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ABSTRACT: Maintaining high sensitivity while limiting false positives is a key challenge in 

peptide identification from mass spectrometry data. Here, we therefore investigate the effects of 

integrating the machine learning-based post-processor Percolator into our spectral library 

searching tool COSS (CompOmics Spectral library Searching tool). To evaluate the effects of this 

post-processing, we have used forty data sets from two different projects and have searched these 

against the NIST and MassIVE spectral libraries. The searching is carried out using two spectral 

library search tools, COSS and MSPepSearch with and without Percolator post-processing, and 

using sequence database search engine MS-GF+ as a baseline comparator. The addition of the 

Percolator rescoring step to COSS is effective and results in a substantial improvement in 

sensitivity and specificity of the identifications. COSS is freely available as open source under the 

mailto:lennart.martens@vib.ugent.be


permissive Apache2 license, and binaries and source code are found at 

https://github.com/compomics/COSS 
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Introduction   

MS-based peptide identification typically relies on matching measured spectra against theoretical 

spectra in a database searching approach1. However, identification can also be obtained by 

matching measured spectra against a spectral library consisting of previously measured and 

identified spectra2. Several spectral library searching tools have been developed for this purpose, 

with notable examples including SpectraST3, the National Institute of Standards and Technology 

(NIST) MS Search4 and MSPepSearch 

(https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:mspepsearch), ANN-SoLo5, X!Hunter6, 

and COSS7. The direct comparison of a newly measured spectrum against the spectra in such a 

spectral library can both increase sensitivity8 and reduce computational complexity compared to 

database searching9. 

However, similar to database searching, spectral library searching is not perfect, and several causes 

can lead to incorrect peptide identification10: quality of the spectral data, unexpected post 

translational modifications, charge state issues, or a poor scoring function. To control this 

erroneous identification, the validation of search results is a crucial step in the identification 

process. Typically, this is handled through a target-decoy approach in both database and spectral 

library searches1. This approach allows estimation of the False Discovery Rate (FDR)11,12, which 

is the expected proportion of incorrect peptide to spectrum matches (PSMs) among the selected 

set of accepted identifications. 

Besides the validation of PSMs using target-decoy based FDR control, it has also become common 

to employ post-processing methods to database search results to increase sensitivity. The most 

popular of these is Percolator13, which significantly improves the sensitivity of multiple database 

search engines, including SEQUEST, Mascot14, and MS-GF+15. Percolator itself is a semi-

supervised machine learning algorithm based on a linear support vector machine, which is 

designed to discriminate between correct and incorrect peptide matches by rescoring peptide 

identifications. For this, Percolator considers a set of features that describe each PSM and uses 

these features as well as the annotation of target and decoy PSMs in an iterative process to re-rank 

PSMs using a new score and associated q-value. Yet, although Percolator is commonly used in 

database16,17      searches, its use has thus far not been reported for spectral library searching. 

https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:mspepsearch


In this manuscript,      we have      examined the utility of Percolator in spectral library searching by 

extending our COSS spectral library search tool. Importantly, we have found that Percolator 

improves the output of COSS in two ways. First, the total number of identification increases due 

to rescoring at 1% FDR. Second, peptides that are misidentified before rescoring are deleted while 

some peptides that wrongly unidentified are added to the final rescoring result. 

We therefore integrated Percolator into the latest version of our freely available, open-source 

COSS tool, which is moreover capable of handling multiple file formats, and can also be used to 

analyze large data sets. 

  



MATERIAL AND METHODS 

Experimental data sets and spectral library 

We obtained raw data files from the deep proteome and transcriptome abundance atlas18 data set 

(36 runs corresponding to one fractionated brain sample; ProteomeXchange ID PXD010154) and 

four runs from “Assessing the relationship between mass window width and retention time 

scheduling on protein coverage for data-independent acquisition”19 data set (ProteomeXchange ID 

PXD013477, data dependent acquisition (DDA)      runs of the HeLa sample) as benchmarking 

data sets (Supplementary Table S-1). All these raw files were converted to Mascot Generic Format 

(mgf) format using the msconvert tool (ProteoWizard20  version 3.0.19014), with the peak picking 

algorithm activated (Figure S-1). The well-known NIST spectral library   

(https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:cdownload, obtained on 15/08/2021 ) 

and MassIVE21 (obtained on 18/09/2018) were used to perform our searches against. More 

information of these two spectral libraries can be found in Supplementary Table S-2.           

