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Abstract 
Buildings-Stock Energy Models (BSEMs) recently 

gained vast momentum in battling the climate 
emergency. They allow for quick evaluation of 
competing policy solutions for determining effective 
energy reduction recommendations in the building 
sector. Yet, the output of these models hold a significant 
range of variation since it is impossible to precisely 
quantify all inputs and complex energy flows. Without 
understanding these limits of inference resulting policy 
advice is inherently defective. Uncertainty Analysis 
(UA) and Sensitivity Analysis (SA) enable to quantify 
these limits of inference and calculate each factor’s share 
in the output’s variation. This study presents a systematic 
comparison of three different global SA methods to an 
internally developed bottom-up BSEM (based on the 
regulatory model in ISO13790). Accuracy, calculation 
burden and complexity of application of each method is 
evaluated to provide guidance which can inform the 
application of these methods to other BSEMs.
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Introduction
The International Energy Agency (IEA) forecasts an 

increase in primary energy demand of 3% every year 
between 2030 and 2050 (IEA, 2021). Meanwhile, a large 
group of countries have pledged to reach net-zero 
emissions by 2050 in order to try to limit the rise in 
global temperatures to 1.5 °C (IEA, 2021). With building 
energy use still accounting for 40% of the total primary 
energy demand and 36% of the CO2-emissions (EU, 
2020; IEA, 2019), the building sector is one of the most 
important areas to address. To boost decision-making, 
Building-Stock Energy Models (BSEMs) have become 
essential tools. These large scale building energy 
simulation models allow for quick evaluation of 
competing policy options, making them vital tools for 

d e t e r m i n i n g s u s t a i n a b l e e n e r g y r e d u c t i o n 
recommendations in the building sector (EC, 2020).

In recent years, the scale and complexity of these 
models has progressed rapidly with a trend away from 
bespoke standalone models to stock models “designed 
for wider applicability, allowing core modelling 
structures to be transferred to other cities, regions or 
countries by varying model input data” (Langevin et al., 
2020). When these models are used in critical policy 
decision-making settings and applied to new contexts, 
existing quality assurance approaches are increasingly 
inadequate since model validation is typically applied to 
the aggregate annual output of the whole model, giving 
little insight into the ability of the model to capture the 
changes in building energy demand and emissions 
resulting from changes in different parts of the building 
stock (Cerezo Davila, 2017).

Further, these approaches fail to identify the main 
drivers for building energy demand and emissions. 
Complex physical energy equations (typically modelled 
for bespoke single building energy models) are being 
simplified and generalised in stock models due to input 
parameter shortage and/or to allow for acceptable model 
computation times. As a results, the outputs of these 
models inevitably have a significant range of variation. 
Without understanding these limits of inference, 
resulting policy advice is inherently defective as there is 
a potential risk that assumptions, suitable for the original 
context, are erroneously carried through to the new 
context.

Uncertainty Analysis (UA) and Sensitivity Analysis 
(SA) enable to quantify these limits of inference and 
calculate each factor’s share in the output’s variation. 
This paper aims to broaden the knowledge on global 
sensitivity analysis application at BSEMs by application 
of the three different global SA methods (i.e., Sobol’ SA 
(Sobol’, 1990), the Morris method (Morris, 1991) and 
DMIM (Borgonovo, 2007)) to an internally developed 
bottom-up BSEM (Delghust et al., 2015/2015/2015) 
(based on the regulatory model in ISO13790 (ISO, 
2007)). The study will evaluate the accuracy, calculation 
burden and complexity of application of each method 
which can inform practitioners of the application of these 
methods to other BSEMs. 
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Materials and methods
Definitions

IEA EBC Annex 70: Building Energy Epidemiology
As part of the IEA EBC Annex 70 on Building 

Energy Epidemiology (IEA EBC, 2017), a group of 
research teams participated in a co-ordinated 
investigation to take existing global SA methods and 
apply them to their distinct stock models and datasets in 
a first attempt to quantify the added value of global SA 
for building stock modelling. Through this process the 
teams aimed to examine:
• The challenges of defining input parameter 

uncertainties for large-scale building energy models 
and collecting appropriate data.

