
JSS Journal of Statistical Software
October 2022, Volume 104, Issue 8. doi: 10.18637/jss.v104.i08

Analyzing Intraday Financial Data in R:
The highfrequency Package

Kris Boudt
Ghent University

Vrije Universiteit Brussel
Vrije Universiteit Amsterdam

Onno Kleen
Erasmus University

Rotterdam

Emil Sjørup

Abstract

The highfrequency package for the R programming language provides functionality
for pre-processing financial high-frequency data, analyzing intraday stock returns, and
forecasting stock market volatility. For academics and practitioners alike, it provides
a tool chain required to work with such datasets and to conduct statistical analyses
dedicated to spot volatility, jumps, realized measures, and many more. We showcase our
implemented routines and models on raw high-frequency data from large stock exchanges.

Keywords: financial markets, high-frequency data, jumps, realized measures, R.

1. Introduction
During the last 30 years, more and more financial intraday data has become available and
employed by academics, regulators, and financial firms alike. This lead to the creation of a
large branch in the financial econometrics and time series analysis literature, namely high-
frequency econometrics. However, working with high-frequency data has many pitfalls. For
example, the trades and quotes data by the New York Stock Exchange (NYSE) needs extensive
cleaning, the data arrives at irregular time intervals, and the statistical tools developed for
analyzing the cleaned data are often non-standard. With this package, we enable users of
high-frequency data to focus on conducting analyses by aligning the process in two dimensions:
(1) The data preparation process which is tedious but necessary is streamlined and becomes
less prone to error. (2) We provide a wide array of estimators and procedures developed
in the financial econometrics literature in one statistical language. Our value proposition is
strong because we provide tools which can work as a pipeline from data ingestion all the way
to analysis output, or anywhere in between.

https://doi.org/10.18637/jss.v104.i08
https://orcid.org/0000-0002-1000-5142
https://orcid.org/0000-0003-4731-4640

2 highfrequency: Analyzing Intraday Financial Data in R

The highfrequency package (Boudt, Cornelissen, Payseur, Kleen, and Sjørup 2022) for the
R programming language (R Core Team 2022) provides numerous data handling and visu-
alization tools along with many estimators of various measures and forecasting methods.
These functions cover a wide array of overall topics in the high-frequency econometrics lit-
erature and are based on a wide variety of the most influential papers within these topics.
Package highfrequency is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=highfrequency.

While a limited number of estimators implemented in the highfrequency package are avail-
able elsewhere, there is to the best of our knowledge no software library with comparable
functionality publicly available in one statistical environment. For downloading financial
intraday data, there is the getSymbols function in the quantmod package (Ryan and Ul-
rich 2022), which enables users to download open-high-low-close data, or the alphavantager
package (Dancho and Vaughan 2020), which enables users to download financial data up to
the 1-minute frequency. The HighFreq package (Pawlowski 2021) provides functionality for
aggregating intraday data to a lower frequency. Similarly, the tidyquant package (Dancho
and Vaughan 2022) can handle intraday data but is mostly dedicated to work with lower-
frequency data. The realized generalized autoregressive conditional heteroskedasticity model
implemented in the rugarch package (Ghalanos 2022) employs daily volatility measures based
on intraday data but the data need to be already aggregated to a daily frequency.

Because the highfrequency package covers such an extensive set of features, we present only
selected ones in this paper such that the setting broadly resembles an actual data analysis.

A significant contribution of the highfrequency package are routines for estimating realized
measures of the return distribution. In the univariate case, the most popular type of estima-
tors are realized variance estimators; discussed by, among many other, Andersen, Bollerslev,
Diebold, and Labys (2001), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), and
Barndorff-Nielsen and Shephard (2004b). Many different estimators have been proposed to
deal with peculiarities of high-frequency financial data such as uneven sampling rate, jumps,
and measurement errors. The class of realized volatility estimators have helped to improve
the understanding of the dynamics of volatility of securities prices as well as contributed to
improve forecast accuracy. Estimators of higher moments of the return distribution, in partic-
ular skewness and kurtosis, were introduced in Amaya, Christoffersen, Jacobs, and Vasquez
(2015). In the multivariate case there are also several covariance estimators, for example
those introduced by Barndorff-Nielsen and Shephard (2004a), Hayashi and Yoshida (2005),
and Zhang, Mykland, and Aït-Sahalia (2005). All of these can be used to estimate daily
realized covariance matrices. Such (possibly inverted) covariance matrices are very important
in portfolio allocation and risk management.

Considering variance on a daily time-frame is only appropriate for actors who have an invest-
ment horizon which comes close to or exceeds one day. However, many actors in the financial
markets have a horizon much, much shorter than these, ordering in the minutes, seconds, or
below. From these actors stems a need to monitor the instantaneous volatility, also called
the spot volatility. A non-parametric estimator of the spot volatility was introduced by Kris-
tensen (2010). Since then, numerous estimators of the spot volatility have been introduced,
many focusing on exploiting daily and weekly recurring patterns in the spot volatility (see,
e.g., Boudt, Croux, and Laurent 2011).

Similarly, many tests have been developed for the presence of jumps that are discontinuous

https://CRAN.R-project.org/package=highfrequency

Journal of Statistical Software 3

elements in high-frequency price paths (see, among others, Barndorff-Nielsen and Shephard
2006). Jumps occur most often when new information about the underlying asset becomes
available. A large number of jump tests are formed by constructing a test statistic that de-
pends on a jump robust measure of integrated daily volatility and a non-robust counterpart.
These tests are then used to identify whether a jump occurred during a whole trading day. A
more granular counterpart is the test type introduced in Lee and Mykland (2008), who con-
struct a test that is able to infer whether a single high-frequency return observation contains
a jump. This type of test is based on spot estimators of the volatility and also optionally of
the drift.
Another area of the literature is focused on modeling and forecasting realized measures,
specifically realized measures of the variance. In the highfrequency package, we include two
models for such purposes. The first model of the two is the heterogeneous autoregressive
(HAR) model of Corsi (2009), which models the realized volatility through a restricted au-
toregressive model. There are numerous extensions to this model, and we include many of
these. The second model is the high-frequency based volatility (HEAVY) model of Shephard
and Sheppard (2010). This model combines return volatility and realized measures to improve
volatility modeling. Evaluating forecast performance of these models can also be seen as a
way to validate the practical importance of high-frequency based volatility estimates.
The rest of the paper is structured as follows. Section 2 presents high-frequency financial
datasets and the particulars that separate these from “regular” financial datasets, including
empirically motivated cleaning methods and data handling techniques. Section 3 introduces a
method for estimating whether a buyer or a seller is the “aggressor” in a trade. This method
is useful for estimators of the liquidity of an asset, which will round out the section. In
Section 4, a theoretical framework for the high-frequency price process of a financial asset is
presented. This price process will be used as the basis for the following sections. Section 5
introduces realized measures of the return distribution with a focus on the variance of asset
returns. Then, we extend the price process of the previous section to the multivariate case and
introduce estimators of the realized covariance. Throughout this section, we focus on pitfalls
analysts will be facing when conducting univariate and multivariate analyses. In Section 6,
we introduce and show example usage of estimators of the spot volatility. We tie the two
previous sections together with Section 7, where we introduce jump tests based on both
realized measures for an entire day and spot measures of volatility. In Section 8, we introduce
two models used to forecast realized variances and compare their forecast performance in an
empirical example. Section 9 concludes.

2. Processing raw high-frequency data
In this paper, we focus on the empirical aspects of high-frequency econometrics using the
sample datasets included in the highfrequency package. Our datasets comprise both raw
(i.e., “tick-by-tick”) and cleaned trade and quote data. The processed datasets contain cleaned
univariate and multivariate tick-by-tick data, aggregated univariate and multivariate one-
minute price data, and realized measures of volatility for the SPDR S&P500 ETF Trust (with
ticker symbol SPY), which tracks the Standard and Poor’s (S&P) 500 stock market index.
In this context, trade data refers to asset prices of actual transactions and quote data refers
to the best bid and ask prices as either reported by participants or observed in the centralized
order book.

4 highfrequency: Analyzing Intraday Financial Data in R

2.1. Raw tick-by-tick datasets
To show an example of raw trade data included in the package, we print the first and last
four rows of the sample dataset sampleTDataRaw. The source of this dataset is the Daily
TAQ (Trade and Quote) database run by the NYSE which includes every trade and every
quote reported to the consolidated tape. The dataset sampleTDataRaw contains data for
a single pseudonymized stock on 2–3 January 2018 downloaded via the Wharton Research
Data Service (https://wrds-www.wharton.upenn.edu/) and it is supplied in the format of
a data.table from the data.table package (Dowle and Srinivasan 2021). Note that for all
data wrangling tasks and realized measure calculations, our package allows the data to be
stored as data.table or xts (Ryan and Ulrich 2020). Especially for the data cleaning tasks,
there is a gain of using the data.table package in terms of memory efficiency and speed.
The raw trade and quote data contain observations both before the market opens and after
it closes. Pre-market trading in the United States, in terms of stocks, usually runs between
4:00 and 9:30 eastern standard time (EST) and after-hours trading typically runs from 16:00
to 20:00 EST. The United States stock exchanges are open from 9:30 to 16:00 EST. When
applicable, time zones of all the data we include in the highfrequency package is local to the
respective exchange(s) of the dataset.

R> options("digits" = 5)

R> data("sampleTDataRaw", package = "highfrequency")
R> print(sampleTDataRaw, topn = 4)

DT EX SYMBOL COND SIZE PRICE CORR
1: 2018-01-02 05:01:21.479 P XXX FTI 2 157.80 0
2: 2018-01-02 05:23:50.188 P XXX FTI 3 157.80 0
3: 2018-01-02 05:23:50.236 P XXX FTI 1 157.80 0
4: 2018-01-02 07:11:54.065 P XXX T 130 158.00 0

77260: 2018-01-03 19:09:49.230 P XXX FT 100 157.25 0
77261: 2018-01-03 19:10:48.529 D XXX TI 20 157.47 0
77262: 2018-01-03 19:36:55.309 D XXX TI 5 157.15 0
77263: 2018-01-03 19:55:37.789 D XXX TI 15 157.45 0

The SYMBOL column contains a string identifying the symbol of the trade, the DT column
represents date and time and contains a POSIXct timestamp, the PRICE column contains
the prices of the trades. The SIZE column shows the number of shares traded. The COND
column contains the sales condition of the corresponding trade as defined by the NYSE. The
characters F, T, and I in our data example above indicate the trade being an intermarket
sweep order, an extended hours trade, and/or an odd lot trade respectively.1 the EX column
shows the exchange of the trade, and CORR is a correction indicator. These columns are
all used in the highfrequency package during data cleaning procedures. For an example of
quote data included, we show the first and last four observations during market opening of the
sampleQDataRaw dataset which contains raw quote data. The dataset is the quote counterpart
to the trade data in sampleTDataRaw.

1For the definition of all possible sale condition indicators, see https://www.nyse.com/market-data/
historical/daily-taq.

https://wrds-www.wharton.upenn.edu/
https://www.nyse.com/market-data/historical/daily-taq
https://www.nyse.com/market-data/historical/daily-taq

Journal of Statistical Software 5

R> data("sampleQDataRaw", package = "highfrequency")
R> print(exchangeHoursOnly(sampleQDataRaw), topn = 4)

DT EX BID BIDSIZ OFR OFRSIZ SYMBOL
1: 2018-01-02 09:30:00.042 K 158.00 3 158.50 1 XXX
2: 2018-01-02 09:30:00.092 P 158.01 1 158.39 20 XXX
3: 2018-01-02 09:30:00.094 Z 158.25 1 158.80 5 XXX
4: 2018-01-02 09:30:00.115 N 158.39 1 158.50 18 XXX

130615: 2018-01-03 15:59:59.730 N 157.26 1 157.28 3 XXX
130616: 2018-01-03 15:59:59.809 N 157.26 1 157.28 4 XXX
130617: 2018-01-03 15:59:59.940 N 157.26 1 157.28 19 XXX
130618: 2018-01-03 15:59:59.950 N 157.26 1 157.28 20 XXX

The SYMBOL column contains a string identifying the symbol of the quote, the DT column
represents date and time and contains a POSIXct timestamp, the BID column contains the
bid of the quote, which is the price that the market participant posting the quote is willing
to buy shares at, and the BIDSIZ column shows the number of shares that are available to be
sold at the corresponding bid price. The OFR column contains the offer of the quote, which
is the price that the participant posting the quote is willing to sell shares at, and the OFRSIZ
column shows the number of shares that are available to be bought at the corresponding offer
price.

