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A B S T R A C T   

Chronic migraine is characterised by persistent headaches for >15 days per month; the intensity of the pain is 
fluctuating over time. Here, we explored the dynamic interplay of connectivity patterns between regions known 
to be related to pain processing and their relation to the ongoing dynamic pain experience. We recorded EEG 
from 80 sessions (20 chronic migraine patients in 4 separate sessions of 25 min). The patients were asked to 
continuously rate the intensity of their endogenous headache. On different time-windows, a dynamic causal 
model (DCM) of cross spectral responses was inverted to estimate connectivity strengths. For each patient and 
session, the evolving dynamics of effective connectivity were related to pain intensities and to pain intensity 
changes by using a Bayesian linear model. Hierarchical Bayesian modelling was further used to examine which 
connectivity-pain relations are consistent across sessions and across patients. 

The results reflect the multi-facetted clinical picture of the disease. Across all sessions, each patient with 
chronic migraine exhibited a distinct pattern of pain intensity-related cortical connectivity. The diversity of the 
individual findings are accompanied by inconsistent relations between the connectivity parameters and pain 
intensity or pain intensity changes at group level. This suggests a rejection of the idea of a common neuronal core 
problem for chronic migraine.   

Introduction 

The experience of pain is associated with a number of different 
neuronal oscillations in the brain (Michail et al., 2016; Ploner et al., 
2017). Across functional neuroimaging studies, several regions have 
consistently been found to be related to pain processing, i.e. the thal-
amus, the primary (S1) and secondary somatosensory cortices (S2), the 
insular cortex (IC), the anterior cingulate cortex (ACC), and the pre-
frontal cortex (PFC) (Apkarian et al., 2005; Bushnell et al., 2013; Price, 
2000; Rainville, 2002; Tracey, 2008; Treede et al., 1999). 

Studies on chronic pain conditions pain have investigated neuro-
physiological responses to applied pain (de Tommaso et al., 2019; 
Goudman et al., 2020; Plaghki and Mouraux, 2005) or in resting-state 
conditions (Jensen et al., 2013; van den Broeke et al., 2013; de Vries 
et al., 2013; Kim and Davis, 2021; Meneses et al., 2016). 

A novel approach directed to the individual experience of chronic 

pain has been published by May and others (May et al., 2019). The 
authors investigated the cortical processing of fluctuating pain intensity 
of chronic pain in back pain patients. Currently, this is the only study so 
far on this topic which is conceptually not comparable to studies on 
applied (brief) pain or to studies at rest. May and others reported the 
magnitude of frontal gamma oscillations to encode the subjective in-
tensity of the ongoing experience of endogenous pain. The individual 
results of this study showed a considerable amount of variability across 
patients. Therefore, it remains largely unknown how pain-related brain 
regions in chronic pain conditions are synchronised, and at which 
frequencies. 

However, brain regions are anatomically connected, allowing serial 
and parallel information transfer (Price, 2000). For the serial pathway, 
input relayed in the thalamus is thought to flow from S1 to S2, which 
plays a role in encoding sensory information of nociceptive input 
(Bushnell et al., 2013). This ascending pain pathway then continues 
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from S2 to the IC, then to the ACC. In parallel, the S2, IC and ACC can 
also directly receive input from the thalamus (Frot et al., 2008; Liang 
et al., 2011). The IC has an integrative function in pain processing 
(Brooks and Tracey, 2007); the anterior insular cortex (aIC) is func-
tionally connected to regions related to affective and cognitive aspects of 
pain, and the posterior insular cortex (pIC) is predominantly connected 
to regions related to sensory aspects of pain (Peltz et al., 2011). The ACC 
is involved in encoding emotional and motivational aspects of pain and 
has bi-directional connections with the PFC (Bushnell et al., 2013; Price, 
2000; Rainville, 2002; Wiech et al., 2008b). The medial and lateral PFC 
have been functionally differentiated; medial PFC (mPFC) activity has 
been positively associated with pain intensity (Baliki et al., 2006; 
Hashmi et al., 2013; May et al., 2019; Nickel et al., 2017; Schulz et al., 
2015), and dorsolateral PFC (DLPFC) activity has been negatively 
associated with pain affect, where it plays an important role in pain 
modulation (Lorenz et al., 2003; Wiech et al., 2008a). Several other 
studies utilising effective connectivity methods have found that placebo 
analgesia (i.e., endogenous pain modulation) increased connectivity 
from the DLPFC to the dorsal ACC (dACC) (Craggs et al., 2007; Sevel 
et al., 2015). Similarly, when investigating connectivity between the left 
and right DLPFC, Sevel and colleagues found that the higher the con-
nectivity strength from the right to left DLPFC, the higher the temper-
atures of the stimuli were in order to be perceived as painful (Sevel et al., 
2016). This suggests an important role of intra- and interhemispheric 
connectivity in pain modulation. 