• The applicability of different SA techniques in terms 
of robustness of results, quality assurance and 
computational cost.

• Key drivers of uncertainty in the models.

The chosen SA techniques that have been explored at 
scale by the authors and are further discussed in this 

paper is the Sobol‘ SA method, the Morris method and 
the DMIM. The dataset that is used contains data from 
the Flemish Energy Performance registry that the authors 
acquired through an earlier study in collaboration with 
the Flemish Energy and Climate Agency (VEKA) 
(Bracke et al., 2018; Defruyt et al., 2013). The subset of 
this data used here contains building characteristics of 
detached newly built houses with three bedrooms at 
aggregated level (i.e., total external volume, floor area, 
heat loss area, total window area, average U-value of the 
windows and the total building envelope etc.).
‘The Tool’

The BSEM, used by the authors for the global SA 
study is an internally developed bottom-up quasi-steady 
state building stock model (Delghust et al., 2015/2015), 
internally appointed as ‘The Tool’, that uses multi-zone 
archetype buildings to simulate the building stock’s total, 
heating, cooling, auxiliary and domestic hot water 
(DHW) energy demand on a monthly and yearly basis. It 
is a standalone application, with a calculation kernel 
inside, which is based on the official single-zone 
monthly quasi-steady state calculation method used in 
Flanders (VEA, 2017) and based on ISO 13790 (ISO, 
2007). Additionally, a custom multi-zone quasi-steady 
state algorithm is implemented that allows for more 
detailed multi-zone energy demand calculations.

While the model is less detailed than dynamic 
simulation models, the multi-zone algorithm allows for 
different intermittent heating profiles to be taken into 
account in coupled zones (at room level) while keeping 
the calculation times very low in order to run simulations 
at scale. Furthermore it requires less data than dynamic 
models, thus making it more suited for situations with 
limited available data (Delghust et al., 2015).
Sobol’ SA method

The Sobol’ SA method (Sobol’, 1990) is classified as 
a variance-based global SA, meaning that it is based on 
variance decomposition. It looks at the entire space of 
the input parameters’ distributions using customary 
Monte Carlo methods of various sophistication (Sobol’, 
1990; Saltelli et al., 2010). One of the main advantages 
of variance-based methods (such as Sobol’ SA) is that it 
is able to take into account interactions between input 
parameters (Saltelli et al., 2008; Santner et al., 2003).

Following common practice in global SA 
applications, two model-free normalised sensitivity 
indices for each input parameter are being used: the first 
order index ( ) (or Main effect index) and the total order 
index ( ) (or Total effect index), which includes the 
main effect and interactions.

For a model of the form , the 
two sensitivity indices are expressed as follows Saltelli 
et al., 2008):

BSEM Building-Stock Energy Model
UA Uncertainty analysis focuses on how 

uncertainty in the input parameters propagates 
through the model and affects the model output 
parameter(s).

SA Sensitivity analysis is the study of how 
uncertainty in the output of a model (numerical 
or otherwise) can be apportioned to different 
sources of uncertainty in the model input 
factors.

* Table 1:
Aleatory uncertainty: Uncertainty due to 
inherent or natural variation of the system 
under investigation.
Epistemic uncertainty: Uncertainty resulting 
from imperfect knowledge or modeller error; 
can be quantified and reduced.

The total order sensitivity index, which 
represents the expected amount of variance that 
remains for , if all parameters were specified 
exactly, but . It takes into account the first 
and higher order effects (interactions) of 
parameters  and can therefore be seen as the 
residual uncertainty.

Y
Xi

Xi

The -th model input parameter and  
denotes the matrix of all model input 
parameters but .

i X∼i

Xi
Si

The model output and  the variance of the 
model output.

V (Y )

The first order sensitivity index, which 
represents the expected amount of variance 
reduction that would be achieved for , if 
was specified exactly. The first order index is a 
normalised index (i.e., always between 0 and 
1).