2.2. Preparing raw price and quote data for analysis

The structure of raw high-frequency datasets depends on the type of data as well as numerous
other factors. The exact nomenclature and format of columns also varies depending on the
vendor. In the following, we assume the columns to be (re)named as in our sample datasets
shown above.
Depending on the data vendor of the high-frequency data and the instrument type, the clean-
ing of the data required to conduct meaningful analysis varies greatly. Whether data cleaning
is needed for the specific vendor and type of data typically becomes immediately apparent
when looking at a plot of the data. Figure 1 shows the (mostly) raw trade and quote data
from the pseudonymized datasets provided in the highfrequency package, sampleTDataRaw
and sampleQDataRaw.2 In the plot it becomes evident that the bid and offer prices (black
dots) deviate substantially from the actual trade prices (red line). These observed prices
clearly need to be cleaned. Additionally, we observe a destinct irregular glitch in the price
process around 11:38 among other small outliers in the trade data. The former glitch turns
out to still be present in our trade data after initial (trade data only) cleaning steps. Hence,
this remaining outlier shows the need for filtering trade data after matching them to the pre-
vailing quotes for ensuring that trades do not happen “too” far away from the bid and offer.
The classical approach for cleaning trade and quote data is outlined in Barndorff-Nielsen,
Hansen, Lunde, and Shephard (2009). This method seeks to retain as much data as possible
while eliminating outliers. In the highfrequency package, functions are available to conduct

2The only data cleaning step applied is to remove all 64,579 quotes with a price equal zero – otherwise the
plot becomes unreadable due to the wide range of the y-axis.

6 highfrequency: Analyzing Intraday Financial Data in R

150

155

160

165

Time

P
ric

e

11:00 11:10 11:20 11:30 11:40 11:50 12:00

Figure 1: Raw trade and quote data. The plot shows 60 minutes of trading in the
sampleTDataRaw dataset and the accompanying quotes from the sampleQDataRaw dataset.
The black dots are bids and offers, while the red line represents transaction prices.

each step of the cleaning procedure separately, but we also provide convenience functions that
take care of the entire procedure.
In order to clean trade data, users can apply the functions noZeroPrices, exchangeHoursOnly,
autoSelectExchangeTrades (or selectExchange), tradesCondition, and
mergeTradesSameTimestamp to their raw trade datasets. These functions delete entries with
zero prices, retain only data during the official opening hours of the exchanges, select a single
exchange either manually or automatically, and merge trades that occur at the same time,
respectively. When these functions are applied to a raw trade dataset, the user has what we
call a pre-cleaned trade dataset. The pre-cleaned trade dataset will in most cases have the
most egregious outliers removed and therefore be relatively clean. Users can call the function
tradesCleanup for applying the listed cleaning rules in consecutive order. However, in many
cases additional cleaning is required to remove trades that happened outside the bid-offer
band. Such trades are unreasonable if they happen “too far” below the bid or above the offer.
To determine this we naturally need to clean the quote data too.
The quote data can be cleaned using the functions noZeroQuotes, exchangeHoursOnly,
autoSelectExchangeQuotes (or selectExchange), rmNegativeSpread, rmLargeSpread,
mergeQuotesSameTimestamp, rmOutliersQuotes. These functions remove entries with bid
or offer prices of zero, delete entries outside the official opening hours of the exchanges, retain
only data from one exchange chosen automatically or manually, delete entries with negative
spread and entries with large spreads, merge quotes with identical timestamps, and remove
outliers. When these functions are applied to a raw quote dataset, the user has a cleaned
quote dataset.

Journal of Statistical Software 7

155.5

156.0

156.5

157.0

157.5

158.0

158.5

159.0

Time

pr
ic

e

raw
cleaned

09:30 11:00 12:00 13:00 14:00 15:00 16:00

155.4

155.5

155.6

155.7

155.8

155.9

time

pr
ic

e

xx

x
x

x
x

x
xxx

xxx

xxx x
x
xx
x xx xxx

xx
x

xxxxxx x

xxx
x

x
xxx

x
xx
x

x xx
x
x

x xx xx
xx

xxxxxx
xxxx

xxx
xxxx

xx
x
xx

x

xx
xx

xxx
xx
xxxxx
xxx
x
xx
xx

x
x

x
x
x
xx
xxxxx

xx
x x

xxx x
x

xxx
x xxxx

xxx
x
xx
x

xx
xx

xx

x xx
xx
x

x
x x

11:45:00 11:50:00 11:55:00 12:00:00

Figure 2: The upper panel displays the raw and cleaned transaction prices on the third of
January of the sampleTDataRaw dataset. The lower panel shows 15 minutes of trading where
the gray area is the bid and ask. The area shown in the lower subplot is shaded in gray.

Then, with the pre-cleaned trade dataset and the cleaned quote dataset, the final cleaning
step is implemented in rmTradeOutliersUsingQuotes, which excludes trades that happens
“too far” outside the prevailing bid and offer. Figure 2 shows the raw trades of the previously
shown raw data along with the cleaned trade data in the upper subplot. In the lower subplot,
the shaded area on the upper subplot is shown in a zoomed-in manner, showcasing 15 minutes
of trading, with the gray shaded area denoting the bid-offer spread.
The function matchTradeQuotes is used to match trades and quotes. Unfortunately, this is
not as straightforward as it may seem. In financial markets, trades and quotes may be subject
to small reporting lags and, moreover, these reporting lags have changed over time. In the
early days of tick-by-tick datasets, specialists and their clerks would report quotes electroni-
cally, while trades were reported at exchanges manually on a card through an optical reader.
If the clerks were faster, the quotes would thus be registered faster than the trades, inducing
a lag. In light of this lag, Lee and Ready (1991) and Vergote (2005) suggest lagging quotes
by two seconds. Fortunately, in recent times the reporting lags have significantly decreased
such that two seconds is not reasonable anymore. In fact, the reporting differences has al-
most completely disappeared, only causing real problems in times of peak market activity
and extreme volatility.
Therefore, we implement the backwards-forwards matching (BFM) algorithm of Christensen,
Oomen, and Podolskij (2014) for reintegration of otherwise erroneously deleted outliers in the
trade datasets. The algorithm seeks to reintroduce trade outliers caused by inaccuracies in

8 highfrequency: Analyzing Intraday Financial Data in R

timestamps and late reporting of block trades. This is achieved through attempting to match
trades that occur outside the bid-offer interval first through a small window in the future, and
then a larger window in the past. Any observation that does not lie between the bid and the
offer either in the forward or the backward window is then deleted. For further information,
see their appendix D. Note that when using the BFM algorithm it must be done in the data
cleaning steps, not post-cleaning.
For convenience, we provide the functions quotesCleanup, and tradesCleanupUsingQuotes
which together with tradesCleanup serve to automate the entire cleaning procedure.
The cleaning of the raw trade dataset included in the highfrequency package is done as follows
to yield the sampleTData dataset.

R> sampleQData <- quotesCleanup(qDataRaw = sampleQDataRaw,
+ exchanges = "N", type = "standard", report = FALSE)
R> tradesAfterFirstCleaning <- tradesCleanup(
+ tDataRaw = sampleTDataRaw, exchanges = "N", report = FALSE)
R> sampleTData <- tradesCleanupUsingQuotes(tData = tradesAfterFirstCleaning,
+ qData = sampleQData,
+ lagQuotes = 0)[, c("DT", "EX", "SYMBOL", "PRICE", "SIZE")]
R> print(sampleTData, topn = 4)

DT EX SYMBOL PRICE SIZE
1: 2018-01-02 09:30:00.125 N XXX 158.50 50
2: 2018-01-02 09:30:00.145 N XXX 158.50 1805
3: 2018-01-02 09:30:00.259 N XXX 158.49 4
4: 2018-01-02 09:30:00.259 N XXX 158.49 1

7165: 2018-01-03 15:59:59.299 N XXX 157.28 400
7166: 2018-01-03 15:59:59.309 N XXX 157.28 200
7167: 2018-01-03 15:59:59.329 N XXX 157.28 200
7168: 2018-01-03 15:59:59.349 N XXX 157.28 200

2.3. Aggregating high-frequency data
In high-frequency econometrics, data handling is a large part of conducting analyses. For
example, many high-frequency-based estimators require data sampled at regular intervals.
In the highfrequency package we provide different functions to handle cleaned data. The
functions aggregateTrades, aggregateQuotes, aggregatePrice, and aggregateTS can be
used to aggregate data based on time. The former two provide functionality specific to trades
and quotes, whereas the latter two work on time series more generally. For example, we
can aggregate trade data with the function aggregateTrades. This function takes a unit of
time, seconds, minutes, or hours as argument alignBy and a (fractional) number of units as
argument alignPeriod. In the highfrequency package, whenever data are aggregated based
on time, we use the scheme of having units of time called alignBy aggregated by a number
of units called alignPeriod.

R> agg <- aggregateTrades(sampleTData[, list(DT, PRICE, SIZE, SYMBOL)],
+ marketOpen = "09:30:00", marketClose = "16:00:00",
+ alignBy = "minutes", alignPeriod = 5)

Journal of Statistical Software 9

R> print(agg, digits = 6, topn = 4)
DT PRICE SIZE SYMBOL VWPRICE

1: 2018-01-02 09:30:00 158.50 50 XXX 158.500
2: 2018-01-02 09:35:00 158.85 25009 XXX 158.722
3: 2018-01-02 09:40:00 158.89 14472 XXX 158.999
4: 2018-01-02 09:45:00 158.47 10537 XXX 158.754

155: 2018-01-03 15:45:00 157.42 7040 XXX 157.388
156: 2018-01-03 15:50:00 157.24 8246 XXX 157.376
157: 2018-01-03 15:55:00 157.35 11405 XXX 157.362
158: 2018-01-03 16:00:00 157.28 56598 XXX 157.265

On the other hand, “calendar time” is not the only criterion on which to aggregate data,
there are also so called business time measures. We include the businessTimeAggregation
function which can do aggregation based on volume, volatility, and the intensity measure
presented in Oomen (2006). The function samples a specified number of observations that
are equally spaced based on the chosen measure.
One common problem faced by analysts is how to handle multiple tick-by-tick datasets at
once when conducting multivariate analysis because securities do not trade on a fixed grid,
trades and quotes do not arrive in a synchronous manner. This means with sufficient times-
tamp granularity and without any intervention, every observation in one instrument will be
associated with missing observations in all other instruments. For example, assume that as in
Figure 3 an analyst is working on a dataset with three assets, stocks A, B, and C and that the
timestamps are recorded with millisecond resolution. The first trade in the 15 seconds window
for asset A and B occur after around 0.5 seconds but the first trade in C only occurs after
around 1 second. Moreover, even though the first occurring trade execution time for asset
A and B are close, they are not exactly the same. As a consequence, an aggregated dataset
would list a trade in A at around 0.5 seconds and missing observations in B and C at that par-
ticular point in time. In light of this observation, some sort of synchronization must be done
in order to conduct multivariate high-frequency analysis. This synchronization can be done by
time using the aggregate family of functions, or by using functions like merge.data.table,
and specifying the merge to be a rolling merge, which will roll missing observations forwards.
However, rolling missing observations forward every time a new trade happens in any other
instruments may be misleading because this may create a false impression of liquidity in an
illiquid security. In the highfrequency package we implement the refresh time algorithm of
deB. Harris, McInish, Shoesmith, and Wood (1995) which synchronizes trades for an arbitrary
number of securities by sampling only the latest trades from each security whenever newer
trades have happened in all securities. Figure 3 illustrates how the refreshTime algorithm
works. The figure shows three assets. The vertical lines denote a trade arriving, and the
numbers denote the number of the trade, i.e., the first trade is marked 1, and the second is
marked 2 and so on. On the upper subplot, the right-arrows denote the timestamp where the
given observations are moved to. So the first observations that arrive in assets A and B are
moved to where the first observation in asset C arrives. The lower subplot shows the arrival
of the trades post alignment using the refreshTime function. The refresh time algorithm
is used to mitigate the Epps effect (Epps 1979), which is the effect of asynchronous trading
driving down estimates of the covariance as a non-zero return in one asset is always paired
with zero return(s) in other asset(s) when looking at timescales granular enough.

