns out to be 85.2 kJ/mol). These results correspond to earlier theoretical findings of Svelle et al. [53] and Frash et al. [65] who also found the cyclopropane intermediates as stable intermediates when small clusters were used. When an extended cluster model is considered, as in Figure 5b, we did not find this methylcyclopropane intermediate, yet a similar structure did appear along the optimization of the products as corner-protonated methylcyclopropane. However, this is not a stationary point on the potential energy surface and the proton on the edge undergoes a barrierless shift [80-81], which results in an automatic opening of the ring structure (Figure 5b-c).

Depending on the method employed, the (protonated) methylcyclopropane might be a stable intermediate, albeit in a shallow potential well. Anderson et al. [82] reported 13C MAS NMR results in which there is a weak signal intensity for cyclopropane during the conversion of methanol in gasoline over ZSM-5. Protonated alkylcyclopropane has also been reported earlier in modeling papers on the skeletal isomerization of alkenes [80, 83].

From the transition states for dimerization, at least two possible products might be envisaged: a neutral alkene by direct back donation of a proton to the zeolite or a butoxide species. We used the quasi-IRC approach to pinpoint the products corresponding to the transition state.
and found 1-butene as shown in Figure 5. To compare the stability of the neutral alkene and the alkoxide, we also calculated the energy of 1-butoxide. This covalently bonded complex is 50.1 kJ/mol (not taken up in Table 1) more stable than the π-complex if van der Waals interactions are taken into account. Without these dispersive forces the difference only amounts to 10.2 kJ/mol. These results are in line with the earlier results on alkoxide formation and the transformation from the π-complex to a covalently bonded alkoxide complex should occur easily.

Similar reaction profiles were determined for stepwise dimerization of propene, starting either from n-propoxide or i-propoxide. The transition states for carbon-carbon bond formation demonstrate in both cases a preference for attack at the unsubstituted end of the olefin, giving rise to formally secondary carbenium ions rather than primary ones (as illustrated in Figure 6). While calculations without explicit inclusion of the framework resulted in only neutral products [53], this was not the case when extended models for the zeolite structure were considered, which has the potential to stabilize carbenium ions [24]. The two obtained products were respectively the 2-hexyl carbenium ion (Reaction A5) and 4-methylpentene (Reaction A6). These results show that nature of the formed products depends on the specific hydrocarbon, the zeolite structure’s ability to stabilize various intermediates and the degree at which the structure has been taken into account.

The energy barriers for the stepwise dimerizations are given in Table 1 with and without van der Waals corrections. To rationalize the importance of each of the consecutive steps, the complete potential energy surface has been shown graphically in Figure 7.
Figure 6: Visualization of the transition states for propene dimerization. (TS-A5) Stepwise mechanism from a primary propoxide; (TS-A6) stepwise mechanism from a secondary propoxide; (TS-A7) concerted mechanism with a formally primary carbenium ion in the transition state.
Figure 7: Energy profiles of the alkoxide formation and subsequent oligomerization reactions of ethene and propene. The energy levels are calculated relative to the gasphase olefins and the empty zeolite cluster, based on electronic energies at the ONIOM(B3LYP/6-31+g(d):HF/6-31+g(d)) level of theory, with (solid line) and without inclusion (dashed line) of van der Waals corrections.

The alkoxide formation steps are relatively fast for both ethene and propene, with formation of the i-propoxide being the fastest. Adsorption of the second alkene produces a very stable intermediate “i-propoxide + propene”. The fastest oligomerization route is the stepwise dimerization of propene producing the 2-hexylcarbenium ion. However, the oligomerization of ethene to form 1-butene is competitive taking into account alkoxide formation and second physisorption of the alkene. The stepwise oligomerization starting from i-propoxide to form the 4-methyl-1-pentene (A6) is less viable. Although the forward barrier of 90 kJ/mol
suggests a rapid transformation at the considered reaction conditions, the backward reaction is much lower activated (36 kJ/mol), which shifts the equilibrium towards the i-propoxide. This is evidenced by the equilibrium constants ($K = k_{\text{forward}}/k_{\text{backward}}$) of reactions A5 and A6 which amount to respectively to 10^{-1} and 10^{-4}. Therefore further cyclization and oligomerization from the intermediate “i-propoxide + propene” can be excluded.