Y Xi

STi

Xi

Y

Si
STi

Y = f (X1, X2, . . . , Xk)
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The guidelines for the Sobol’ SA (Herman et al., 
2017) suggest that the  Sobol’ sequence is used to 
produce nested input parameter samples across stocks. 
Sobol’ requires matrices of the form  to 
calculate SA-indices with  the number of input 
parameters. The number of model evaluations is equal to 

 with  the number of input parameter 
samples/matrices. The number of required samples to 
reach convergence of SA results is not defined. Official 
guidelines for Sobol’ suggest a number of 1000 but it 
will have to be examined in the result section if the 
suggested number is enough.
Morris SA method

The Morris method (Morris, 1991) is an efficient 
parameter screening method which uses a factorial 
sampling strategy to identify parameters that can be fixed 
at any value within their range without affecting the 
variance of the model outcome. For sampling, the 
parameter space is discretised by transforming the input 
parameters into dimensionless variables in the interval 
and dividing each parameter interval into a number of  
levels, which form a regular grid in the unit-length 
hypercube . The starting point for sampling on this 
grid is randomly chosen and each sample differs only in 
one coordinate from the preceding one, therefore it is 
also called a repeated One-At-a-Time approach. A 
sequence of  points, in which each parameter 
changes only once by a pre-defined value , is called a 
trajectory. One point in this trajectory represents one 
evaluation run of the model. The magnitude of variation 
in the model output due to the pre-defined variation of 
one parameter X is called elementary effect (EE) 
(Morris, 1991):

where  is a vector of zeros, except for the -th 
component that equals  and represents an incremental 
change in parameter  (Garcia et al., 2014). 

The guidelines for the Morris SA (Herman et al., 
2017) suggest that the Morris sampler is used to produce 
input parameter samples. Morris requires matrices of the 
form  to calculate SA-indices. The number of 
model evaluations is equal to .
Delta Moment-Independent Measure

The DMIM approach (Borgonovo, 2007; Plischke et 
al., 2013) is fairly recent and based upon computing the 
differences in mass density between the Probability 
Density Functions (PDFs) of prediction values computed 
(i) when all parameter values are varied simultaneously 
and (ii) when one parameter of interest is fixed at a 

constant value. Mathematically, this difference in mass 
density  is expressed as (Plischke et al., 2013)

where  represents the PDF of predictions  and 
 represents the L1 norm (i.e., the sum of absolute 

values). Essentially, this equation is used to compute the 
integral with respect to  of the absolute difference 
between the PDF of (i), expressed as , and the PDF 
of (ii), expressed as . The DMIM sensitivity of 
a given model prediction to a parameter of interest  is 
then calculated as one half of the expected value of  
(Plischke et al., 2013):

where  is the expected value.
A large  value indicates that the prediction of 

interest is highly sensitive to parameter . In practice, 
the integrals in equations (4) and (5) are evaluated 
numerically using a kernel density estimator. The 
guidelines for the DMIM (Plischke et al., 2013) suggest 
that a Latin Hypercube Sampling is used to produce 
input parameter samples. DMIM requires matrices of the 
form  to calculate SA-indices. The number of model 
evaluations is equal to .
Global SA exercise set-up

In order to have a sufficiently meaningful and diverse 
global SA experiment, different types of input 
parameters (i.e., parameters concerning the building 
envelope (  and ); the dwelling’s orientation 
( ); internal elements as doors, walls and floors 
( ); but also technical systems (  and ) and 
the indoor setpoint temperature for space heating 
( )) were selected covering several essential 
characteristics that differentiate input parameters in the 
context of SA (i.e., covering different sources of 
uncertainty; known or standard input values or 
assumptions; mean, mode and/or standard deviation of 
the input parameter distributions). 

