Advanced search
1 file | 1.57 MB Add to list

Uncertainty visualization : fundamentals and recent developments

(2022) IT-INFORMATION TECHNOLOGY. 64(4-5). p.121-132
Author
Organization
Project
Abstract
This paper provides a brief overview of uncertainty visualization along with some fundamental considerations on uncertainty propagation and modeling. Starting from the visualization pipeline, we discuss how the different stages along this pipeline can be affected by uncertainty and how they can deal with this and propagate uncertainty information to subsequent processing steps. We illustrate recent advances in the field with a number of examples from a wide range of applications: uncertainty visualization of hierarchical data, multivariate time series, stochastic partial differential equations, and data from linguistic annotation.
Keywords
General Computer Science, Uncertainty visualization, multivariate data, hierarchical data, partial differential equations, linguistics

Downloads

  • published.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 1.57 MB

Citation

Please use this url to cite or link to this publication:

MLA
Hägele, David, et al. “Uncertainty Visualization : Fundamentals and Recent Developments.” IT-INFORMATION TECHNOLOGY, vol. 64, no. 4–5, 2022, pp. 121–32, doi:10.1515/itit-2022-0033.
APA
Hägele, D., Schulz, C., Beschle, C., Booth, H., Butt, M., Barth, A., … Weiskopf, D. (2022). Uncertainty visualization : fundamentals and recent developments. IT-INFORMATION TECHNOLOGY, 64(4–5), 121–132. https://doi.org/10.1515/itit-2022-0033
Chicago author-date
Hägele, David, Christoph Schulz, Cedric Beschle, Hannah Booth, Miriam Butt, Andrea Barth, Oliver Deussen, and Daniel Weiskopf. 2022. “Uncertainty Visualization : Fundamentals and Recent Developments.” IT-INFORMATION TECHNOLOGY 64 (4–5): 121–32. https://doi.org/10.1515/itit-2022-0033.
Chicago author-date (all authors)
Hägele, David, Christoph Schulz, Cedric Beschle, Hannah Booth, Miriam Butt, Andrea Barth, Oliver Deussen, and Daniel Weiskopf. 2022. “Uncertainty Visualization : Fundamentals and Recent Developments.” IT-INFORMATION TECHNOLOGY 64 (4–5): 121–132. doi:10.1515/itit-2022-0033.
Vancouver
1.
Hägele D, Schulz C, Beschle C, Booth H, Butt M, Barth A, et al. Uncertainty visualization : fundamentals and recent developments. IT-INFORMATION TECHNOLOGY. 2022;64(4–5):121–32.
IEEE
[1]
D. Hägele et al., “Uncertainty visualization : fundamentals and recent developments,” IT-INFORMATION TECHNOLOGY, vol. 64, no. 4–5, pp. 121–132, 2022.
@article{8765055,
  abstract     = {{This paper provides a brief overview of uncertainty visualization along with some fundamental considerations on uncertainty propagation and modeling. Starting from the visualization pipeline, we discuss how the different stages along this pipeline can be affected by uncertainty and how they can deal with this and propagate uncertainty information to subsequent processing steps. We illustrate recent advances in the field with a number of examples from a wide range of applications: uncertainty visualization of hierarchical data, multivariate time series, stochastic partial differential equations, and data from linguistic annotation.}},
  author       = {{Hägele, David and Schulz, Christoph and Beschle, Cedric and Booth, Hannah and Butt, Miriam and Barth, Andrea and Deussen, Oliver and Weiskopf, Daniel}},
  issn         = {{1611-2776}},
  journal      = {{IT-INFORMATION TECHNOLOGY}},
  keywords     = {{General Computer Science,Uncertainty visualization,multivariate data,hierarchical data,partial differential equations,linguistics}},
  language     = {{eng}},
  number       = {{4-5}},
  pages        = {{121--132}},
  title        = {{Uncertainty visualization : fundamentals and recent developments}},
  url          = {{http://doi.org/10.1515/itit-2022-0033}},
  volume       = {{64}},
  year         = {{2022}},
}

Altmetric
View in Altmetric