10 highfrequency: Analyzing Intraday Financial Data in R

time
1 3 5 7 9 11 13 15

asset A

asset B

asset C

1

1

1

2 3 4 5 6

2 34567 8 9

23 4 5 6 7 8

time
1 3 5 7 9 11 13 15

asset A

asset B

asset C

1

1

1

2

2

3

4

3

4

5

7

6

6

8

8

Figure 3: Visualization of the refresh time algorithm. The x-axes denote a window of time
corresponding to 15 seconds. The vertical lines denote arrival of trades in the three different
assets. The upper panel shows the inputs before the synchronization, the big numbers show
the observation number of the observation. The rightwards pointing arrows show that the
trade at the left is carried to the ending point to the right of the arrow. The lower panel shows
the synchronized trades, which has all the observations aligned on the same timestamps. Note
that a burst of activity happens in asset B which consists of many trades in rapid succession,
but only one of these trades is retained after the synchronization.

3. Trade direction and liquidity measures
It is a stylized fact that financial markets show a diurnal pattern of activity where, on average,
more trades occur in the morning around opening time and in the evening around closing time
than around lunch. This amount of changing activity implies a changing amount of liquidity
which is the ability to trade large quantities of stock or other assets quickly and with little
impact on the price. The changing activity level also implies a change in the information flow
to and from the market.
Many proxies of liquidity require knowing the direction of a trade. The direction of a trade
is an indicator whether the buyer or the seller of the trade initiated the trade. Initiation
happens through either a market order or a marketable limit order. Not all markets publish
this information in their datasets and therefore this indicator will have to be inferred if it is
not present. The function getTradeDirection implements the Lee-Ready algorithm of Lee
and Ready (1991) which can be used to (imperfectly) infer the direction of trades. In most
functions the quotes and trades of assets are passed as separate objects. However, in order to
estimate the direction of a trade getTradeDirection function requires the trades and quotes
to be passed as a single object. This should be done using the matchTradeQuotes function
which is discussed in Section 2.2.

Journal of Statistical Software 11

Once the quotes and trades have been correctly merged, the issue of identifying which actor
is the initiator of a trade is up next. In the getTradeDirection function we implement the
Lee-Ready algorithm which is a simple three step procedure.

• If the transaction price is higher (lower) than the midquote, the transaction is marked
as buyer (seller) initiated.

• If the transaction price is equal to the midquote, the transaction is marked as buyer
(seller) initiated if the transaction price is higher (lower) than the previous transaction
price.

• If the transaction price is equal to both the previous transaction price and the midquote,
the transaction is marked buyer (seller) initiated if its transaction price is higher (lower)
than the transaction price of the transaction prior to the previous transaction.

The liquidity of an asset plays an important role in many aspects of financial markets, such
as analysis of jump events, news releases, and asset allocation. Therefore, it is not surprising
that numerous measures of the liquidity of assets are available. We implement 23 of these
measures in the function getLiquidityMeasures. Because 23 estimators are too many to
go into detail with, a list of the estimators including the formulae is provided in Table ??
in Appendix A. Boudt and Petitjean (2014) examine the liquidity around news releases and
jump events.

4. Theoretical price model
In the remainder of the paper, we will focus on tools for doing inference on the price process
over the period [0, T]. The length of one day is normalized to unity.
For simplicity in notation, we consider the univariate case for now and assume to have one
day with n + 1 observations observed on a time grid t0, t1, t2, . . . , tn. We denote the observed
log-price by Yti . The tick-by-tick high-frequency log-return is given by the difference in log-
prices:

∆Yti = Yti − Yti−1 .

The observed price equals an efficient price process Xti plus an error term εti :

Yti = Xti + εti . (1)

In the literature, the error-term εti is referred to as market microstructure noise.
We also assume that the efficient, unobserved price process follows a continuous-time Itô
semimartingale,

Xt = X0 +
∫ t

0
µsds +

∫ t

0
σsdWs +

Nt∑
i=1

Ji, (2)

where Xt is the efficient log price of an asset, µs is the drift process, σs is the volatility process,
Ws is a Wiener process, and Ji is the ith price jump in the interval [0, t]. Its arrival is governed
by the count process Nt. Therefore the continuous-time price process in Equation 2 has two
continuous parts; that, is a predictable drift process and a diffusive volatility process, and

12 highfrequency: Analyzing Intraday Financial Data in R

two discrete parts; that is, the starting value (which is irrelevant when looking at log-returns)
and the jump component.
We will explain the tools to detect price jumps, estimate the spot volatility, and also the
total variability of the efficient price process over a day. The latter is the so-called quadratic
variation (QV) of the price process, which can be decomposed in the integrated variance (IV)
and the sum of squared intraday jumps:

QV =
∫ T

0
σ2

sds︸ ︷︷ ︸
IV

+
NT∑
i=1

J2
i︸ ︷︷ ︸

Jump variation

.

5. Realized measures of variance and covariance
In the high-frequency econometrics literature, a great amount of attention has been paid
to estimating the variance as well as covariances of high-frequency price processes. The
main challenges faced when conducting univariate analyses are market microstructure noise,
e.g., the restriction of prices to fixed multiples of cents, and discontinuous price processes
caused by jumps, i.e., changes in prices that are “too large” for a continuous process. Both
market microstructure noise and jumps cause upward bias in non-robust estimation methods.
When conducting multivariate analyses, an analyst is additionally faced with the fact that
instruments trade in an asynchronous manner. This means that using a method of alignment
is necessary when estimating covariances. This then invariably results in loss of data as
mentioned in Section 2.

5.1. Univariate realized measures
In this subsection we will use the sample dataset sampleOneMinuteData. This dataset con-
tains 22 days of one-minute data for a pseudonymized exchange-traded-fund (ETF), called
MARKET and a stock pseudonymized as STOCK.

R> data("sampleOneMinuteData", package = "highfrequency")

In Figure 4 we plot the last four trading days worth of data, which will be the subset of
data we will use in this illustration. In the code used throughout this section, we call this
subsample oneMinute. Each of the four days are shown separately, the red dashed line is the
stock and the black solid line is the ETF.
Visually and while focusing only on the stock, it seems that in the upper two and the lower
right subplots most of the variation in the price stems from pronounced jumps in the price.
The lower left subplot suggests that the ETF had a much lower proportion of the variation
that stems from jumps. The upper right subplot shows that both the ETF and stock has a
jump in the upwards direction just around 14:00. To highlight the properties of the estimators
and the impact of jumps and market microstructure noise on the estimators we use the same
subsample for multiple estimators.
The RV estimator is simply defined as

RV =
n∑

i=1
∆Y 2

ti
.

Journal of Statistical Software 13

2001−08−31

hour:minute

P
ric

e

264

266

268

270

hour:minute

P
ric

e

103.0

103.5

104.0

104.5

105.0

09:30 12:00 14:00 16:00

2001−09−01

hour:minute

P
ric

e

264

266

268

270

hour:minute

P
ric

e

103.0

103.5

104.0

104.5

105.0

09:30 12:00 14:00 16:00

2001−09−02

hour:minute

P
ric

e

264

266

268

270

hour:minute

P
ric

e

103.0

103.5

104.0

104.5

105.0

09:30 12:00 14:00 16:00

2001−09−03

hour:minute

P
ric

e

264

266

268

270

hour:minute

P
ric

e

103.0

103.5

104.0

104.5

105.0

09:30 12:00 14:00 16:00

Figure 4: The last four trading days of one-minute data in the sampleOneMinuteData dataset
included in the highfrequency package. In black with a solid line we depict the pseudonymized
market return, and the red dashed line depicts the pseudonymized stock.

The realized variance is usually used with equidistant sampling. With a one-minute sampling
grid, we have that n = 390 for a usual 6.5 hour trading day on the NYSE. The function rCov
can be used to estimate the realized variance. The alignBy and alignPeriod arguments
are used to control the aggregation of prices to arbitrary minute, second, or hour intervals.
Naturally, in this case these options are limited as we are already using data aggregated on a
one-minute grid. The makeReturns argument is used to denote that we are passing prices as
the first argument. An illustration of RV estimation with one-minute returns is shown below.

R> oneMinute <- sampleOneMinuteData[as.Date(DT) > "2001-08-30"]
R> RV1 <- rCov(oneMinute[, list(DT, MARKET)], makeReturns = TRUE,
+ alignBy = "minutes", alignPeriod = 1)
R> print(RV1)

DT RV
1: 2001-08-31 0.0000322
2: 2001-09-01 0.0000605
3: 2001-09-02 0.0000368
4: 2001-09-03 0.0000397

14 highfrequency: Analyzing Intraday Financial Data in R

Supplying the arguments alignBy and alignPeriod is only done for illustrative purposes
as this data is already sampled at a one-minute frequency. The realized variance estimator
measures the total variance of the price process, not just the integrated variance. Therefore, if
the object of interest is the integrated variance, the realized variance is only consistent when
we observe the efficient price process free of jumps.
Due to the inconsistency of the RV estimator as an estimator of the integrated variance
in the presence of jumps, the need for a jump robust estimator is clear. One of the jump
robust estimators implemented in the highfrequency package is the bipower variation (BPV)
estimator, proposed in Barndorff-Nielsen and Shephard (2004b). This estimator is defined as

BPV = π

2

n−1∑
i=1

|∆Yti | · |∆Yti+1 |.

Here, the effect of a jump in a single return observation gets smoothed out by multiplying with
the subsequent return if the latter is not affected by a jump itself. This change makes the BPV
estimator consistent in the presence of jumps as the sampling window shrinks and the number
of observations in each window increases. The bipower variation converges to the integrated
volatility even in the presence of jumps. Since we have a jump-robust and a non-robust
estimator, we can estimate the size of the jump variation (JV) by taking JV = RV − BPV .
Due to estimation errors in BPV , in practice JV is not guaranteed to be positive. This is
typically dealt with by setting negative estimates to 0. In order to apply the BPV estimator,
we can use the rBPCov function in the same way as we used rCov in the previous example.

R> BPV1 <- rBPCov(oneMinute[, list(DT, MARKET)], makeReturns = TRUE)
R> print(BPV1)

DT BPV
1: 2001-08-31 0.0000312
2: 2001-09-01 0.0000474
3: 2001-09-02 0.0000332
4: 2001-09-03 0.0000399

Choosing the correct period for aligning returns, be it in calendar or business time, is an im-
portant factor of realized variance estimation. Empirically, the estimated volatility is typically
higher when a higher frequency sampling is used. This is because the effect of market mi-
crostructure noise. One cause of this microstructure noise are discrete price intervals for trade
prices. In the following, we will aggregate the realized covariance across different aggregation
periods both in calendar time and business time.