From a methodological point of view it is interesting to compare the potential energy surface with and without van der Waals interactions. In general, the activation energies and reaction energies starting from already adsorbed species (so-called intrinsic barriers) are only subject to relatively small changes. The largest influence is found for each physisorption step of a new reaction partner.

Finally, we will also compare chain growth processes via dimerization versus growth through methylation reactions. The methylation starts from a physisorbed methanol molecule and additional alkene. The respective barriers for methylation of ethene and propene with inclusions of van der Waals interactions are found to be 84.0 and 74.7 kJ/mol. It seems that chain growth will occur along both possible pathways, and for definitive conclusions also intermediate physisorption states should be considered.

Concerted propene dimerization (reaction A7)

As an alternative for the stepwise oligomerization, a concerted reaction pathway might be possible, during which the protonation of the first alkene and carbon-carbon bond formation occur simultaneously. For propene, there are two possible sites of protonation leading to the formation of a formally primary or secondary carbenium ion in the transition state. The transition state with a secondary carbenium ion, as seen on a 4T cluster [53], evolves into the
transition state for stepwise dimerization when the zeolite environment is taken into account. The transition state through a formally primary carbenium ion could be located and is visualized in Figure 7 (Reaction A7). When applying a quasi-IRC approach to the transition state, the formed product was the 2-hexyl carbenium ion which was also found as a result of the stepwise dimerization. The IRC towards the reactants evolved into a structure for which one propene molecule left the cluster. This is an artifact of our 46T cluster, which could not prevent the diffusion of one propene molecule out of the 46T cluster when applying quasi-IRC towards the reactants. To get better predictions of the forward reaction barrier of the concerted route, we used a slightly larger perturbation of the transition state in order to keep both propene molecules physisorbed inside the cluster.

The rate coefficient for the backward cracking reaction (Reaction A7 in Figure 3) is two orders of magnitude larger than for the forward reaction. The stepwise dimerization to 2-hexylcarbenium ion (Reaction A5 in Figure 3) will be preferred over the concerted reaction. Also the forward reaction rate is even four orders of magnitude larger. In addition the cracking reactions prefer a stepwise mechanism as well.

In summary, the theoretical results indicate fast cracking steps at 673 K of alkenes (protonated or non-protonated) in the MFI topology of ZSM-5. This result is in agreement with the recent dual cycle proposal for the MTO-process in which C\textsubscript{3+} alkenes are possible hydrocarbon pool species [21]. For the oligomerization our results indicate that, like for the ethene dimerization, propene dimerization also preferably proceeds via a stepwise mechanism.

3.2 Reaction Class B: Cyclization
Cyclization of the obtained C₆ species yields precursors to methylbenzenes, which have been proven to be active hydrocarbon pool compounds in HZSM-5 [12]. The previously studied oligomerization reactions starting from propene show that the 2-hexylcarbenium ion is a likely intermediate. This result allows us to propose a new route to cyclization starting from this carbenium ion, and which does not assume any prior dehydrogenation. As schematically proposed by Haw et al., dehydrogenation occurs more easily after cyclization [8]. This would predominantly occur with the assistance of propene and would also explain the formation of alkanes during the MTO process.

Earlier investigations on cyclization [54-55, 59] have shown that dienes or trienes might also be precursors for the cyclization reaction. Joshi et al. studied C6, C7 and C8 diene cyclization in HZSM-5 theoretically using a hybrid QM/MM approach [57-58]. They found that the barriers for 1,6-cyclization are lower for the larger dienes, as they proceed through a secondary carbenium ion like transition state, whereas the C6 diene cyclization involves a primary carbenium ion like transition state. In order to compare cyclization of the 2-hexylcarbenium ion intermediate of this work with the cyclization of the dienes, we have also calculated the cyclization starting from 1,5-hexadiene as suggested in [57] at the level of theory used for all reactions in this paper. The three cyclization reactions considered here are summarized in Figure 8 (Reactions B1, B2 and B3). A visualization of the corresponding transition states is given in Figure 9.
Figure 8: Cyclization reactions with kinetic coefficients at 673 K.
Figure 9: Visualization of the transition states for cyclization in this study. (TS-B1) cyclization of the 2-hexyl carbenium ion; (TS-B2) cyclization from a secondary alkoxide of hexadiene; (TS-B3) cyclization from a primary alkoxide of hexadiene.