Importantly, structural and functional abnormalities have been re-
ported in these pain-related areas in patients with migraine (Borsook 
et al., 2016; Filippi and Messina, 2019; Jia and Yu, 2017; Tolner et al., 
2019). Using a resting-state design, Lee and colleagues found that 
compared to episodic migraine patients, chronic migraine (CM) patients 
have stronger connectivity in brain regions that included the ACC, aIC 
and DLPFC (Lee et al., 2019). In these regions, grey matter reductions 
have also been shown in migraine patients (Kim et al., 2008; Maleki 
et al., 2012; Rocca et al., 2006). Although referring to these regions as 
pain-related regions, they are certainly not pain specific, instead the 
perception of pain likely arises from interactions between brain regions, 
resulting in a distinct spatial pattern of neural activity (Kucyi and Davis, 
2015; Liang et al., 2019). 

In order to gain insight into how the interactions between these re-
gions encode the pain experienced by migraine patients, we investigated 
how dynamic effective connectivity between pain-related regions relates 
to the ongoing and fluctuating headache in CM. Based on the findings we 
have delineated above, we hypothesised that connection strengths in the 
ascending pain pathways would be enhanced with increasing pain or 
higher levels of pain (i.e., S1 > S2, S2 > S1, S2 > pIC, pIC > aIC, aIC >
dACC, pIC > dACC, dACC > mPFC, mPFC > dACC, dACC > DLPFC in 
both hemispheres). In contrast, we expected connection strengths from 
regions involved in pain modulation to be enhanced with decreasing 
pain or lower levels of pain (i.e., DLPFC > dACC in both hemispheres, 
left DLPFC > right DLPFC, right DLPFC > left DLPFC). Finally, we aimed 
to give a more detailed insight into the connectivity effects in terms of 
spectral outcomes in each region. 

Methods 

Participants 

Twenty CM patients (18 females, aged 34 ± 13 years) participated in 
this study. All participants gave written informed consent. The study 
was approved by the Ethics Committee of the Medical Department of the 
Ludwig-Maximilians-Universität München and conducted in conformity 
with the Declaration of Helsinki. The patients were diagnosed according 
to the ICHD-3 Headache Classification Committee of the International 
Headache Society (IHS) (2018), defined as a headache occurring on 15 
or more days/month for >3 months, which, on at least 8 days/month, 
has the features of migraine headache (mean CM: 15 ± 12 years). The 

patients in this study had a history of migraine attacks between 2 and 50 
years (M = 15.10 years, SD = 12.01 years). The mean pain intensity as 
specified in the questionnaires was 4.90 (SD = 1.30) on a scale to 10. All 
patients were seen in a tertiary headache centre. 

All patients were permitted to continue their pharmacological 
treatment at a stable dose (Supplementary Table 1). The patients did not 
report any other neurological or psychiatric disorders or had contrain-
dications for an MRI examination. Patients who had any additional pain 
were excluded (for further details on patient exclusion see Mayr et al., 
2022). For all patients, the pain was fluctuating and not constant at the 
same intensity level. Patients with no pain or migraine attacks on the 
day of the measurement were asked to return on a different day. Patients 
were characterised using the German Pain Questionnaire (Deutscher 
Schmerzfragebogen (Casser et al., 2012)) and the German version of the 
Pain Catastrophizing Scale (PCS; Supplementary Table 1, Sullivan et al., 
1995). The pain intensity describes the average pain in the last 4 weeks 
from 0 to 10 with 0 representing no pain and 10 indicating maximum 
imaginable pain (please note that this scale differs from the one used in 
the EEG experiment). The German version of the Depression, Anxiety 
and Stress Scale (DASS) was used to rate depressive, anxiety, and stress 
symptoms over the past week (Lovibond and Lovibond, 1995). None of 
the patients was excluded based on their questionnaire scores. A study 
on healthy subjects found similar results: a large sample of 1794 par-
ticipants reported scores for depression of 3 ± 4, for anxiety of 2 ± 3, 
and for stress of 5 ± 4 (Henry and Crawford, 2005). None of the patients 
in our study reported any psychiatric comorbidity. Patients were 
compensated with 60€ for each session. The patients were recorded four 
times across 6 weeks with a gap of at least 2 days (12 ± 19 days) be-
tween sessions. 