A general overview of the investigated parameters is 
listed in Table 1. In Table 2, an overview of the specified 
distributions for each parameter is provided (across 
stocks and within stocks). The physical parameters are 
average U-value ( ), orientation of the facade 
( ), measured air leakage per m2 at 50Pa ( ), 
U-value of internal doors/walls/floors ( ), nominal 
percentage (t%) of the ventilation heat loss ( ), 
fraction (f) of DHW energy use ( ) and internal 
heating setpoint ( ). Note that the investigated 
parameters (Prm.) in the analysis are considered the 
mean, mode or standard deviation of the distribution of 
the physical parameters (and so the aim of this global SA 
for stock models is to investigate what influence changes 
in the mean, mode or standard deviation of the 

(1)

(2)STi =
Ex∼i(Vxi(Y |X∼i))

V (Y )
= 1 −

Vx∼i(Exi(Y |X∼i))
V (Y )

Si =
VXi(EX∼i(Y |Xi))

V (Y )

(2p + 2)
p

n ⋅ (2p + 2) n

p

Hk

k + 1
Δi

(3)
E Ei =

Y (X + eiΔi) − Y (X )
Δi

ei i
±1

i

( p + 1)
n ⋅ ( p + 1)

[si(x)]

(4)
si(x) = ∫y

| fY (y) − fY|Xi=x(y) |d y

fY (y) y
| ⋅ |

y
fY (y)

fY|Xi=x(y)
[δi]
si(x)

(5) δi = δ(Y, Xi) = 1
2

E [si(x)] = 1
2

E [∫y
| fY (y) − fY|Xi=x(y) |d y]

E
δi

Xi

1
n ⋅ 1

Uav v50
Orientation
Uint Qnom QDHW

Tset,heat

Uav
Orientation v50

Uint
Qnom

QDHW
Tset,heat
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distribution of the physical parameters have on the 
investigated model output (i.e., Qtot)).

In Table 1, there is further specified whether the 
parameter input values were known from the Energy 
Performance registry, if they were standard values or if 
theoretical assumptions were made by the authors based 
on internal knowledge. Also, there is listed how the 
parameters are varied/implemented (i.e., application) 

from a practical point of view. There is then specified 
how the parameters are varied across stocks (across 
stocks, the mean, mode or standard deviation of the 
distribution within stocks is sampled of every (to be 
simulated) stock, so for every model evaluation) and 
within stocks (values are sampled for every physical 
input parameter for every building in the stock). Lastly, 
the considered source of uncertainty is given (*Table 1). 

Table 1: Overview of investigated input parameters in the global SA exercise. The table also contains further info about the way the 
parameters are taken into account.

 

Table 2: Investigated input parameter distribution overview across stocks and within stocks. The parameters sampled across stocks 
link with the blue mean, modus or stdev-values within stocks.

GLOBAL SA EXERCISE — GENERAL OVERVIEW

Physical 
parameter

Input values Application Prm. Across stocks
(seed = constant)

Within stocks
(seed is varied)

Uncertainty*

P1 Mean (μ) of Xi is varied Mean (μ) and stdev. (σ) of Xi 
are constant

epistemic

Assumption P2 Mean (μ) of α is varied Mean (μ) of α is constant epistemic

P3 Stdev. (σ) of α is varied Stdev. (σ) of α is constant aleatory

Known and 
standard values

v50,def P4 Mode (μ) of v50,def is varied Mode (μ) and stdev. (σ) of 
v50,def are constant

epistemic

Assumption P5 Mode (μ) of Yi is varied Mode (μ) of Yi is constant epistemic

Assumption P6 Mode (μ) of t% is varied Mode (μ) of t% is constant epistemic

P7 Stdev. (σ) of t% is varied Stdev. (σ) of t% is constant aleatory

Assumption P8 Mode (μ) of f is varied Mode (μ) of f is constant epistemic

P9 Stdev. (σ) of f is varied Stdev. (σ) of f is constant aleatory

Assumption P10 Mean (μ) of Toffset is varied Mean (μ) of Toffset is constant epistemic

P11 Stdev. (σ) of Toffset is varied Stdev. (σ) of Toffset is constant aleatory

Known inputs 
for Uav

Orientation

QDHW

Xi ⋅ Uav

Tset,heat +
Tof fset

t% ⋅ Qnom

f ⋅ QDHW

Qnom

v50

α

Uint

Uav

1+Yi ⋅ 3

Tset,heat

GLOBAL SA EXERCISE — PARAMETER DISTRIBUTION OVERVIEW

Physical 
parameter

Application Prm.
(across stocks)

Across stocks distribution
(seed = constant)

Within stocks distribution
(seed is varied)