We first consider cyclization starting from the 2-hexyl carbenium ion, which is a secondary carbenium ion and is formed as a stable product for two different propene dimerization reactions (A5 and A7). A scan along the transition state coordinate was applied to find a direct cyclization route. Figure 9-B1 visualizes this direct 1,5 cyclization transition state. Prior to the transition state the original 2-hexyl carbenium ion needs to undergo various internal rearrangements to evolve into conformation which is suitable for cyclization. This conformation is slightly less favorable in energy (27 kJ/mol) compared to the linear chain but under the reaction conditions here these rearrangements are expected to occur easily. During the transition state a proton hops and bonds with one of the basic oxygen atoms on the aluminum tetrahedron and simultaneously the ring closes. The transition state is schematically depicted in Figure 9. The product after cyclization is a neutral species, i.e. methylcyclopentane. The electronic reaction barriers given in Table 1 and the rate constants shown in Figure 8, indicate a rapid and irreversible cyclization step. As matter of comparison with the work of Joshi [56-57], we also studied the cyclization of dienes. This reaction starts from a protonated hexadiene which then forms an alkoxide. Cyclization can start from a secondary hexadiene alkoxide (Reaction B2) or from a primary hexadiene alkoxide (Reaction B3). These results show that the 1,6 cyclization starting from a primary alkoxide is strongly favored over the 1,5 cyclization via a secondary alkoxide, which could be expected as secondary alkoxides are more easily formed but are also more stable [84], and thus less reactive for following cyclizations (Figure 6). All kinetic parameters and reaction barriers
show that the newly proposed cyclization starting from the 2-hexyl carbenium ion without prior dehydrogenation is preferred over cyclization of dienes.

3.3 Global scheme for formation of cyclic species

Figure 10 gives an overview of the studied reactions and highlights in red a viable route towards formation of a five membered cyclic species, i.e. methylcyclopentane. The route involves following steps: physisorption of a first propene molecule to form a π-complex, alkoxide formation to form a covalently bonded complex, i.e. the n-propoxide, physisorption of a second propene and dimerization to form the 2-hexylcarbenium ion, and finally cyclization towards a neutral methylcyclopentane molecule. For all steps, both forward and backward reaction rates are given at 673 K. The reaction rates are in the same order of magnitude as the ones reported in our full cycle for the production of olefins in ZSM-5 [25]. The alkoxide formation and dimerization and in the same order of magnitude as methylation reactions of aromatic species in the same topology. The ring closure itself is very rapid.
Figure 10: Overview of a viable route towards the formation of cyclic species starting from ethene and propene. The red cycle is the most probable pathway and involves physisorption of propene, formation of n-propoxide, additional physisorption of propene, dimerization to form the 2-hexylcarbenium ion and cyclization to methylcyclopentane.

However, to form aromatic hydrocarbons from this 5-membered ring species we need ring expansion (as studied in [25]) as well as dehydrogenation. Additional research on the dehydrogenation of those cyclic rings might be useful for further research. This step could occur through carbenium ions which provide cracking pathways of larger hydrocarbons at MTO temperatures [80].

Two more hydrogen abstractions lead to the formation of a dimethylcyclopentadienylium ion, a species signaling the end of the induction period in the MTO process in H-ZSM-5 and
starting a new working cycle towards olefin protonation [13]. As proposed and described by Haw et al. [8], propene could play a crucial role in ring dehydrogenation steps. Moreover, the ultimate clue of the active nature of this species as organic co-catalyst is proven by its occurrence in a recently calculated catalytic cycle in H-ZSM-5 [25].

4. Conclusions

The formation of cyclic hydrocarbons from ethene and propene building blocks was investigated in protonated ZSM-5 using a 2-layered ONIOM approach and taking into account dispersive interactions. These cyclic molecules are crucial in the MTO process, as they form precursors for both active co-catalysts as well as deactivating coke. Once a sufficient number of initial ethene and propene molecules is formed during the induction period, the rapid formation of new hydrocarbon pool species will bring the protonated zeolite to an active working MTO catalyst, during which methanol is converted into ethene and propene, generating even more active centers, up until the catalyst deactivates.