R> data("sampleMultiTradeData", package = "highfrequency")
R> nums <- c(1, 2, 5, 10, 20, 30, 60, 90, 180, 360, 600)
R> rvAgg <- matrix(nrow = length(nums), ncol = 2)
R> for(i in 1:nrow(rvAgg)) {
+ rvAgg[i, 1] <-
+ rCov(sampleMultiTradeData[SYMBOL == 'AAA', list(DT, PRICE)],
+ alignBy = "ticks", alignPeriod = nums[i],
+ makeReturns = TRUE)[[2]]

Journal of Statistical Software 15

1 2 5 10 20 30 60 90 180 360 600

20

25

30

35

40

45

50

ticks

1 2 5 10 20 30 60 90 180 360 600
seconds

20

25

30

35

40

45

50

Figure 5: The volatility signature plot for the AAA stock in the sample dataset
sampleMultiTradeData, the upper plot shows the percentage annualized realized volatil-
ity, with the price aligned by an increasing number of ticks. In the lower subplot the price is
aligned by seconds.

+ rvAgg[i, 2] <-
+ rCov(sampleMultiTradeData[SYMBOL == 'AAA', list(DT, PRICE)],
+ alignBy = "seconds", alignPeriod = nums[i],
+ makeReturns = TRUE)[[2]]
+ }

Figure 5 shows the corresponding volatility signature plot for the stock named AAA in the
sampleMultiTradeData dataset. The upper subplot depicts the estimated realized variance
when the price is sampled at increasing tick intervals, while the lower subplot shows the
estimated realized variance when the price is sampled at increasing second intervals instead.
We observe a downward-sloping trend in both subplots which is evidence for microstructure
noise present in the data.
Barndorff-Nielsen et al. (2009) propose the realized kernels estimator, which use kernel meth-
ods to combat market microstructure noise. The realized kernel estimator takes form of

RK =
∑H

h=−H k
(

h
H+1

)
γh,

γh =
∑n

i=|h|+1 ∆Yti∆Yti−|h| ,

where k(·) is a kernel function. The kernel function should satisfy the smoothness condition,
k′(0) = k′(1) = 0 and H is a kernel tuning parameter.

16 highfrequency: Analyzing Intraday Financial Data in R

listAvailableKernels() lists the kernels that are implemented. The kernels correspond to
those of Barndorff-Nielsen et al. (2008), specifically Table 1 and Table 2 in the aforementioned
paper, along with the Modified Tukey-Hanning kernel.

R> listAvailableKernels()

[1] "Rectangular" "Bartlett"
[3] "Second" "Epanechnikov"
[5] "Cubic" "Fifth"
[7] "Sixth" "Seventh"
[9] "Eighth" "Parzen"

[11] "TukeyHanning" "ModifiedTukeyHanning"

For calculating the ex-post variation by means of kernel estimation at one-minute intervals,
we use the function rKernelCov. To select the Parzen kernel we set kernelType = "Parzen".

R> RK1 <- rKernelCov(oneMinute[, list(DT, MARKET)], kernelType = "Parzen",
+ makeReturns = TRUE)
R> print(RK1)

DT RK
1: 2001-08-31 0.0000294
2: 2001-09-01 0.0000584
3: 2001-09-02 0.0000379
4: 2001-09-03 0.0000360

An alternative approach to dealing with market microstructure noise is to use the pre-
averaging technique. We illustrate this estimator in the multivariate setting in the next
subsection.

5.2. Multivariate realized measures

Variance estimates are not the only component relevant to risk management, but measures
of dependency are also very important inputs in portfolio construction and asset allocation
decisions. There are numerous estimators of dependency based on high-frequency data and we
implement many of these estimators. In this section, we will cover the solutions for problems
that arise when going from a univariate setting to a multivariate setting.
Naturally, we need a multivariate price process, and we use a generalization of the univariate
model presented in Equation 1 and Equation 2:

Yt = Xt + εt,

Xt = X0 +
∫ t

0 µsds +
∫ t

0 ΩsdWs +
∑Nt

i=1 Ji.

The multivariate analogue of the integrated variance is the integrated covariance matrix

ICov =
∫ T

0
ΩsΩ⊤

s ds

Journal of Statistical Software 17

We carry over the notation for the observed prices but instead they are now vectors such
that, with d assets, Yt = (y1,t, y2,t, . . . , yd,t), and the returns are now a vector of returns
∆Yti = Yti − Yti−1 = (y1,t − y1,t−1, y2,t − y2,t−1, . . . , yd,t − yd,t−1).
The realized covariance estimator of Barndorff-Nielsen and Shephard (2004a) is just a straight-
forward multivariate extension of the RV estimator, namely the sum of the outer product of
high-frequency returns:

RC =
n∑

i=1
∆Yti∆Y ⊤

ti
.

The realized covariance estimator yields the realized variance estimates on the diagonal and
the covariance(s) between assets on the off-diagonals. Therefore, we can use the same function
that we used for the realized variance estimation, rCov. This time, the function will return a
list object with one d × d matrix per day. The cor argument can be used to transform the
covariance matrices into correlations instead, where the diagonals will be equal to 1 and the
off-diagonals are correlation coefficients.

R> rCov(oneMinute, makeReturns = TRUE)[1:2]

$`2001-08-31`
STOCK MARKET

STOCK 0.0000792 0.0000340
MARKET 0.0000340 0.0000322

$`2001-09-01`
STOCK MARKET

STOCK 0.0001313 0.0000649
MARKET 0.0000649 0.0000605

When moving to tick-by-tick data, the issue of synchronization arises. Due to the earlier
mentioned Epps effect, the covariance estimate is biased towards 0. With the realized covari-
ance estimator, in the presence of microstructure noise we have that the diagonals are biased
upwards, and the off-diagonals are biased downwards as the sampling frequency increases.
These two biases can lead to severely distorted empirical correlation coefficients.
One method of dealing with the Epps-effect is to use the modulated realized covariance, which
makes use of pre-averaging techniques. Let ∆Y ti =

∑kn−1
h=1 g

(
h

kn

)
∆Yti+h

be the pre-averaged
returns, where g (x) = min (x, 1 − x), kn = ⌊θ

√
N⌋ and θ is a tuning parameter controlling

the pre-averaging horizon with N being the number of observations after applying the refresh
time algorithm. The pre-averaging reduces the effect of market microstructure noise, but
requires a bias correction term.
The modulated realized covariance is defined as

MRC = N

N − kn − 2
1

ϕ2kn

N−kn+1∑
i=0

∆Y ti∆Y
⊤
ti

− ϕkn
1

θ2ϕkn
2

Ψ̂,

where we have that Ψ̂ = 1
2N

∑N
i=1 ∆Yti∆Y ⊤

ti
, ϕkn

1 = kn
∑kn

j=1

(
g

(
j+1
kn

)
− g

(
j

kn

))2
, and ϕkn

2 =
1

kn

∑kn
j=1 g2

(
j

kn−1

)
. The modulated realized covariance can be estimated using the function

18 highfrequency: Analyzing Intraday Financial Data in R

rMRCov, the data must be prices in levels, and the argument theta controls the pre-averaging
horizon.

R> rMRCov(
+ list("ETF" = sampleMultiTradeData[SYMBOL == "ETF", list(DT, PRICE)],
+ "AAA" = sampleMultiTradeData[SYMBOL == "AAA", list(DT, PRICE)]),
+ theta = 0.1)

ETF AAA
ETF 0.000301 0.000309
AAA 0.000309 0.000589

R> rCov(spreadPrices(sampleMultiTradeData[SYMBOL %chin% c("ETF", "AAA")]),
+ alignBy = "ticks", alignPeriod = 1, makeReturns = TRUE)

ETF AAA
ETF 0.000283 0.000000
AAA 0.000000 0.000998

As can be seen, the modulated realized covariance overcomes the asynchronicity problem and
produces realistic estimates, which imply a relatively high correlation with the market. On
the other hand, the realized covariance on the tick-by-tick data estimates the off-diagonal
elements to be zero due to the Epps effect.
Table 2 provides a comprehensive list of the realized measures implemented in the high-
frequency package. Most functions work with multivariate data over multiple days, but
some functions only work with data over a single day, these functions are rMRCov, rCholCov,
rBACov, rOWCov, rTSCov, and rRTSCov. Most, but not all realized measure functions have the
arguments alignBy, alignPeriod, and makeReturns, the two former arguments can be used
to control the alignment of prices or returns in case the input does not match the wanted
granularity. The latter argument is used to designate whether the input data are returns or
prices. For example, if we want to calculate five-minute semi-covariances, but the data we
have is comprised of one-minute returns, we would set alignBy = "minutes", alignPeriod
= 5, and makeReturns = FALSE. As a convenience to developers and analysts, we provide
additional documentation pages for help("ICov") and help("IVar") which serve as alter-
natives to Table 2 in Appendix B to look for estimators of the integrated covariance and the
integrated variance respectively.
In addition to estimators of the integrated variance and covariance, we provide a number
of estimators of higher moments of the return distributions; for example, kurtosis, skewness
and quarticity. The latter has a nice interpretation and usage because it is a measure of the
volatility of the volatility and it can be used to estimate the measurement error of realized
volatility estimates.

5.3. Noise variance estimation
As mentioned earlier, market microstructure noise is an inescapable problem when dealing
with high-frequency data. Market microstructure noise can have rather rich dynamics includ-
ing serial correlation. Moreover previous research suggests that these dynamics may change
over time, see Hansen and Lunde (2006).

Journal of Statistical Software 19

The realized moments of disjoint increments (REMEDI) estimator of Li and Linton (2021)
can be used to estimate the dynamics of market microstructure. More specifically, it allows
for estimation of the lth-order auto-covariance of the market microstructure noise,

R̂l = 1
n

n−kn−l∑
i=2kn

(
Yti+l

− Yti+l+kn

) (
Yti − Yti−2kn

)
,

where n is the number of observations and kn is a tuning parameter.
The REMEDI estimator is implemented in the ReMeDI function. We also implement the
functions knChooseReMeDI and ReMeDIAsymptoticVariance to estimate the optimal kn pa-
rameter and the asymptotic variance of the REMEDI estimation, respectively.
To estimate the optimal kn tuning parameter, the microstructure noise, and the asymptotic
(co)-variance of the microstructure noise, we use three functions, ReMeDI, knChooseReMeDI,
and ReMeDIAsymptoticVariance.

R> stockData <- sampleMultiTradeData[
+ SYMBOL == "AAA", list(DT, PRICE = log(PRICE))]
R> kn <- knChooseReMeDI(stockData)
R> remedi <- ReMeDI(stockData, kn = kn, lags = 0:15)
R> remedi

[1] 4.85e-08 1.84e-08 1.08e-08 1.06e-08 1.15e-08 1.56e-08
[7] 1.32e-08 1.11e-08 5.20e-09 -1.84e-09 -8.06e-09 -1.04e-08

[13] -7.51e-09 -6.08e-09 -2.80e-09 -1.91e-09

R> asympVar <- ReMeDIAsymptoticVariance(
+ stockData, kn = kn, lags = 0:15, phi = 0.2, i = 2)
R> asympVar

$ReMeDI
[1] 4.85e-08 1.84e-08 1.08e-08 1.06e-08 1.15e-08 1.56e-08
[7] 1.32e-08 1.11e-08 5.20e-09 -1.84e-09 -8.06e-09 -1.04e-08

[13] -7.51e-09 -6.08e-09 -2.80e-09 -1.91e-09

$asympVar
[1] 1.84e-12 1.06e-12 6.93e-13 4.17e-13 2.02e-13 1.76e-14 1.12e-14
[8] 2.54e-14 1.34e-13 1.56e-13 9.22e-14 1.74e-14 2.54e-14 5.57e-15

[15] 1.52e-14 2.69e-14

$lags
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

attr(,"class")
[1] "asympVarReMeDI"

We refer to Li and Linton (2021) for further details.