P1 (μ of Xi) uniform (a = 1.0, b = 1.1) normal (μ = P1, σ = 0.05)

P2 (μ of α) normal (μ = 45, σ = 10) normal (μ = P2, σ = P3)

P3 (σ of α) lognormal (μ = 30, σ = 10)

v50,def P4 (μ of v50,def) uniform (a = 3.0, b = 6.0) lognormal (μ = P4, σ = 0.583)

P5 (μ of Yi) uniform (a = 0.1 b = 0.9) inverse lognormal (μ  = f(P5), σ = f(P5)

P6 (μ of t%) uniform (a = 0.1, b = 0.5) lognormal (μ = P6, σ = P7)

P7 (σ of t%) uniform (a = 0.33, b = 0.66)

P8 (μ of f) normal (μ = 1.0, σ = 0.1) lognormal (μ = P8, σ = P9)

P9 (σ of f) uniform (a = 0.0, b = 1.0)

P10 (μ of Toffset) uniform (a = -2, b = 2) normal (μ = P10, σ = P11)

P11 (σ of Toffset) uniform (a = 0.0, b = 1.0)

v50

Qnom t% ⋅ Qnom

Tset,heat +
Tof fset

Uint

QDHW

Uav

Tset,heat

1+Yi ⋅ 3

α

f ⋅ QDHW

Orientation
Xi ⋅ Uav
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As discussed earlier, the various sampling methods 
are used to generate input parameter samples across 
stocks (depending on the global SA). A Latin Hypercube 
Sampling (LHS) is used to generate samples within the 
stock. The building stock size that is being used for 
analysis is a group of 1000 buildings. The model output 
parameter that is analysed is the average total yearly 
primary energy demand (i.e., Qtot) of the stock.
Robustness and quality control

In order to check the robustness of the global SA 
results, common practice (although very limited studies 
actually perform robustness checks) is to check for 
convergence of the global SA results. Convergence can 
be described as the fact that global SA results do not 
change (or change to a limited degree) when using a 
different number of model evaluations (of equal or larger 
size) (Sarrazin et al., 2016). The type of convergence 
that will be checked for is the convergence of the 
sensitivity indices. When the values of the indices 
remain stable with a reliable confidence interval, 
convergence is reached.

To assess convergence of the sensitivity indices, the 
width of the 95% confidence intervals were computed 
(5% significance level). A maximum width of the 
confidence intervals across all the model input 
parameters as a summary statistic is given by:

where  and  are the upper and lower bounds of 
the sensitivity index of the -th input parameter and  the 
number of input parameters. Since the normalised 
sensitivity indices vary between 0 and 1, an absolute 
threshold value for  can be defined below 
which convergence is considered to be reached. In 
literature, a reasonable choice for this threshold was 
found to be 0.05 (Sarrazin et al., 2016).
Results
Uncertainty analysis

Figure 1 and 2 show the outcome of an uncertainty 
analysis for the three investigated global SA methods 
based on uncertainty in the eleven investigated input 
parameters of the stock of 1000 Flemish single-family 
houses. In Figure 1, the uncertainty of the stock’s 
average total energy use is shown. The mean of the 
results from the Sobol’ and DMIM approach is around 
30,600 kWh/y with a 5-95% spread of approximately 
5,000 kWh/y around the mean. The mean of the results 
for the Morris approach is slightly higher with 31,400 
kWh/y with a 5-95% spread of approximately 7,200 
kWh/y around the mean. This is the level of uncertainty 
in total building energy use that we can expect at stock 
level due to uncertainty in the eleven investigated input 
parameters. The results of the Morris method show a 
broader uncertainty range due to the used Morris 
sampling algorithm for the input parameters, which is 
based on a repeated One-At-a-Time approach and 

typically samples extreme values in the specified input 
parameter ranges while the Sobol’ sequence and a LHS 
produce disperse input samples.

In Figure 2, the uncertainty of the stock’s spread 
around the stock’s average total energy use is shown. 
The mean of the results from the Sobol’ and DMIM 
approach is around 6,300 kWh/y with a 5-95% spread of 
approximately 1,500 kWh/y around the mean. Similarly 
as for the stock’s average total energy use, the mean of 
the results for the Morris approach is slightly higher with 
6,500 kWh/y with a 5-95% spread of approximately 
1,900 kWh/y around the mean.