Experimental procedure 

During each EEG recording session, patients continuously rated the 
intensity of their ongoing headache for a duration of 25 min using a 
linear slider potentiometer (Jahn et al., 2021; Mayr et al., 2022, 2021; 
Schulz et al., 2020). The pain scale ranged from 0 to 100 with ‘0′ rep-
resenting no pain and ‘100′ representing highest experienced pain. The 
patients could see their ratings on the monitor as the position of the red 
cursor on a horizontal grey bar (visual analogue scale) and numerically 
(in steps of 5; numeric analogue scale). The patients were instructed to 
rate their pain as quickly and accurately as possible, to move as little as 
possible during the recording, and to focus on their varying pain. The 
pain ratings of the 20 CM patients across the four sessions are plotted in 
Supplementary Fig. 1. 

Data acquisition 

The EEG data were recorded using an array of 64 equidistantly 
distributed electrodes (EASYCAP, Brain Products GmbH, Germany). The 
EEG was referenced to a vertex electrode, grounded at the nose and 
sampled at 1 kHz. Impedances were kept below 20 kΩ. Individual 
electrode positions were acquired using a stereo-optical system (Cap-
Trak, Brain Products GmbH, Germany). During one of the visits, struc-
tural MRI (T1-weighted) images were acquired with a 3T MRI scanner 
(Magnetom Skyra, Siemens, Germany) using a 64-channel head coil. The 
following parameters were used: TR/TE = 2060/2.17 ms; flip angle =
12◦; number of slices = 256; slice thickness = 0.75 mm; FoV = 240×240. 

Pre-processing 

The raw EEG data were pre-processed in the BrainVision Analyzer 
software (Brain Products GmbH, Germany). Bad channels were inter-
polated, data were high-pass filtered with a lower cut-off at 1 Hz (zero 
phase shift Butterworth filter) and decomposed using an independent 
component analysis (ICA, restricted Infomax algorithm, 64 compo-
nents). On the component data, 50 Hz power line noise was removed 
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using CleanLine (Mullen, 2012) and artefactual components reflecting 
eye movements and other larger artefacts were removed from the data. 
ICA data were then retransformed to EEG. A second ICA was performed 
and muscle artefacts were removed from the data (Liebisch et al., 2021). 
The number of components was automatically adjusted by the software 
according to the removed components in the previous step. The muscle 
artefact correction works on the ICA time series. ICA data are now 
largely free of muscle artefacts and were then retransformed to EEG; no 
component has been removed in this step. Subsequently, a third ICA 
with 55 components was utilised to remove components with residual 
artefacts and spectrum interpolation (Leske and Dalal, 2019) eliminated 
residual power line noise. Finally, the data were downsampled to 256 Hz 
and re-referenced to the common average reference. Please note our 
previous publication for more details on the rationale for these steps 
(Liebisch et al., 2021). 

Effective connectivity and pain 

In order to investigate how fluctuations in effective connectivity are 
related to the patients’ endogenous dynamic pain experience, we used 
dynamic causal modelling (DCM) and a hierarchical Bayesian frame-
work as described and used previously (Park et al., 2018; Van de Steen 
et al., 2019). More specifically, we used DCM for cross spectral density 
(CSD) data features (Friston et al., 2012) combined with multilevel 
parametric empirical Bayes (PEB) (Friston et al., 2016). 

