Background

Recently, cigarette smoking has been associated with the development of several auto-immune diseases, including rheumatoid arthritis and Crohn’s disease. The cellular and molecular mechanisms through which cigarette smoking predisposes to Crohn’s disease are unknown. Cigarette smoke-induced apoptosis is described in several organs in vivo and in vitro models of chronic smoke exposure, and might play a role in the pathogenesis of several smoke-associated diseases. The aim of this study was to quantify apoptosis in normal Follicle-Associated Epithelium (FAE) of murine Peyer’s patches and compare this to apoptosis rates in the FAE of smoking mice.

Methods

C57BL/6 male mice were exposed to cigarette smoke for 24 weeks (chronic exposure) while a control group was exposed to air during the same period. After 24 weeks the mice were sacrificed and Peyer’s patches were dissected for histology. Immunohistochemistry for active caspase-3 was performed on paraffin-embedded tissue sections of 11 Peyer’s patches of smoking animals and 11 Peyer’s patches of controls.

Results

A statistically significant increase in apoptosis of FAE cells was observed in smoking mice compared to air-exposed mice (P=0.002). In the FAE of smoking animals, the mean apoptotic index was 1.82 (95% CI 1.42-2.23), whereas the mean apoptotic index in the FAE of non-smoking animals was 0.92 (95% CI 0.64-1.12). In both groups, most apoptotic cells were seen at the apex of the FAE.

Conclusion

We quantified the rate of apoptosis in the FAE of Peyer’s patches of smoking mice and their non-smoking siblings by caspase-3 immunohistochemical staining. An increased apoptotic index in the FAE of murine Peyer’s patches and may point to a role for smoking in the pathogenesis of intestinal inflammation. Further investigation needs to clarify whether this increase in apoptosis influences normal function of the FAE.

References


Acknowledgements

The authors thank Dorothea Van Limbergen for the excellent technical assistance. This research was supported by the Special Research Fund (BOF-project 01J17S07) of Ghent University.