Figure 1: Uncertainty analysis of the stock’s average total 
energy use for the three global SA methods. The boxplots show 
5%, 25%, 50%, 75% and 95%-percentiles as well as a mean 

value (i.e., black dots).

Figure 2: Uncertainty analysis of the stock’s spread around the 
stock’s average total energy use for the three global SA 

methods.

Global sensitivity analysis
The results for the Sobol’ sensitivity analysis are 

shown in Figure 3 as first-order indices  and total 
effects . Four of the investigated parameters have a 

(3)
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significant direct impact on the stock’s average total 
primary energy use (i.e., the mean of the distributions of 
the heating set point temperature and the average U-
value and the modus of the distributions of the domestic 
hot water fraction and the default value for the building 
envelope’s airtightness) and three have a significant 
direct impact on the stock’s spread around the average 
total primary energy use (i.e., the mean of the 
distributions of the heating set point temperature and the 
average U-value and the modus of the distribution of the 
default value for the building envelope’s airtightness).

The results for the total order index , as a measure 
of negligible model inputs, show that four parameters 
have a non-negligible impact on the stock’s average 
energy use (i.e., the mean of the distributions of the 
heating set point temperature and the average U-value 

and the modus of the distributions of the domestic hot 
water fraction and the default value for the building 
envelope’s airtightness) and that three parameters have a 
non-negligible impact on the spread around the stock’s 
average energy use (i.e., the mean of the distributions of 
the heating set point temperature and the average U-
value and the modus of the distribution of the default 
value for the building envelope’s airtightness). Overall, 
the ranking in Figure 3 (and Table 3) is in good 
agreement with rough sensitivity estimates from the 
literature, where often the set point temperature, 
infiltration, thermal properties, such as thermal 
conductivity of building components or internal thermal 
mass and domestic hot water parameters as influential 
for building energy models (Heo et al., 2012; Yang et al., 
2015; Dominguez-Munoz et al., 2010). 

Figure 3: Results of the Sobol’ SA first order and total order indices for the stock’s average and spread around the stock’s average 
total primary energy use. The 95% confidence interval of the indices is indicated by black error bars.

The results for the Morris method are shown in 
Figure 4 and for our model, the highest  values 
for the stock’s average total primary energy use are 
found for the mean of the distributions of the 
heating set point temperature and the average U-
value and the modus of the distributions of the 
domestic hot water fraction and the default value 
for the building envelope’s airtightness. The highest 

 values for the stock’s spread around the average 
total primary energy use are he mean of the 
distributions of the heating set point temperature 
and the average U-value and the modus of the 
distribution of the default value for the building 
envelope’s airtightness. The remaining parameters 
are identified as negligible parameters. The input 
parameter ranking is summarised in Table 3. 

Figure 4: Results of the Morris method for the stock’s average and spread around the stock’s average total primary energy use.

STi

μ⋆
μ⋆
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significant direct impact on the stock’s average total 
primary energy use (i.e., the mean of the distributions of 
the heating set point temperature and the average U-
value and the modus of the distributions of the domestic 
hot water fraction and the default value for the building 
envelope’s airtightness) and three have a significant 
direct impact on the stock’s spread around the average 
total primary energy use (i.e., the mean of the 
distributions of the heating set point temperature and the 
average U-value and the modus of the distribution of the 
default value for the building envelope’s airtightness).

The results for the total order index , as a measure 
of negligible model inputs, show that four parameters 
have a non-negligible impact on the stock’s average 
energy use (i.e., the mean of the distributions of the 
heating set point temperature and the average U-value 

and the modus of the distributions of the domestic hot 
water fraction and the default value for the building 
envelope’s airtightness) and that three parameters have a 
non-negligible impact on the spread around the stock’s 
average energy use (i.e., the mean of the distributions of 
the heating set point temperature and the average U-
value and the modus of the distribution of the default 
value for the building envelope’s airtightness). Overall, 
the ranking in Figure 3 (and Table 3) is in good 
agreement with rough sensitivity estimates from the 
literature, where often the set point temperature, 
infiltration, thermal properties, such as thermal 
conductivity of building components or internal thermal 
mass and domestic hot water parameters as influential 
for building energy models (Heo et al., 2012; Yang et al., 
2015; Dominguez-Munoz et al., 2010). 