Spectral library searches      

All 40 data sets are searched with COSS (COSS-2.0) against the NIST and MassIVE spectral 

library, which were appended with the corresponding decoy spectra generated with the COSS 

decoy spectra generator with the reverse sequence method7. The following search settings were 

used: precursor mass tolerance set to 10 ppm, fragment mass tolerance set to 0.05 Dalton (Da), 

MSROBIN scoring function7, and a fragment mass window to select peaks set to 10 Da.  

To run MSPepSearch (version 0.96), we first generated and concatenated an MSPepSearch decoy 

spectral library using the COSS decoy generator (reverse sequence method). Next, we converted 

the msp file of this library to MSPepSearch’s binary file format using Lib2NIST (version 1.0.6.5) 

and performed the searches with a precursor mass tolerance of 10 ppm and fragment mass 

tolerance 0.05 Da. We were unable to successfully perform searches with MSPepSearch against 

the MassIVE spectral library due to its size and the resulting memory requirements. 

  

https://chemdata.nist.gov/dokuwiki/doku.php?id=peptidew:cdownload


Sequence database search 

In parallel with the spectral library searches, we performed a sequence database search with the 

well-established MS-GF+22 (version 2021.01.08) tool through SearchGUI23 (version 4.0.22) with 

additional features reporting activated for use by Percolator. The search database was constructed 

from the human reference proteome (UP000005640) as obtained from UniProtKB24 (consulted on 

9/10/2018). Carbamidomethylation of cysteine was set as a fixed, and oxidation of methionine as 

a variable modification. Trypsin was set as protease and a maximum of two missed cleavages was 

allowed. Precursor mass tolerance was set to 10 ppm, and fragment mass tolerance to 0.05 Da. 

Precursor charges from 2 to 4 were considered. The SearchGUI configuration file used to run MS-

GF+ is provided at https://github.com/compomics/COSS-Percolator-manuscript . 

False discovery rate estimation 

Validation of the obtained results is a key step in peptide identification to control erroneous results, 

and typically takes the form of false discovery rate (FDR) control 11. Different types of decoy 

spectral library generators are already implemented and added to COSS7. For this experiment, we 

have used decoy type which uses reverse and random sequence decoy generation technique as 

described in Zhang et al. 25. Briefly, the sequence of each spectrum is reversed, leaving the last 

amino acid in place. Based on this sequence, the masses of the a, b and y ions are calculated and 

the corresponding annotated peaks in the spectrum are moved on the m/z axis accordingly leaving 

the unannotated peaks in place. 

The generated decoy spectra are concatenated to the original spectra in the library, and the search 

is run against this concatenated target-decoy spectral library. The corrected FDR value is then 

calculated as described previously in Sticker et al.11.  

𝐹𝐷𝑅 =  
#𝑑𝑒𝑐𝑜𝑦

#𝑡𝑎𝑟𝑔𝑒𝑡
 

 

  

https://github.com/compomics/


Percolator rescoring 

We integrated Percolator13 version v3-04 into COSS7 such that Percolator’s input features are 

generated from COSS results and Percolator can be executed automatically. In addition to the main 

scoring function, MSROBIN, which is based on probabilistic scoring, COSS implements multiple 

scoring functions like      Cosine similarity, MSE (Mean Square Error for both intensity and m/z 

values), Spearman correlation, Pearson correlation with and without using log transform in order 

to provide Percolator with more score features. To maximize the amount of information available 

for rescoring, additional features are calculated: MatchedPeaksQueryFraction (     number of 

matched peaks divided by number of total query peak),  MatchedPeaksLibFraction (     number of 

matched peaks divided by number of total query peaks of a given libraryspectrum), 

SumMatchedIntQueryFraction (     sum of intensities of matched peaks divided by sum of 

intensities of total query spectrum) and MatchedIntLibFraction (     sum of intensities of matched 

peaks divided by sum of intensities of total peaks of library spectrum). In total, COSS provides 22 

features to Percolator. All features with detailed descriptions are found in Supplementary Table S-

2. For MSPepSearch, Percolator was provided with the full list of available features from the tool's 

output (10 features, Supplementary Table S-2). In the case of MS-GF+, the Percolator input text 

file is generated using the msgf2pin command provided by MS-GF+15 (31 features). 