Within-window level: DCM for cross spectral density data features 
The preprocessed data were imported to SPM12 (Penny et al., 2011) 

running on MATLAB (Mathworks, USA; version 2017b). DCM for CSD 
was performed on every 5 s EEG window. The preprocessed time-series 
were transformed to cross-spectral densities between 4 and 90 Hz using 
a vector autoregressive model. More specifically, a Bayesian multivar-
iate autoregressive model of order 12 was first fitted to the data (Roberts 
and Penny, 2002). From the estimated model coefficient and estimated 
noise covariance matrix, the cross-spectral densities can be obtained 
(Lütkepohl, 2005). DCM for CSD aims to explain how the CSD data 
features are generated by underlying neurophysiology by using a bio-
logically plausible generative model (neural model/state equations +
forward model/observation equations). Regions and connections be-
tween them must be defined a priori in the model. By inverting the 
generative model using a variational Bayesian optimisation scheme 
(Variational Laplace algorithm; Friston et al., 2007a), we derived the 
posterior distribution of the connectivity parameters defined in the 
model. The optimisation scheme uses free energy as the objective 
function, which approximates the log model evidence (Friston et al., 
2007b). Importantly, the optimisation scheme incorporates specific 
variance-covariance components of the observation noise to take fre-
quency specific signal-to-noise ratios into account (see Jafarian et al., 
2021, appendix A). 

We used a convolution-based neural mass model where each source 
(i.e., a functionally specialised brain region) has three neuronal sub-
populations: excitatory spiny stellate cells, inhibitory interneurons, and 
excitatory pyramidal cells (Moran et al., 2013). Coupling between 
sources can be divided into forward, backward and lateral extrinsic 
connections, based on what the seed and target neuronal subpopulations 
are. The extrinsic connection types to be defined in the model can be 
established based on the hierarchical organisation of the cortex (Felle-
man and Van Essen, 1991). 

For the spatial forward model, each source was treated as a patch on 
the cortical surface (‘IMG’ option in SPM12) with a radius of 10 mm 
(Daunizeau et al., 2009). Individual structural MRI (T1-weighted) im-
ages were used to compute individual cortical meshes and co- 
registration was performed with individual electrode positions. Vol-
ume conduction models of the head were constructed based on the 
boundary element method (BEM). For three patients, we were unable to 
record individual electrode positions and thus standard coordinates 

were used. For every patient, the individual head model with the 
different tissue types (brain, skull and scalp), the normalised individual 
cortical mesh, and individual electrode locations were plotted after co- 
registration for verification. Default prior parameters for the genera-
tive model were used. 

The selection of pain-related regions and their connectivity pattern 
was based on previous literature (Apkarian et al., 2005; Bushnell et al., 
2013; Craggs et al., 2007; Lorenz et al., 2003; Price, 2000; Rainville, 
2002; Schulz et al., 2015; Sevel et al., 2015, 2016; Tracey, 2008; Treede 
et al., 1999; Wiech et al., 2008a). The network that was examined 
included the left and right primary somatosensory cortex (S1), left and 
right secondary somatosensory cortex (S2), left and right anterior and 
posterior insular cortex (aIC; pIC), dorsal anterior cingulate cortex 
(dACC), medial prefrontal cortex (mPFC), and the left and right dorso-
lateral prefrontal cortex (DLPFC). Coordinates for the left and right 
DLPFC were based on Sevel et al. and coordinates for the mPFC were 
based on Schulz et al. (Schulz et al., 2015; Sevel et al., 2015). For the 
other regions, centre coordinates were determined by termed-based 
meta-analyses in Neurosynth (Neurosynth.org; Yarkoni et al., 2011). 
All coordinates were verified by atlases in FSL. For the dACC and mPFC, 
we treated the left and right cortex as a single source; given their 
proximity and the spatial resolution of EEG, they are difficult to sepa-
rate. In Supplementary Table 3, the centre MNI coordinates of the re-
gions are given and in Fig. 1, the presumed coupling between the regions 
is illustrated. 

At this level, the specified model was inverted for each time-window 
independently in order to estimate effective connectivity between 
selected regions (see Fig. 1) in a certain pain state. To invert the DCM 
models, the function ‘spm_dcm_csd’ was used. The actual inversions of 
the DCMs were performed in parallel on the high-performance 
computing infrastructure of Ghent University, the Free University of 
Brussels, and on the Linux cluster of the Leibniz Supercomputing Centre. 
The same version of SPM (r7771) was used on all clusters but the 
MATLAB version differed (2017b, 2019a). Running the same window on 
the different clusters resulted in similar results. The explained variance 
of each model was calculated to investigate whether the DCM was able 
to fit the observed CSD well. Overall, we treated models with an 
explained variance of 50% and more as adequate for further analysis. If 
the explained variance did not reach 50%, the model was excluded from 
further analysis. 