20 highfrequency: Analyzing Intraday Financial Data in R

6. Spot estimation and intraday periodicity
While realized volatility estimates the integrated variance, there are also estimators that seek
to estimate the spot volatility, σt. The spot volatility is sometimes also referred to as the
instantaneous volatility. In the highfrequency package we implement multiple spot volatility
estimators in the spotVol function.
As noted in Section 3, the activity on the financial markets measured in both volume traded
and number of transactions show a diurnal pattern. This pattern shows up in the instanta-
neous volatility too. The increased volatility in the morning is likely due to increased amounts
of price discovery happening. The news that ticked in since markets closed a day earlier are
incorporated in the price of an asset during market opening times. Before markets close, the
increased volatility comes from, among others, investors who seek to reduce their exposure
overnight. Due to the distinct diurnal pattern, many estimators incorporate this effect; for
example, by letting the spot volatility be determined by a constant daily factor, which may be
estimated by a daily realized measure, and a seasonality factor that incorporates the diurnal
pattern into the spot estimates. One such estimator of the spot volatility is the deterministic
periodicity class of estimators defined as

σ̂t = d̂t · σ̂C

where σ̂C is a day-to-day constant level of volatility, which may change between days, and
d̂t is the periodicity factor which is the same across days but varies during the day; for

Time

di
ur

na
lit

y
ef

fe
ct

0.
5

1.
0

1.
5

2.
0

2.
5

09:31 10:35 11:40 12:45 13:50 14:55 16:00

parametric
non−parametric

Figure 6: Spot volatility estimation the smooth line shows the intraday periodicity estimate
from the parametric spot volatility estimator. The jagged line shows the intraday periodicity
estimate from the non-parametric estimator. Note that the jagged-ness is exacerbated by the
relatively low number of observations in the sample dataset but that the estimate will likely
be smoother with a larger dataset.

Journal of Statistical Software 21

example, d̂t is the same on day one and day two at 09:45:00, but its value is different from the
value at 09:50:00. Using the function spotVol, we estimate the spot volatility of the MARKET
ETF in the sampleOneMinuteData dataset. We apply the deterministic periodicity estimator
which is a class of spot volatility estimators where we supply four different implementations.
We use the "TML" and the "WSD" settings for the Truncated Maximum Likelihood and the
Weighted Standard Deviation estimation method of Boudt et al. (2011). These estimators
are parametric and non-parametric, respectively. For definitions and introductions to these
estimators, see Boudt et al. (2011).

R> parametric <- spotVol(
+ data = sampleOneMinuteData[, list(DT, PRICE = MARKET)],
+ periodicVol = "TML", P1 = 2, P2 = 2, alignPeriod = 1)
R> nonParametric <- spotVol(
+ data = sampleOneMinuteData[, list(DT, PRICE = MARKET)],
+ periodicVol = "WSD", alignPeriod = 1)

We plot the resulting estimates of the recurring periodicity in Figure 6. Unsurprisingly,
the parametric estimator is much smoother than the non-parametric estimator which shows
considerable variability in the periodicity estimated. We can see that the volatility is higher
in the beginning and in the end of the trading day than in the middle of the trading day.

7. Testing for the presence of jumps
In general there are two approaches to jump testing in the literature. First, there are daily
jump tests which are tests with the null hypothesis that no jump occurred during a day.
Second, there are intraday jump tests which are multiple tests for the presence of jumps in
small blocks of returns. We call these tests LM-type tests because the tests we implement are
based on the procedure proposed in Lee and Mykland (2008).
Since we have the RV estimator which converges to the QV in the presence of jumps, and
the BPV estimator which converges to the IV, we can estimate the jump variation by simply
taking JV = RV − BPV .
If RV and BPV coincide with each other, we know that we have no jumps, and we can test
this null hypothesis. The test of Barndorff-Nielsen and Shephard (2006) (henceforth BNS)
does this by estimating the QV and IV, along with the integrated quarticity (IQ), which is
defined as IQ =

∫ T
0 σ4

sds. The IQ is estimated under the alternative that the jump variation
is not equal to zero in order to increase the test’s power. The BNS test comes in two forms,
one version based on a difference and one version based on a ratio. The difference version is
given by

Ĝ = ÎV − RV√
(θ − 2) 1

n ÎQ

L→ N (0, 1) ,

where θ denotes the coefficient multiplying the variance of ˆIV . We can reject the null hypoth-
esis of a continuous price process only if Ĝ is significantly negative, as a significantly positive
value would imply a negative contribution to the variance from jumps. However, such obser-
vations stem only from small-sample biases present in many jump robust estimators.

22 highfrequency: Analyzing Intraday Financial Data in R

The Lee-Mykland (LM) test takes a form similar to that of a classical t-test. It is given by:

Lti = (Yti − Yti−1) − µ̂ti

σ̂ti

,

where µ̂ti and σ̂ti are estimates of the instantaneous mean and volatility of the continuous part
of Yti − Yti−1. The null hypothesis of no jump of the LM test is rejected if |L| > Cn + β⋆ · Sn

where Cn =
√

2 log n
c − log π+log log n√

2c(2 log n)
and Sn = 1√

c(2 log n)
, with c =

√
2√
π

and n is the number of
observations in the entire sample. Lastly, β⋆ = − log (− log (α)), where α is the significance
level of the test.
The daily jump tests in the highfrequency package cannot be used to detect the number of
jumps in the price path of one period. As discussed in Lee and Mykland (2008), this is due
to the usage of integrated measures in this type of jump test. In contrast, the LM test is able
to determine the number of jumps in a price path, and even detect which return contains a
jump, not just the presence of non-zero jump variation in the entire day.
In the following, we will use the function BNSjumpTest function to apply the BNS jump test
on the market ETF in sampleOneMinuteData. Thereafter we will apply the LM test by using
the intradayJumpTest function. For the latter, we focus our attention on the day with the
lowest p-value in the BNS jump test and ascertain the number of jumps on this date.

R> daily <- BNSjumpTest(
+ sampleOneMinuteData[, list(DT, MARKET)],
+ makeReturns = TRUE)

The BNS jump test provides a critical value for each of the 22 days, so we extract the p-values
in order to find a suitable date to conduct our LM test on.

R> pValues <- sapply(daily, function(x) x[["pvalue"]])
R> pValues[which.min(pValues)]

2001-08-26
3.38e-08

We can see that the largest test statistic and, hence, the lowest p-value realized on 26 August
2001. Therefore, we choose this day for plotting our intraday LM test procedure.

R> intraday <- intradayJumpTest(
+ sampleOneMinuteData[as.Date(sampleOneMinuteData$DT) == "2001-08-26",
+ list(DT, PRICE = MARKET)],
+ makeReturns = TRUE, alignBy = "minutes", alignPeriod = 1)

In Figure 7 we show the results of the daily BNS jump test as well as the LM test on 26
August 2001. In the upper subplot, we depict the test statistics per day. In the lower subplot,
we plot the intraday price process and indicate timestamps at which the LM test rejects the
null hypothesis of no instantaneous jumps at the 5% significance level with a red vertical line.
The daily test has a p-value that leads to a rejection of the null hypothesis of no jumps on 26
August 2001. The intraday jump test follows suit and detects 13 jumps throughout the day.

Journal of Statistical Software 23

date

te
st

 s
ta

tis
tic

2001−08−04 2001−08−11 2001−08−19 2001−08−26 2001−09−02

0

1

2

3

4

5

time of day

pr
ic

e

09:30 11:00 12:00 13:00 14:00 15:00 16:00

262.5

263.0

263.5

264.0

Figure 7: The top subplot shows the absolute value of the daily BNS jump test statistics. The
gray shaded area highlights the day that contains the maximum value, which is also the day
on which the LM test (bottom subplot) is applied. The bottom subplot shows the one-minute
intraday prices on 26 August 2001. The areas shaded in red denote the times where the LM
test exceeds the 95% critical value, which implies that a jump is detected.

8. Modeling and forecasting realized variances

So far, we have focused on data cleaning, deriving realized measures of intraday variation,
testing for the presence of jumps in prices, and estimating the spot volatility. All these
analyses have one thing in common; they’re all ex-post based, meaning that they describe
what has already happened. Now, we will turn to an ex-ante topic: forecasting realized
measures.

The realized measures are employed both in forming expectations about the future and in
forecast evaluation. In the highfrequency package, we implement two models for forecasting
volatility, i.e., the HEAVY model of Shephard and Sheppard (2010) and the HAR model (and
extensions hereof) introduced by Corsi (2009).

These models are typically estimated using time series aggregated on a daily frequency, e.g., by
using rCov. For this reason, the SPYRM dataset included in the highfrequency package contains
realized measures of the SPDR S&P500 ETF Trust with the ticker SPY which tracks the
S&P500 index. The dataset contains data from 2 January 2014 to 31 December 2019 and
consists of six realized measures each computed at a one- and five-minute frequency. In
addition, the closing prices of the ETF is also included.

24 highfrequency: Analyzing Intraday Financial Data in R

8.1. HAR model

The HAR model of Corsi (2009) is a simple model used for forecasting realized measures.
The model is motivated heuristically by the presence of heterogeneous traders, who trade on
a daily, weekly, and monthly basis. The HAR model comes in several different extensions;
for example, correcting for jumps and measurement error of the realized variance. Let τ be
the daily index. In the following, RVτ will be used to refer to estimators that converge to the
quadratic variation for a given day and BPVτ will be used to denote jump robust estimators
of the integrated variance. Any estimator of the quadratic variation can be plugged in instead
of RVτ and likewise for the integrated variance and quarticity instead of BPVτ and RQτ .
The original HAR model is specified as

RVτ = β0 + β1RVτ−1 + β2RVw
τ−1 + β3RVm

τ−1 + ετ ,

where RVw
τ−1 = RVτ−1+RVτ−2+···+RVτ−5

5 , RVm
τ−1 = RVτ−1+RVτ−2+···+RVτ−22

22 , and ετ is the error
term.
In the highfrequency package the HAR model is implemented such that both realized mea-
sures and high-frequency returns can be supplied. The HARmodel function accepts both
prices and pre-computed realized measures. The inputType argument is used to toggle be-
tween pre-computed realized measures (inputType = "RM") and high-frequency returns when
inputType is different from "RM".
The usage for basic HAR estimation based on realized measures is simply:

R> RV <- as.xts(SPYRM[, list(DT, RV5)]) * 10000
R> model <- HARmodel(data = RV, periods = c(1, 5, 22),
+ type = "HAR", inputType = "RM")
R> summary(model)

Call:
"RV1 = beta0 + beta1 * RV1 + beta2 * RV5 + beta3 * RV22"

Residuals:
Min 1Q Median 3Q Max

-4.798 -0.152 -0.098 0.020 23.148

Coefficients:
Estimate Std. Error t value Pr(>|t|)

beta0 0.1160 0.0429 2.71 0.00689 **
beta1 0.2953 0.0981 3.01 0.00265 **
beta2 0.2813 0.0773 3.64 0.00028 ***
beta3 0.1472 0.0622 2.37 0.01808 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.747 on 1469 degrees of freedom
Multiple R-squared: 0.25, Adjusted R-squared: 0.248
F-statistic: 163 on 3 and 1469 DF, p-value: <2e-16

Journal of Statistical Software 25

The HARmodel function returns an object of type HARmodel, which has the following methods:
summary, plot, print, and predict.
Many extensions of the HAR model have been proposed. The model types available in the
highfrequency package are HAR, HARJ, HARCJ, HARQ, HARQJ, CHAR, CHARQ. Selecting between
these models is done by using the type argument.
The “J” models denote a model with a jump component. The jump component is, as described
in Section 5.1, estimated as a an estimate of the quadratic variation minus an estimate of
the integrated variance. For example, the realized variance and the bipower variation can be
used for calculating Jτ = RVτ − BPVτ . In the HARJ model, the jump component is added
as a regressor. Thus, the model reads:

RVτ = β0 + β1RVτ−1 + β2RVw
τ−1 + β3RVm

τ−1 + β4Jτ−1 + ετ .