Percolator was run with the target-decoy competition method enforced as all searches are 

performed against a concatenated database. In addition, the error check is overridden to ensure the 

output contains the rescored q-values as obtained from the Support Vector Machine (SVM). 

Identifications from the fractionated sample were concatenated prior to rescoring without filtering 

the result at 1%FDR. 

  



Retention time prediction 

In order to evaluate how rescoring with Percolator improves true positive identifications, we used 

an orthogonal validation using predicted retention time which makes use of DeepLC26      , a deep 

learning algorithm that accurately predicts peptide retention times. In order to run DeepLC 

(version 0.1.35), we have first generated a comma separated file (CSV) having columns of PSM 

ID, sequence, modification and observed retention time  from the search results using custom 

scripts. In addition, to obtain more accurate DeepLC prediction, DeepLC calibration files were 

constructed by selecting the 1000 peptides with the highest score across ten equally sized retention 

time windows.      

Peak intensity prediction 

The second orthogonal validation method we have used to evaluate the improvement of true 

positive results due to Percolator is the correlation of predicted intensity versus observed intensities 

for each PSM’s. For this we have used MS2PIP27–29, a machine learning tool capable of accurate 

prediction of peak intensities of a given peptide sequence. To run MS2PIP (v3.8.0), input files 

were generated as a tab delimited file with columns PSM ID, modification, peptide sequence and 

charge. In addition to this generated file, MS2PIP requires a configuration file and the MGF file 

of the corresponding dataset. MS2PIP is then executed with -x option to get the calculated pearson 

correlation between the observed peak intensities and the predicted peak intensities. 

      



RESULTS AND DISCUSSION 

Effects of different feature sets on the rescored result 

Percolator uses a machine learning algorithm to rescore the output of peptide identification tools 

to achieve higher sensitivity and specificity. The result of this process depends strongly on the 

quality and utility of the input features. Hence,      we have      supplemented standard COSS output 

with additional scores and features for each PSM to maximize the potential of the rescoring step. 

Principal component analysis (Supplementary Figure S-2) shows several distinct clusters in the 

features, indicating that each group of features has the potential to add unique information to the 

Support Vector Machine (SVM) trained by Percolator. To examine the effect of these features on 

rescoring in spectral library searching, we analyzed different combinations of input features with 

Percolator. The full set of inputs to Percolator and their description can be found in Supplementary 

Table S-2. Figure 1 shows that using all features from COSS yields the best results in terms of 

identification rate at 1% FDR     . While removal of precursor mass and charge has little effect on 

the identification rate, the intermediate scores generated by COSS (peak and intensity fraction of 

matched spectra) does lower the identification rate substantially     . As these features are the main 

parameters to calculate the score, this is not unexpected. These differences in identification rate 

are consistent across a large q-value range (Supplementary Figure S-3).  

  



      

Figure 1. Effect of different feature sets provided to Percolator as measured by identification rate 

at 1% FDR.  

 

Comparison of COSS, MSPepSearch and MS-GF+ with and without Percolator 

To put the improvement observed in rescoring COSS results into context, we compared these with 

rescoring results from MSPepSearch, a different but performant spectral library search tool, and 

MS-GF+, a popular database search engine. Figure 2 shows the identification rates obtained either 

at 1% FDR (without Percolator), or for a q-value at or below 0.01 (with Percolator) for each of the 

two test data sets as analyzed by COSS, MSPepSearch, and MS-GF+. For all datasets, the COSS 

search against MassIVE consistently outperforms both MSPepSearch and MS-GF+, and this for 

both pre- and post-Percolator identification results. In the case of data sets from PXD010154, MS-

GF+ has slightly more identifications than COSS against the NIST spectral library, which can 

likely be attributed to incomplete coverage of the library for this sample. This effect is also 

reflected in the even lower performance of MSPepSearch on this data set against the NIST library. 