We performed theoretical calculations to describe a preliminary pathway to cyclic species from small alkene molecules like ethene and propene. By taking the zeolite environment into account, the factual role of the methylcyclopropane intermediate in ethene dimerization could be identified. For further growth of the chain, the calculated kinetic coefficients indicate that stepwise propene dimerization occurs faster than ethene dimerization. The ethoxide formation is rapid but the dimerization proceeds more slowly. Propene dimerization could result in stable charged species like the 2-hexyl carbenium ion, from which a new rapid cyclization route is proposed. Our calculations further demonstrate the importance of the zeolite environment and the importance of dispersion interactions on the stability of specific intermediates on the potential energy surface. It was found that without accounting for the
zeolite cage some intermediates may be identified which are not stable in the MFI-topology of H-ZSM-5. The effect of dispersive interactions was most pronounced for each physisorption step where corrections varying between 30 and 60 kJ/mol were noted.

The reactions studied provide a link between both catalytic cycles proposed in the hydrocarbon pool concept, which has been deemed crucial toward product control [12, 21]. Future work should be focused on the dehydrogenation step, which ultimately leads to aromatic hydrocarbon pool compounds. This type of reactions will also be of utmost importance for the formation of a second ring, creating napthalenic coke precursors [8, 28, 85-86].

Acknowledgements

This work is supported by the Fund for Scientific Research - Flanders (FWO), the research Board of Ghent University, and BELSPO in the frame of IAP 6/27. Computational resources and services used in this work were provided by Ghent University.

Graphical abstract
The formation of cyclic hydrocarbons from basic ethene and propene building blocks was investigated in protonated ZSM-5 using a 2-layered ONIOM(B3LYP/6-31+g(d):HF/6-31+g(d)) method including van der Waals corrections. A low-energy pathway starting from propene was found that eventually formed the methylcylopentane species via intermediate stepwise dimerization.

References:

Supporting Information:

Detailed analysis of the methodology

This supporting information highlights one of the modeled reactions validating our ONIOM(B3LYP/6-31+g(d)//HF/6-31+g(d)) + VDW(B3LYP/6-31+g(d)) approach. Therefore we compared two LOT-E/LOT-G approaches:

- ONIOM(B3LYP/6-31 + g(d):HF/6-31 + g(d))/ONIOM(B3LYP/6-31 + g(d):MNDO) (1)
- B3LYP/6-31 + g(d)/ONIOM(B3LYP/6-31 + g(d):MNDO) (2)

Van der Waals contributions were taken into account by using the DFT-D approach as implemented in the Orca software package. In this scheme, the dispersive energy is described by damped interatomic potentials of the form \(C_6 R^{-6} \) [1].

Table S.1: Energy barriers \(\Delta E^\ddagger \) en reaction energies at 0K (without ZPVE) and corresponding van der Waals corrections for the ethene dimerization. All values in kJ/mol.

<table>
<thead>
<tr>
<th></th>
<th>(\Delta E^\ddagger)</th>
<th>(\Delta E_r)</th>
<th>VDW((\Delta E^\ddagger))</th>
<th>VDW((\Delta E_r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>101,1</td>
<td>-32,6</td>
<td>-9,4</td>
<td>-2,3</td>
</tr>
<tr>
<td>(2)</td>
<td>97</td>
<td>-33,6</td>
<td>-9,4</td>
<td>-2,3</td>
</tr>
</tbody>
</table>

As the differences in energy between (1) and (2) are minor, there will only be a small effect on the calculated kinetic coefficients (Table S.2), because the pre-exponential factor \(A \) will stay the same because of the frequency calculation at the ONIOM(B3LYP/6-31 + g(d):MNDO) level of theory. The use of van der Waals corrections has a more significant effect on the kinetic coefficients than the level of theory for the energy (LOT-E).

Table S.2: Kinetic coefficients and their influence on the kinetic parameters \(k \) at 673K. The parameters \(A \) and \(E_a \) are fitted between 623 and 723K.

<table>
<thead>
<tr>
<th></th>
<th>Forward reaction</th>
<th>Backward reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(k(673 \text{ K}))</td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Using our methodology (ONIOM(B3LYP/6-31 + g(d):HF/6-31 + g(d))/ONIOM(B3LYP/6-31 + g(d):MNDO) + VDW(B3LYP/6-31+g(d))), some extra tests was carried out for the ethene dimerization.

The fitting procedure and an error analysis on the parameters A and Eₐ can be seen in Figure S.1. The error analysis is based on Monte Carlo sampling and systematic errors on frequencies (5%) and energies (10%).

Forward reaction

Backward reaction
Figure S.1: Arrhenius and parameters plots clarify the applied fitting procedure and provide an error analysis based on monte carlo sampling (100 iterations) where systematic errors on frequencies (5%) and energies (10%) are assumed.