Andersen, Bollerslev, and Diebold (2007) compares the above HAR model that includes only
a jump component (HARJ) with their proposed HAR model including a continuous and a
jump component (HARCJ). The HARCJ model reads:

RVτ = β0 + β1Cτ−1 + β2Cw
τ−1 + β3Cm

τ−1 + β4Jτ−1 + ετ ,

where Cτ is defined as I [Zτ ≤ Φα] · RVτ + I [Zt > Φα] · BPVτ , where I [·] is the indicator
function, Zτ is the test statistic of a jump test, and Φ is the critical value of that jump test.
Simply put, the HARCJ replaces the non-robust estimator with a jump-robust estimator
when a jump test shows that a jump has occurred. To control the jump test applied in the
HARCJ type model, the argument jumpTest can be used. The available options are the names
of the functions mentioned in Section 7.
Andersen et al. (2007) discussed including the continuous and jump components as separate
explanatory variables in the HAR model. For example, a continuous HAR (CHAR) uses only
the continuous part of the quadratic variation to forecast the quadratic variation.

RVτ = β0 + β1BPVτ−1 + β2BPVw
τ−1 + β3BPVm

τ−1 + ετ ,

Bollerslev, Patton, and Quaedvlieg (2016) introduce the HAR model with quarticity (HARQ)
model, which incorporates an interaction term of realized volatility and realized quarticity.
The reason for this interaction term is that the realized quarticity is a measure for the estima-
tion error in the realized variance proxy on a particular day. The typically negative interaction
term downweights the predictive weight on RV observations that have a large measurement
error,

RVτ = β0 +
(
β1 + β1QRQ1/2

τ

)
RVτ−1 + β2RVw

τ−1 + β3RVm
τ−1 + ετ ,

where RQτ is an estimate of the integrated quarticity.
In the highfrequency package, we also provide two extensions of the models above. The
HARQJ model is a HARQ model augmented by a jump component and the CHARQ model
is a CHAR model augmented by a RQ interaction term.
In addition, we provide non-linear transformations as is done in Corsi (2009), the standard
deviation form and the logarithmic form:√

RVτ = β0 + β1
√

RVτ−1 + β2
√

RVw
τ−1 + β3

√
RVm

τ−1 + β4
√

Jτ−1 + ετ ,

26 highfrequency: Analyzing Intraday Financial Data in R

and

log RVτ = β0 + β1 log RVτ−1 + β2 log RVw
τ−1 + β3 log RVm

τ−1 + β4 log (1 + Jτ−1) + ετ .

These transformations can be accessed through the transform argument.
The aggregation of the realized measures into weekly and monthly values is implemented in
a flexible manner such that one can specify arbitrary lags and an arbitrary number of them.
The arguments to control the aggregation are periods, periodsJ, and periodsQ for the
different components inside a HAR model. Additionally, as a simple extension, all models can
be augmented with an external regressor through the externalRegressor argument. This
external regressor can be aggregated like the other regressors through the periodsExternal
argument.

8.2. HEAVY model

The HEAVY model relies both on high-frequency data and on low-frequency data. The
daily returns are denoted by rτ , and the realized measure is denoted by RMτ . Following the
notation from Shephard and Sheppard (2010), the HEAVY model is written as

VAR
(
rτ |FHF

τ−1

)
= hτ = ω + αRMτ−1 + βhτ−1, ω, α ≥ 0, β ∈ [0, 1) ,

E
(
RMτ |FHF

τ−1

)
= µτ = ωR + αRRMτ−1 + βRµτ−1, ωR, αR, βR ≥ 0, αR + βR ∈ [0, 1) ,

where FHF
τ denotes the information that contains all observations before and including day

τ . The HEAVY model can be estimated via the HEAVYmodel function. The main input is an
xts time series that contains returns in the first column and the realized measure of interest
in the second column. One example of estimating a HEAVY model based on log-returns and
the five-minute RV estimates is the following:

R> logReturns <- 100 * makeReturns(SPYRM$CLOSE)[-1]
R> dataSPY <- xts(cbind(logReturns, RV = SPYRM$RV5[-1] * 10000),
+ order.by = SPYRM$DT[-1])
R> model <- HEAVYmodel(data = dataSPY[, c("logReturns","RV")])
R> summary(model)

Estimate Std. Error t value Pr(>|t|)
omega 0.0401 0.01060 3.78 1.58e-04
alpha 0.1904 0.03222 5.91 3.44e-09
beta 0.7557 0.03044 24.82 4.99e-136
omegaR 0.0300 0.00513 5.84 5.11e-09
alphaR 0.7314 0.07902 9.26 2.13e-20
betaR 0.2298 0.06139 3.74 1.82e-04

The log-likelihoods are:
Variance equation: -1692.795
RM equation:-1630.093

In this full sample estimation, we observe that all parameters, both in the variance and in
the measurement equation, are highly significant.

Journal of Statistical Software 27

8.3. Forecasting results

We now turn to a pseudo real-time forecasting comparison of the HAR and HEAVY model.
We mimic the information set at time τ and estimate the models based on a rolling window of
1000 observation and make a one-step-ahead out-of-sample forecast. The evaluation sample
consists of the data in the SPYRM dataset from 2018–2019. In total, we have 494 out-of-sample
observations.

R> dataSPY$HARfcst <- NA
R> dataSPY$HEAVYfcst <- NA
R> for (i in 1:494) {
+ HAREstimated <- HARmodel(data = dataSPY[i:(i + 999), "RV"],
+ periods = c(1, 5, 22), type = "HAR",
+ inputType = "RM")
+ dataSPY$HARfcst[i+1000] <- predict(HAREstimated)
+ HEAVYEstimated <- HEAVYmodel(
+ data = dataSPY[i:(i + 999), c("logReturns", "RV")])
+ dataSPY$HEAVYfcst[i+1000] <-
+ predict(HEAVYEstimated, stepsAhead = 1)[,"CondRM"]
+ }

In Figure 8 we depict the realized variances among the predictions derived from the HAR
and HEAVY model.
Considering the forecasts graphically, both models seem to predict the observed values rea-
sonably well, but we can identify some broad trends. The HAR model seems to over-predict
the realized volatility on low-volatility days, while the HEAVY model does not show this
behavior. The HAR model is less sensitive to volatility spikes and shows a lower willingness
to adapt to spikes in volatility, while the HEAVY model changes much more rapidly.
The HEAVY model almost always provides a lower forecast than the HAR model. The picture
is not clear-cut, therefore we cannot conclude which model performs best in this circumstance.
Hence, we turn to forecast evaluation via the root-mean-square error (RMSE):

R> sqrt(mean((dataSPY$RV - dataSPY$HEAVYfcst)^2, na.rm = TRUE))

[1] 0.62

R> sqrt(mean((dataSPY$RV - dataSPY$HARfcst)^2, na.rm = TRUE))

[1] 0.701

If we look at the RMSE of the two models, we observe that in our test sample, the HEAVY
model has a RMSE that is around 12% smaller than the RMSE of the HAR model. This
suggests that the HEAVY model performs better than the HAR model on average. However,
this is not the entire story. The performance in times of low volatility may be less important
to risk advisers than how well the models perform in times of high volatility. Therefore, we
isolate the days with the ex-post 10% highest realized volatility in the evaluation sample and
compare the RMSEs on this subsample separately.

28 highfrequency: Analyzing Intraday Financial Data in R

20
18

20
19

20
20

0

2

4

6

Date

RV
HAR
HEAVY

Figure 8: RV realizations in the out-of-sample forecasts for the S&P 500 and corresponding
forecasts of a HAR and a HEAVY model. The depicted out-of-sample period spans Jan 2018–
Dec 2019. The forecasts are based on a rolling window comprising 1000 daily observations
each. Daily scale.

R> idx <- dataSPY$RV > quantile(dataSPY$RV[-c(1:1000)], 0.90)
R> sqrt(mean((dataSPY$RV[idx] - dataSPY$HEAVYfcst[idx])^2, na.rm = TRUE))

[1] 1.72

R> sqrt(mean((dataSPY$RV[idx] - dataSPY$HARfcst[idx])^2, na.rm = TRUE))

[1] 2.02

The HEAVY model has a RMSE that is about 14% lower than the HAR model on days
of high volatility. Most financial actors will happily choose a model which performs better
in high-volatility environments instead of a model which performs better in low-volatility
environments. Therefore, we can conclude that the HEAVY model is more attractive than
the HAR model based on our sample data.

9. Conclusion
In this article we have introduced the R package highfrequency for high-frequency data anal-
ysis. The package provides valuable tools for practitioners, academics, and regulators alike
to conduct their applied research in a user-friendly manner.

Journal of Statistical Software 29

We have introduced several major topics in the literature: data cleaning and handling, mea-
sures of liquidity and estimating the direction of a trade, realized measures of the return
distribution, spot volatility estimation, testing for the presence of jumps in the price process,
and modeling and forecasting realized volatility. All of these topics are important parts of the
literature and the provided tools can be used to conduct many different analyses and tasks
such as data cleaning, risk management, visualization, and more.
If you use the R package highfrequency in publications, please cite the software using the
following command citation(package = "highfrequency").

Acknowledgement
The authors acknowledge Google for financial support via the Google Summer of Code ini-
tiative in the years 2012, 2013, 2014, 2019, and 2020. In addition, we thank Chris Blakely,
Nabil Bouamara, Jonathan Cornelissen, Dirk Eddelbuettel, Giang Nguyen, Scott Payseur,
Brian Peterson, Maarten Schermer, and Eric Zivot for their support in the development of
the highfrequency package. Moreover, we thank Andreas Alfons for giving valuable feedback.

References

Allaire JJ, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J, Chang
W, Iannone R (2022). rmarkdown: Dynamic Documents for R. R package version 2.14,
URL https://CRAN.R-project.org/package=rmarkdown.

Amaya D, Christoffersen P, Jacobs K, Vasquez A (2015). “Does Realized Skewness and
Kurtosis Predict the Cross-Section of Equity Returns?” Journal of Financial Economics,
118(1), 135–167. doi:10.1016/j.jfineco.2015.02.009.

Andersen TG, Bollerslev T, Diebold FX (2007). “Roughing It Up: Including Jump Compo-
nents in the Measurement, Modeling and Forecasting of Return Volatility.” The Review of
Economics and Statistics, 89(4), 701–720. doi:10.1162/rest.89.4.701.

Andersen TG, Bollerslev T, Diebold FX, Labys P (2001). “The Distribution of Realized
Exchange Rate Volatility.” Journal of the American Statistical Association, 96(453), 42–
55. doi:10.1198/016214501750332965.

Andersen TG, Dobrev D, Schaumburg E (2012). “Jump-Robust Volatility Estimation Using
Nearest Neighbor Truncation.” Journal of Econometrics, 169(1), 75–93. doi:10.1016/j.
jeconom.2012.01.011.

Barndorff-Nielsen OE, Hansen PR, Lunde A, Shephard N (2008). “Designing Realized Kernels
to Measure the Ex Post Variation of Equity Prices in the Presence of Noise.” Econometrica,
76(6), 1481–1536. doi:10.3982/ecta6495.

Barndorff-Nielsen OE, Hansen PR, Lunde A, Shephard N (2009). “Realized Kernels in
Practice: Trades and Quotes.” The Econometrics Journal, 12(3), 1–32. doi:10.1111/
j.1368-423x.2008.00275.x.

https://CRAN.R-project.org/package=rmarkdown
https://doi.org/10.1016/j.jfineco.2015.02.009
https://doi.org/10.1162/rest.89.4.701
https://doi.org/10.1198/016214501750332965
https://doi.org/10.1016/j.jeconom.2012.01.011
https://doi.org/10.1016/j.jeconom.2012.01.011
https://doi.org/10.3982/ecta6495
https://doi.org/10.1111/j.1368-423x.2008.00275.x
https://doi.org/10.1111/j.1368-423x.2008.00275.x

30 highfrequency: Analyzing Intraday Financial Data in R

Barndorff-Nielsen OE, Shephard N (2004a). “Econometric Analysis of Realized Covariation:
High Frequency Based Covariance, Regression, and Correlation in Financial Economics.”
Econometrica, 72(3), 885–925. doi:10.1111/j.1468-0262.2004.00515.x.

Barndorff-Nielsen OE, Shephard N (2004b). “Power and Bipower Variation with Stochastic
Volatility and Jumps.” Journal of Financial Econometrics, 2(1), 1–37. doi:10.1093/
jjfinec/nbh001.