Within-session level: PEB across windows 
Here, we estimated the connectivity-pain rating relations for each 

session of each participant separately. The rating data were continu-
ously recorded with a variable sampling rate. As a DCM was inverted on 
every 5 s window, we processed the rating data accordingly. The ratings 
within a 5 s window were averaged to have an estimate of the pain state 
during that time window. 

To disentangle the distinct aspects of the rating process we created 
three vectors: pain intensity (AMP – amplitude), cortical processes 
related to the sensing of rising and falling pain (SLP – slope, encoded as 
1, − 1, and 0), and pain-unspecified processes (aSLP – absolute slope, 
encoded as 0 and 1). 

The AMP vector represents the current pain intensity. The SLP vector 
represents the ongoing rate of change in the pain ratings and is calcu-
lated as the slope of the regression of the least-squares line across a 5 s 
time window. Periods coded as 0 indicate time frames of constant pain. 

The aSLP can be considered as a nuisance vector of no interest. The 
processes encoded as “1′′ comprise motor-related connectivity (slider 
movement), changes of visual input (each slider movement changes the 
screen), and decision-making (each slider movement prerequisites a 
decision to move). Periods coded as 0 indicating time frames of constant 
pain without the need to move the slider. The aSLP vector is independent 
of the two latter vectors. On the one hand, aSLP is unrelated to the 
magnitude of pain, and on the other hand, the aSLP vector is also un-
related to rising and falling pain. The balanced pain rating times courses 
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in all sessions exhibited a nearly equal number of periods for rising and 
falling pain (Jahn et al., 2021; Mayr et al., 2022; Mayr et al., 2021). 
Therefore, the aSLP vector is independent of SLP as it is equally bound to 
rising and falling pain. See Supplementary Fig. 1 for the detailed rating 
time courses of each session for each subject. 

Furthermore, moving the slider to indicate a change in pain is 
embedded in a cascade of interwoven steps. Preceding functional con-
nections can influence the current rating and the current rating can have 
an impact on subsequent cortical connectivity. To account for the un-
known timing between brain dynamics and the subsequent ratings, we 
shifted the rating vectors (AMP, SLP, and aSLP) between − 15 and 20 s in 
steps of 1 s. Therefore, each statistical model was computed 36 times 
along the time shifts of the rating vector. 

We modelled the connectivity parameters over time-windows using 
Bayesian linear models where the endogenous pain rating vectors (AMP, 
SLP, and aSLP) were used as regressors. In total, 36 models (shifts from 
− 15 to 20 s in steps of 1 s) were estimated for each session of each 
participant. The structure of the session-specific Bayesian linear model is 
described below: 

θij =
(

X(1)
ij ⊗ I(1)

)
β(1)

ij + ε(1)ij where ε(1)ij ∼ N
(
0,Σ(1) ) (1) 

In Eq. (1), θij is a vector of DCM parameters that are stacked for the 
different windows. The subscripts in the equations are used to denote the 
ith session of subject j and hence deviate slightly from the conventional 
notation which uses subscripts to denote elements of a matrix. The su-
perscripts are used to specify the level in the hierarchical model. Note 
that in this model the uncertainties of the estimated connection 
strengths (i.e., posterior covariance) are taken into account. The length 
of vector θij thus equals the number of DCM-parameters (P) times the 

number of windows (W) in the ith session. X(1)
ij is the first level design 

matrix with W rows and 4 columns, where the first column is a column of 
ones, the second column is the AMP vector (standardised), the third 
column is the SLP vector, and the last column is the aSLP vector, which 
are window specific. I(1) is the identity matrix of size P and is identical 
across sessions and windows. The Kronecker tensor product (⊗) of 
X(1)

ij and I(1) means that each connectivity parameter can show a relation 

with pain ratings. The last term, ε(1)ij represents a vector of residuals. 

β(1)
ij of size 4P × 1, represent a vector of coefficients of the linear model of 

the ith session of subject j which were estimated with PEB (Friston et al., 
2016) using the ‘spm_dcm_peb’ function. In the next step, we compared 
the different shift models. We averaged the free energies of the models 
over sessions and participants and compared each model with the worst 

model (approximate log Bayes factor). The winning model was further 
used. 