In the case of PXD013477, identification is quite high for all three tools, in line with the results in 

the original manuscript19. Overall, these results show that rescoring the output of spectral library 

search engines can drastically increase identification rate. Depending on the coverage of the 

spectral library, the identification rate can exceed those obtained with database search engines. 



 

Figure 2. Comparison of identification rates achieved by COSS, MSPepSearch and MS-GF+, 

before rescoring and after rescoring. All results are either taken at 1% FDR (before rescoring) or 

at a q-value cut-off at 0.01 (after rescoring). 

Comparison of obtained identifications before and after Percolator rescoring 

To gain further insight into the difference between results obtained with, and without Percolator 

rescoring, the overlap at 1% FDR before and after rescoring was analyzed at the peptide level. 

Figure 3 and Figure S-4 show this identification agreement for COSS with and without Percolator 

at peptide and protein level respectively. For all data sets, Percolator removes some of the 

identified peptides (PXD013477: 3%; PXD010154: 3.4%), while adding a larger set of new results 

(PXD013477: 16%; PXD010154: 13%). The vast majority (PXD013477: 97%; PXD010154: 

96.6%) of the identifications is maintained, however. Upon comparing the length of the peptides 

added and removed by Percolator, it appears that Percolator improves the sensitivity for small 

peptides (median length of ten amino acids), while removing preferentially larger peptides (Figure 

S-5). No significant difference in the amino acid composition of added versus removed peptides 

can be observed (Figure S-6     ). When comparing the number of peaks for each peptides added or 

removed by percolator (Figure S-7), only minor differences can be observed that are inconsistent 



across datasets. Finally, we have also compared the charge state of added and removed peptides 

and found that rescoring consistently affected low charge states more than higher (Figure S-8). 

 

Figure 3. Peptide level overlap in search results from COSS against the NIST library at the 1% 

FDR level before and after Percolator rescoring. The number of peptides added by rescoring 

exceeds the number of removed peptides, resulting in an overall increase of the identification rate. 

 

 

 

 



Orthogonal validation of the rescoring results using measured and predicted retention time 

With the drastically increased reliability of retention time prediction, the comparison of the 

observed retention time and the predicted retention time for a specific peptide has been put forward 

as a means of orthogonal validation for PSMs30,31. Here, an overall poor correlation of predicted 

and observed retention time is indicative of a misidentified peptide. We have      performed retention 

time prediction using DeepLC and compared the predicted with the observed retention time for 

PSMs affected by Percolator (Figure 4 and Figure S-9). The identifications added by rescoring had 

an overall smaller absolute difference in predicted versus observed retention time than the 

identifications removed by rescoring. This indicates that the latter set contains more 

misidentifications that are correctly removed by Percolator. In addition, the distribution of the 

difference in predicted versus observed retention time of Percolator added identifications closely 

resembles the distribution of the unchanged identifications, suggesting that these are indeed valid 

identifications. 

 

Figure 4. Comparison of measured and predicted retention time of peptide identification added 

and removed by rescoring. Shown here are identifications obtained with COSS on the PXD010154 

data set and the NIST spectral library. The high resemblance between the distribution for the added 

and unchanged identifications suggests that there are indeed valid PSMs while the discrepancy 

with the distribution of the removed identifications indicates that those are enriched with 

misidentifications. 