Barndorff-Nielsen OE, Shephard N (2006). “Econometrics of Testing for Jumps in Financial
Economics Using Bipower Variation.” Journal of Financial Econometrics, 4(1), 1–30. doi:
10.1093/jjfinec/nbi022.

Bollerslev T, Li J, Patton AJ, Quaedvlieg R (2020). “Realized Semicovariances.” Economet-
rica, 169(1), 75–93. doi:10.3982/ecta17056.

Bollerslev T, Patton AJ, Quaedvlieg R (2016). “Exploiting the Errors: A Simple Approach
for Improved Volatility Forecasting.” Journal of Econometrics, 192(1), 1–18. doi:10.
1016/j.jeconom.2015.10.007.

Boudt K, Cornelissen J, Payseur S, Kleen O, Sjørup E (2022). highfrequency: Tools for
Highfrequency Data Analysis. R package version 1.0.0, URL https://CRAN.R-project.
org/package=highfrequency.

Boudt K, Croux C, Laurent S (2008). “Outlyingness Weighted Covariation.” Journal of
Financial Econometrics, 9(4), 249–273. doi:10.1093/jjfinec/nbr003.

Boudt K, Croux C, Laurent S (2011). “Robust Estimation of Intraweek Periodicity in
Volatility and Jump Detection.” Journal of Empirical Finance, 18(2), 353 – 367. doi:
10.1016/j.jempfin.2010.11.005.

Boudt K, Dragun K, Sauri O, Vanduffel S (2021). “Beta-Adjusted Covariance Estimation.”
SSRN Electronic Journal, pp. 1–50. doi:10.2139/ssrn.3768326.

Boudt K, Laurent S, Lunde A, Quaedvlieg R, Sauri O (2017). “Positive Semidefinite Inte-
grated Covariance Estimation, Factorizations and Asynchronicity.” Journal of Economet-
rics, 196(2), 347–367. doi:10.1016/j.jeconom.2016.09.016.

Boudt K, Petitjean M (2014). “Intraday Liquidity Dynamics and News Releases Around
Price Jumps: Evidence from the DJIA Stocks.” Journal of Financial Markets, 17, 121–149.
doi:10.1016/j.finmar.2013.05.004.

Boudt K, Zhang J (2010). “Jump Robust Two Time Scale Covariance Estimation and Realized
Volatility Budgets.” Quantitative Finance, 15(6), 1041–1054. doi:10.1080/14697688.
2012.741692.

Christensen K, Oomen R, Podolskij M (2014). “Fact or Friction: Jumps at Ultra High
Frequency.” Journal of Financial Economics, 114(3), 576–599. doi:10.1016/j.jfineco.
2014.07.007.

Corsi F (2009). “A Simple Approximate Long-Memory Model of Realized Volatility.” Journal
of Financial Econometrics, 7(2), 174–196. doi:10.1093/jjfinec/nbp001.

https://doi.org/10.1111/j.1468-0262.2004.00515.x
https://doi.org/10.1093/jjfinec/nbh001
https://doi.org/10.1093/jjfinec/nbh001
https://doi.org/10.1093/jjfinec/nbi022
https://doi.org/10.1093/jjfinec/nbi022
https://doi.org/10.3982/ecta17056
https://doi.org/10.1016/j.jeconom.2015.10.007
https://doi.org/10.1016/j.jeconom.2015.10.007
https://CRAN.R-project.org/package=highfrequency
https://CRAN.R-project.org/package=highfrequency
https://doi.org/10.1093/jjfinec/nbr003
https://doi.org/10.1016/j.jempfin.2010.11.005
https://doi.org/10.1016/j.jempfin.2010.11.005
https://doi.org/10.2139/ssrn.3768326
https://doi.org/10.1016/j.jeconom.2016.09.016
https://doi.org/10.1016/j.finmar.2013.05.004
https://doi.org/10.1080/14697688.2012.741692
https://doi.org/10.1080/14697688.2012.741692
https://doi.org/10.1016/j.jfineco.2014.07.007
https://doi.org/10.1016/j.jfineco.2014.07.007
https://doi.org/10.1093/jjfinec/nbp001

Journal of Statistical Software 31

Dancho M, Vaughan F (2020). alphavantager: Lightweight R Interface to the Alpha
Vantage API. R package version 0.1.2, URL https://CRAN.R-project.org/package=
alphavantager.

Dancho M, Vaughan F (2022). tidyquant: Tidy Quantitative Financial Analysis. R package
version 1.0.5, URL https://CRAN.R-project.org/package=tidyquant.

deB Harris FH, McInish TH, Shoesmith GL, Wood RA (1995). “Cointegration, Error Cor-
rection, and Price Discovery on Informationally Linked Security Markets.” The Journal of
Financial and Quantitative Analysis, 30(4), 563–579. doi:10.2307/2331277.

Dowle M, Srinivasan A (2021). data.table: Extension of data.frame. R package version
1.14.2, URL https://CRAN.R-project.org/package=data.table.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

Epps TW (1979). “Comovements in Stock Prices in the Very Short Run.” Journal of the Amer-
ican Statistical Association, 74(366), 291–298. doi:10.1080/01621459.1979.10482508.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2021). mvtnorm: Multivari-
ate Normal and t Distributions. R package version 1.1-3, URL https://CRAN.R-project.
org/package=mvtnorm.

Ghalanos A (2022). rugarch: Univariate GARCH Models. R package version 1.4-8, URL
https://CRAN.R-project.org/package=rugarch.

Ghalanos A, Theussl S (2015). Rsolnp: General Non-Linear Optimization Using Augmented
Lagrange Multiplier Method. R package version 1.16, URL https://CRAN.R-project.org/
package=Rsolnp.

Gilbert P, Varadhan R (2019). numDeriv: Accurate Numerical Derivatives. R package version
2016.8-1.1, URL https://CRAN.R-project.org/package=numDeriv.

Hansen PR, Lunde A (2006). “Realized Variance and Market Microstructure Noise.” Journal
of Business & Economic Statistics, 24(2), 127–161. doi:10.1198/073500106000000071.

Hautsch N, Podolskij M (2013). “Preaveraging-Based Estimation of Quadratic Variation in the
Presence of Noise and Jumps: Theory, Implementation, and Empirical Evidence.” Journal
of Business & Economic Statistics, 31(2), 165–183. doi:10.1080/07350015.2012.754313.

Hayashi T, Yoshida N (2005). “On Covariance Estimation of Non-Synchronously Observed
Diffusion Processes.” Bernoulli, 11(2), 359–379. doi:10.3150/bj/1116340299.

Hester J (2020). covr: Test Coverage for Packages. R package version 3.5.1, URL https:
//CRAN.R-project.org/package=covr.

Kristensen D (2010). “Nonparametric Filtering of the Realized Spot Volatility: A Kernel-
Based Approach.” Econometric Theory, 26(1), 60 – 93. doi:10.1017/s0266466609090616.

https://CRAN.R-project.org/package=alphavantager
https://CRAN.R-project.org/package=alphavantager
https://CRAN.R-project.org/package=tidyquant
https://doi.org/10.2307/2331277
https://CRAN.R-project.org/package=data.table
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1080/01621459.1979.10482508
https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=rugarch
https://CRAN.R-project.org/package=Rsolnp
https://CRAN.R-project.org/package=Rsolnp
https://CRAN.R-project.org/package=numDeriv
https://doi.org/10.1198/073500106000000071
https://doi.org/10.1080/07350015.2012.754313
https://doi.org/10.3150/bj/1116340299
https://CRAN.R-project.org/package=covr
https://CRAN.R-project.org/package=covr
https://doi.org/10.1017/s0266466609090616

32 highfrequency: Analyzing Intraday Financial Data in R

Lee CMC, Ready MJ (1991). “Inferring Trade Direction from Intraday Data.” The Journal
of Finance, 46(2), 733–46. doi:10.1111/j.1540-6261.1991.tb02683.x.

Lee SS, Mykland PA (2008). “Jumps in Financial Markets: A New Nonparametric Test and
Jump Dynamics.” The Review of Financial Studies, 21(6), 2535–2563. doi:10.1093/rfs/
hhm056.

Li M, Linton O (2021). “A ReMeDI for Microstructure Noise.” Econometrica, 90(1). doi:
10.3982/ecta17505.

Luethi D, Erb P, Otziger S, McDonald D, Smith P (2021). FKF: Fast Kalman Filter. R
package version 0.2.3, URL https://CRAN.R-project.org/package=FKF.

Maechler M, Rousseeuw P, Croux C, Todorov V, Ruckstuhl A, Salibian-Barrera M, Verbeke
T, Koller M, Conceicao ELT, Anna di Palma M (2022). robustbase: Basic Robust Statistics.
R package version 0.95-0, URL https://CRAN.R-project.org/package=robustbase.

Mancini C, Gobbi F (2012). “Identifying the Brownian Covariation from the Co-Jumps
Given Discrete Observations.” Econometric Theory, 28(2), 249–273. doi:10.1017/
s0266466611000326.

Oomen R (2006). “Properties of Realized Variance Under Alternative Sampling
Schemes.” Journal of Business & Economic Statistics, 24(2), 219–237. doi:10.1198/
073500106000000044.

Pawlowski J (2021). HighFreq: High Frequency Time Series Management. R package version
0.1, URL https://github.com/algoquant/HighFreq.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ryan JA, Ulrich JM (2020). xts: eXtensible Time Series. R package version 0.12.1, URL
https://CRAN.R-project.org/package=xts.

Ryan JA, Ulrich JM (2022). quantmod: Quantitative Financial Modelling Framework. R
package version 0.4.20, URL https://CRAN.R-project.org/package=quantmod.

Sarkar D (2008). lattice: Multivariate Data Visualization with R. Springer-Verlag, New York.
doi:10.1007/978-0-387-75969-2. ISBN 978-0-387-75968-5.

Shephard N, Sheppard K (2010). “Realising the Future: Forecasting with High-Frequency-
Based Volatility (HEAVY) Models.” Journal of Applied Econometrics, 25, 197–231. doi:
10.1002/jae.1158.

Ushey K (2018). RcppRoll: Efficient Rolling/Windowed Operations. R package version 0.3.0,
URL https://CRAN.R-project.org/package=RcppRoll.

Vergote O (2005). “How to Match Trades and Quotes for NYSE Stocks?” SSRN Electronic
Journal. doi:10.2139/ssrn.808984.

Wickham H (2011). “testthat: Get Started with Testing.” The R Journal, 3, 5–10. doi:
10.32614/RJ-2011-002.

https://doi.org/10.1111/j.1540-6261.1991.tb02683.x
https://doi.org/10.1093/rfs/hhm056
https://doi.org/10.1093/rfs/hhm056
https://doi.org/10.3982/ecta17505
https://doi.org/10.3982/ecta17505
https://CRAN.R-project.org/package=FKF
https://CRAN.R-project.org/package=robustbase
https://doi.org/10.1017/s0266466611000326
https://doi.org/10.1017/s0266466611000326
https://doi.org/10.1198/073500106000000044
https://doi.org/10.1198/073500106000000044
https://github.com/algoquant/HighFreq
https://www.R-project.org/
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=quantmod
https://doi.org/10.1007/978-0-387-75969-2
https://doi.org/10.1002/jae.1158
https://doi.org/10.1002/jae.1158
https://CRAN.R-project.org/package=RcppRoll
https://doi.org/10.2139/ssrn.808984
https://doi.org/10.32614/RJ-2011-002
https://doi.org/10.32614/RJ-2011-002

Journal of Statistical Software 33

Wickham H, Seidel D (2022). scales: Scale Functions for Visualization. R package version
1.2.0, URL ttps://CRAN.R-project.org/package=scales.

Xie Y (2022). knitr: A General-Purpose Package for Dynamic Report Generation in R. R
package version 1.39, URL https://CRAN.R-project.org/package=knitr.