Figure 3: Results of the Sobol’ SA first order and total order indices for the stock’s average and spread around the stock’s average 
total primary energy use. The 95% confidence interval of the indices is indicated by black error bars.

The results for the Morris method are shown in 
Figure 4 and for our model, the highest  values 
for the stock’s average total primary energy use are 
found for the mean of the distributions of the 
heating set point temperature and the average U-
value and the modus of the distributions of the 
domestic hot water fraction and the default value 
for the building envelope’s airtightness. The highest 

 values for the stock’s spread around the average 
total primary energy use are he mean of the 
distributions of the heating set point temperature 
and the average U-value and the modus of the 
distribution of the default value for the building 
envelope’s airtightness. The remaining parameters 
are identified as negligible parameters. The input 
parameter ranking is summarised in Table 3. 

Figure 4: Results of the Morris method for the stock’s average and spread around the stock’s average total primary energy use.

STi

μ⋆
μ⋆

The results of the DMIM SA are shown in 
Figure 5 as first-order indices . Four of the 
investigated parameters have a significant direct 
impact on the stock’s average total primary energy 
use (i.e., the mean of the distributions of the 
heating set point temperature and the average U-
value and the modus of the distributions of the 
domestic hot water fraction and the default value 
for the building envelope’s airtightness) and three 

have a significant direct impact on the stock’s 
spread around the average total primary energy use 
(i.e., the mean of the distributions of the heating set 
point temperature and the average U-value and the 
modus of the distribution of the default value for 
the building envelope’s airtightness). The input 
parameter ranking is summarised in Table 3. The 
rankings of Sobol’ , Morris  and DMIM  
show good correspondence. 

Figure 5: Results of the DMIM first order index for the stock’s average and spread around the stock’s average total primary energy 
use. The 95% confidence interval of the indices is indicated by black error bars.

Table 3: Overview on the paramater rankings, obtained by the investigated sensitivity analysis methods, for the stock’s average total 
primary energy use.

Conclusion
This study investigated the applicability of three 

global SA methods (i.e., Sobol’ SA, the Morris method 
and the DMIM) for large-scale BSEMs. The uncertainty 
analysis proved how important reporting uncertainty is 
for BSEMs and showed that applying the Morris 
method, which is a repeated One-At-a-Time approach, 
results in broader uncertainty ranges in the output as 
compared to Sobol’ SA and DMIM. Sobol’ SA and 
DMIM showed that 95% of the variation in the stock’s 
average total primary energy use (due to uncertainty in 
eleven considered input parameter) is caused by only 
four input parameters (i.e., the mean of the distributions 
of the heating set point temperature and the average U-
value and the modus of the distributions of the domestic 

hot water fraction and the default value for the building 
envelope’s airtightness) and 95% of the variation in the 
stock’s spread around the average total primary energy 
use is caused by only three input parameters (i.e., the 
mean of the distributions of the heating set point 
temperature and the average U-value and the modus of 
the distribution of the default value for the building 
envelope’s airtightness). Note that changes in the 
standard deviation of the distribution for each of the 
physical model input parameters does not have any 
influence on the stock’s average total primary energy use 
or the stock’s spread around the stock’s average total 
primary energy use as the effects average out at stock 
level (even for non-normally distributed parameters). 
The -indices of Sobol’ SA and DMIM show good 
correspondence and fall within each other (bootstrapped) 
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confidence interval. When comparing the three global 
SA methods in terms of ranking, they also show perfect 
correspondence. Convergence of the indices for Sobol’ 
SA occurred after 35784 model evaluations, for the 
Morris method after 10848 model evaluations and for 
the DMIM after 607 model evaluations. While Sobol’ 
SA results in the most qualitative and elaborate results, 
the method clearly requires the most computation time.
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