Orthogonal validation using measured and predicted peak intensity 

In addition to retention time, we have used predicted peak intensities as another means of 

orthogonal validation for the increase of true positive identifications by Percolator. MS2PIP27–29, 

a machine learning tool capable of accurate prediction of MS2 peak intensities, is used for peak 

intensity prediction. We have analyzed and compared the Pearson correlation between observed 

and predicted peak intensities of removed peptides, added peptides and peptides that are not 

affected by Percolator. The distributions of these correlation for peptides that are added and those 

that remained unchanged due to rescoring follow a similar pattern (Figure 5). On the other hand, 

the distribution for deleted peptides is very different witch an apex close to 0, which again indicates 

that deleted peptides are the result of misidentifications that are removed by Percolator. This result 

is consistent across all analyzed datasets and spectral libraries (Figure S-10) 

      

Figure 4. Comparison of measured and predicted peak intensity of peptide sequence added and 

removed by rescoring. The result is shown for the PXD010154 data set result of COSS against the 

NIST spectral library.



      

CONCLUSION 

Increasing sensitivity while maintaining specificity is key in peptide and protein identification 

from mass spectrometry data. Rescoring peptide identifications using tools such as Percolator to 

increase sensitivity and specificity is thus common practice in sequence database searching. 

However, until now it was unclear if such post-processing had any benefits for spectral library 

searching. Here, we have shown that combining Percolator with such tools enhances sensitivity, 

and that it can also enhance specificity. Specifically, our COSS spectral library search tool shows 

increased sensitivity, and dramatically enhanced specificity when combined with Percolator due 

to additional features provided from COSS output.      In addition to the main scoring function, we 

have implemented different scoring functions and their corresponding scoring values are included 

as features for Percolator. And we have shown how these additional features benefit the final 

Percolator results. We have thus shown that, for COSS at least, the combination of these benefits 

justifies the added complexity of the percolator post-processing step. Based on these findings, we 

can thus recommend use of rescoring in spectral library searching. To this end, the latest version 

of COSS (COSS-2.0) has been fitted with Percolator integration. 

  



Supporting information: 

The following supporting information is available free of charge at ACS website 

http://pubs.acs.org 

Figure1: Screen shot showing what settings we have used to run MsConvert to generate mgf files 

from RAW files. Figure 2: Principal component analysis of the different features generated by 

COSS as an input for Percolator. Figure 3: Identification rate of Percolator rescoring for different 

feature combination at different q-values. Figure 4: Protein level overlap in search results from 

COSS against the NIST library at the 1% FDR level before and after Percolator rescoring. Figure 

5: Peptide length differences for peptides added or removed due to rescoring. Figure 6: Amino 

acid composition differences for peptides added or removed due to rescoring. Figure 7: Peptide 

peak count differences for those added or removed due to rescoring. Figure 8: Charge state 

difference for peptides added or removed due to rescoring: (a) dataset PXD010154 against 

NIST2020, (b) dataset PXD010154 against MassIVE library, (c) dataset PXD013477 against 

NIST2020 and (d) dataset PXD013477 against MassIVE library. Figure 9: Comparison of 

observed and predicted retention time fo added and removed peptides after rescoring using 

Percolator for: (a) dataset PXD010154 against MassIVE library, (b) dataset PXD013477 against 

NIST20 library and (c) dataset PXD013477 against MassIVE library. Figure 10: Comparison of 

observed and predicted peak intensity of added and removed peptides after rescoring using 

Percolator for: (a) dataset PXD010154 against MassIVE library, (b) dataset PXD013477 against 

NIST20 library and (c) dataset PXD013477 against MassIVE library. Table 1: Benchmarking data 

sets used to test COSS. The first four data sets are taken from “Assessing the relationship between 

mass window width and retention time scheduling on protein coverage for data-independent 

acquisition” (ProteomeXchange ID PXD013477), and the last thirty-six data sets are taken from 

the deep proteome and transcriptome abundance atlas (ProteomeXchange ID PXD010154). 

Individual raw files are selected randomly from their respective tissue. Table 2: Spectral libraries 

used for spectral library searching tools. Table 3: Percolator input features used for COSS and 

MsPepSearch. These features are collected from the output of each tool. 

  



AVAILABILITY 

The COSS software and its source code can be freely downloaded from 

https://github.com/compomics/COSS and is licensed under the permissive, open-source Apache 

License, version 2.0. 

We have also provided configuration files, sample files, and our scripts to generate input files for 

DeepLC and MS2PIP on https://github.com/compomics/COSS-Percolator-manuscript. 
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