Zeileis A, Grothendieck G (2005). “zoo: S3 Infrastructure for Regular and Irregular Time
Series.” Journal of Statistical Software, 14(6), 1–27. doi:10.18637/jss.v014.i06.

Zeileis A, Köll S, Graham N (2020). “Various Versatile Variances: An Object-Oriented Im-
plementation of Clustered Covariances in R.” Journal of Statistical Software, 95(1), 1–36.
doi:10.18637/jss.v095.i01.

Zhang L, Mykland PA, Aït-Sahalia Y (2005). “A Tale of Two Time Scales: Determining
Integrated Volatility with Noisy High-Frequency Data.” Journal of the American Statistical
Association, 100(472), 1394–1411. doi:10.1198/016214505000000169.

ttps://CRAN.R-project.org/package=scales
https://CRAN.R-project.org/package=knitr
https://doi.org/10.18637/jss.v014.i06
https://doi.org/10.18637/jss.v095.i01
https://doi.org/10.1198/016214505000000169

34 highfrequency: Analyzing Intraday Financial Data in R

A. Table of liquidity measures

Name of estimator Estimation formula

Effective Spread ESt = 2Dt × [PRICEt − (BIDt + OFRt)/2]
Realized Spread RSt = 2Dt × [PRICEt − (BIDt+300 + OFRt+300)/2]
Trade value TV t = SIZEt × PRICEt

Signed trade value STV t = Dt × (SIZEt × PRICEt)
Depth imbalance (difference) DIdt = Dt × (OFRSIZ t − BIDSIZ t) / (OFRSIZ t + BIDSIZ t)
Depth imbalance (ratio) DIrt = (OFRSIZ t/BIDSIZ t)Dt

Proportional effective spread PESt = ESt/ [(OFRt + BIDt) /2]
Proportional realized spread PRSt = RSt [(OFRt + BIDt) /2]
Price impact PI t = (ESt − RSt)/2
Proportional price impact PPI t = [(ESt − RSt)/2] / [(OFRt + BIDt/2)]
Half traded spread HTSt = Dt × [PRICEt − (BIDt + OFRt)/2]
Proportional half traded spread PHTSt = HT St/[(OFRt + BIDt)/2]
Squared log returns SLRt = [log (PRICEt) − log (PRICEt−1)]2
Absolute log returns ALRt = |log (PRICEt) − log (PRICEt−1)|
Quoted spread QSprt = OFRt − BIDt

Proportional quoted spread PQSt = QSprt/[(OFRt + BIDt)/2]
Log quoted spread LQSprt = log(OFRt) − log(BIDt)
Log quoted size LQSizt = log (OFRSIZ t) + log (BIDSIZ t)
Quoted slope QSlot = QSPRt/LQSizt

Log quoted slope LQSlot = LQSprt/LQSizt

Midquote squared return MQSRt =
[
log (MIDQUOTEt) − log

(
MIDQUOTEt−1

)]2

Midquote absolute return MQARt = |log (MIDQUOTEt) − log
(
MIDQUOTEt−1

)
|

Signed trade size STSt = Dt × SIZEt

Table 1: Formulae for the liquidity measures provided in the getLiquidityMeasures function.
The variable Dt is the sign of the trade, indicating whether the buyer (seller) is the initiator of
the trade if the buyer (seller) is the initiator DT = 1 (DT = −1). This column can be provided
if the data is available (for example futures data) otherwise it is automatically estimated by
the Lee-Ready algorithm.

Journal of Statistical Software 35

B. Table of realized measures

E
st

im
at

or
C

ita
tio

n
Fu

nc
tio

n
Ju

m
p

N
oi

se
T

ic
k

M
ul

tiv
ar

ia
te

es
tim

at
or

s
R

ea
liz

ed
Va

ria
nc

e
A

nd
er

se
n

et
al

.(
20

01
)

rC
ov

no
no

no
B

ip
ow

er
Va

ria
tio

n
B

ar
nd

or
ff-

N
ie

ls
en

an
d

Sh
ep

ha
rd

(2
00

4b
)

rB
PC

ov
ye

s
no

no
R

ea
liz

ed
ke

rn
el

co
va

ria
nc

e
B

ar
nd

or
ff-

N
ie

ls
en

et
al

.(
20

09
)

rK
er

ne
lC

ov
no

ye
s

no
Tw

os
ca

le
co

va
ria

nc
e

Zh
an

g
et

al
.(

20
05

)
rT

SC
ov

no
ye

s
ye

s
R

ob
us

t
tw

os
ca

le
co

va
ria

nc
e

B
ou

dt
an

d
Zh

an
g

(2
01

0)
rR

TS
Co

v
ye

s
ye

s
ye

s
T

hr
es

ho
ld

co
va

ria
nc

e
M

an
ci

ni
an

d
G

ob
bi

(2
01

2)
rT

hr
es

ho
ld

Co
v

ye
s

no
no

Se
m

i-c
ov

ar
ia

nc
e

B
ol

le
rs

le
v,

Li
,P

at
to

n,
an

d
Q

ua
ed

vl
ie

g
(2

02
0)

rS
em

iC
ov

no
no

no
C

ho
le

sk
y

C
ov

ar
ia

nc
e

B
ou

dt
et

al
.(

20
17

)
rC

ho
lC

ov
ye

s
ye

s
ye

s
O

ut
ly

in
gn

es
s

w
ei

gh
te

d
co

va
ria

nc
e

B
ou

dt
,C

ro
ux

,a
nd

La
ur

en
t

(2
00

8)
rO

WC
ov

ye
s

no
no

H
ay

as
hi

-Y
os

hi
da

co
va

ria
nc

e
H

ay
as

hi
an

d
Yo

sh
id

a
(2

00
5)

rH
YC

ov
ye

s
no

no
Av

er
ag

e
su

bs
am

pl
e

co
va

ria
nc

e
Zh

an
g

et
al

.(
20

05
)

rA
VG

Co
v

no
ye

s
no

M
od

ul
at

ed
re

al
iz

ed
co

va
ria

nc
e

H
au

ts
ch

an
d

Po
do

ls
ki

j(
20

13
)

rM
RC

ov
no

ye
s

ye
s

B
et

a-
A

dj
us

te
d

co
va

ria
nc

e
B

ou
dt

,D
ra

gu
n,

Sa
ur

i,
an

d
Va

nd
uff

el
(2

02
1)

rB
AC

ov
ye

s
ye

s
ye

s

U
ni

va
ri

at
e

es
tim

at
or

s
R

ea
liz

ed
Va

ria
nc

e
A

nd
er

se
n

et
al

.(
20

01
)

rR
Va

r
no

no
no

M
ed

ia
n

R
ea

liz
ed

va
ria

nc
e

A
nd

er
se

n,
D

ob
re

v,
an

d
Sc

ha
um

bu
rg

(2
01

2)
rM

ed
RV

ye
s

no
no

M
ed

ia
n

R
ea

liz
ed

qu
ar

tic
ity

A
nd

er
se

n
et

al
.(

20
12

)
rM

ed
RQ

ye
s

no
no

M
in

im
um

R
ea

liz
ed

Va
ria

nc
e

A
nd

er
se

n
et

al
.(

20
12

)
rM

in
RV

ye
s

no
no

M
in

im
um

R
ea

liz
ed

Q
ua

rt
ic

ity
A

nd
er

se
n

et
al

.(
20

12
)

rM
in

RQ
ye

s
no

no
R

ea
liz

ed
Q

ua
dp

ow
er

va
ria

tio
n

A
nd

er
se

n
et

al
.(

20
12

)
rQ

PV
ar

ye
s

no
no

R
ea

liz
ed

Q
ua

rt
ic

ity
A

nd
er

se
n

et
al

.(
20

12
)

rQ
ua

r
no

no
no

R
ea

liz
ed

tr
ip

ow
er

qu
ar

tic
ity

A
nd

er
se

n
et

al
.(

20
12

)
rT

PQ
ua

r
ye

s
no

no
R

ea
liz

ed
K

ur
to

si
s

A
m

ay
a

et
al

.(
20

15
)

rK
ur

t
no

no
no

R
ea

liz
ed

Sk
ew

ne
ss

A
m

ay
a

et
al

.(
20

15
)

rS
ke

w
no

no
no

Table 2: Table containing the function names of the realized measures available in the high-
frequency package. The last two columns denote whether estimators are robust (yes) or not
robust (no) to jumps and market microstructure noise, respectively. All the estimators can
handle tick-by-tick input, the last column is used to distinguish functions that necessitate
tick-by-tick data and do not work as expected with aggregated one-minute data.

36 highfrequency: Analyzing Intraday Financial Data in R

C. Computational details
The results in this paper were obtained using R version 4.2.1 with the following packages:
highfrequency version 1.0.0 of Boudt et al. (2022), Rcpp version 1.0.9 of Eddelbuettel and
François (2011), xts version 0.12.1 of Ryan and Ulrich (2020), zoo version 1.8-10 of Zeileis and
Grothendieck (2005), RcppAmadillo version 0.11.2.0.0 of Eddelbuettel and Sanderson (2014),
robustbase version 0.95-0 of Maechler et al. (2022), data.table version 1.14.2 of Dowle and
Srinivasan (2021), RcppRoll version 0.3.0 of Ushey (2018), quantmod version 0.4.20 of Ryan
and Ulrich (2022), sandwich version 3.0-2 of Zeileis, Köll, and Graham (2020), numDeriv
version 2016.8-1.1 of Gilbert and Varadhan (2019), lattice version 0.20-45 of Sarkar (2008),
scales version 1.2.0 of Wickham and Seidel (2022), and Rsolnp version 1.16 of Ghalanos
and Theussl (2015). Computations were performed on macOS 12.4 with an Intel® Core™
i5-1038NG7 CPU @ 2GHz × 4 processor. Suggestions of the highfrequency package are
the packages mvtnorm (Genz et al. 2021), covr (Hester 2020), FKF (Luethi, Erb, Otziger,
McDonald, and Smith 2021), rugarch (Ghalanos 2022), testthat (Wickham 2011), knitr (Xie
2022), and rmarkdown (Allaire et al. 2022).
The code used in the main paper is available in the R script run_vignette.R located in
the examples folder on the dedicated highfrequency GitHub repository at https://github.
com/jonathancornelissen/highfrequency. R, highfrequency, and all other packages are
available from the Comprehensive R Archive Network at http://CRAN.R-project.org/. Any
version under development will be available on our GitHub repository.

Affiliation:
Kris Boudt
Department of Economics
Ghent University, Belgium
and
Solvay Business School
Vrije Universiteit Brussel, Belgium
and
Econometrics and Data Science Department
Vrije Universiteit Amsterdam, The Netherlands
E-mail: kris.boudt@ugent.be

Onno Kleen
Erasmus School of Economics
Erasmus University Rotterdam, The Netherlands
E-mail: kleen@ese.eur.nl

Journal of Statistical Software https://www.jstatsoft.org/
published by the Foundation for Open Access Statistics https://www.foastat.org/
October 2022, Volume 104, Issue 8 Submitted: 2021-11-05
doi:10.18637/jss.v104.i08 Accepted: 2022-09-16

https://github.com/jonathancornelissen/highfrequency
https://github.com/jonathancornelissen/highfrequency
http://CRAN.R-project.org/
mailto:kris.boudt@ugent.be
mailto:kleen@ese.eur.nl
https://www.jstatsoft.org/
https://www.foastat.org/
https://doi.org/10.18637/jss.v104.i08

	Introduction
	Processing raw high-frequency data
	Raw tick-by-tick datasets
	Preparing raw price and quote data for analysis
	Aggregating high-frequency data

	Trade direction and liquidity measures
	Theoretical price model
	Realized measures of variance and covariance
	Univariate realized measures
	Multivariate realized measures
	Noise variance estimation

	Spot estimation and intraday periodicity
	Testing for the presence of jumps
	Modeling and forecasting realized variances
	HAR model
	HEAVY model
	Forecasting results

	Conclusion
	Table of liquidity measures
	Table of realized measures
	Computational details