Within-subject level: PEB across sessions 
Here, we investigated for each participant which connectivity-pain 

rating relations (from the winning shift model) are consistent over ses-
sions (non-trivial across session means) using the following PEB model: 

β(1)
j =

(
X(2)

j ⊗ I(2)
)

β(2)
j + ε(2)j where ε(2)j ∼ N

(
0,Σ(2) ) (2) 

In Eq. (2), β(1)
j is a vector containing the vectorised estimates β(1)

ij that 
are stacked across the sessions for the jth subject. The length of vector 
β(1)

j thus equals the number of connectivity parameters (P) in the network 
times the number of regressors in the previous level (4) times the 
number of sessions (S). X(2)

j is the design matrix of subject j, with S rows 
and 1 column. I(2)is the identity matrix of size 4P so that the kronecker 
product is of size 4PS × PS. The last term, ε(2)j represents the residuals of 

the second level model of the jth subject. The vector β(2)
j is thus of size 4P 

× 1 and represents the average connectivity-pain rating relations and 
was estimated using the ‘spm_dcm_peb’ function. 

Within-group level: PEB across subjects 
Here, we investigated which connectivity-pain rating relations are 

systematic over patients. Therefore, participants’ results that were 
consistent across sessions were entered in a group-level Bayesian linear 
model: 

β(2) =
(
X(3) ⊗ I(3)

)
β(3) + ε(3) where ε(3) ∼ N

(
0,Σ(3) ) (3) 

In Eq. (3), β(2)are the vectorised second level parameter estimates, 
β(2)

j that are stacked across subjects. The size of β(2) equals the number of 
parameters in the network (P) times the regressors of the first level (4) 
times the number of second level regressors (1) times the number of 
participants (N). The group design matrix X(3)with N rows, consists of a 
column with only a constant. I(3) is the identity matrix of size 4P and β(3) 

is a vector of size 4P × 1 and represents the average of the pain-related 
changes in effective connectivity across participants and sessions. 
ε(3)represents the group-level residuals. Bayesian model reduction 
(BMR) and a greedy search were used in order to remove parameters 
that are redundant in the full model (Friston et al., 2016; Friston and 
Penny, 2011). The functions ‘spm_dcm_peb’ and ‘spm_dcm_peb_bmc’ 
were used. 

Fig. 1. Forward, backward and lateral connections that were estimated in each time window. S1, primary somatosensory cortex; S2, secondary somatosensory 
cortex; pIC, posterior insular cortex, aIC, anterior insular cortex; dACC, dorsal anterior cingulate cortex; mPFC, medial prefrontal cortex; DLPFC, dorsolateral 
prefrontal cortex. 
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Sensitivity analysis 
This analysis was included to give us a more detailed insight into the 

contribution of each neuronal oscillation on connectivity in each cortical 
source. The sensitivity analysis shows the change in outcome measures 
as a function of a change in parameters values. Technically, we 
numerically evaluated (at the posterior mean) the gradient of outcomes 
with respect to the connectivity parameters that show a pain-related 
connectivity at the group level (i.e., posterior probability >0.95). For 
simplicity, our outcome measures were the simulated spectral density of 
a “virtual local field potential” in each region. This was conducted for 
every DCM separately. Sensitivity profiles within participants were 
averaged. As a result, we obtained a sensitivity profile per participant 
(size: number of frequency bands by number of regions by number of 
parameters). Permutation one sample t-tests combined with the 
maximum statistic approach to correct for multiple testing were per-
formed to assess significant sensitivity profiles at the group-level (Maris 
and Oostenveld, 2007). 

Results 

DCM results 

Across participants, the average number of remaining windows for 
session 1 to 4 were 287.10 (SD = 14.82), 285.15 (SD = 19.12), 287.55 
(SD = 15.20) and 285.80 (SD = 26.99), respectively. The mean per-
centages explained variance of these windows for session 1 to 4 were 
98.10 (SD = 0.98), 98.02 (SD = 0.99), 98.10 (SD = 0.92), and 97.96 (SD 
= 1.17), respectively. The number of remaining windows for each ses-
sion of each patient and the average explained variance over these 
windows for each session are given in Supplementary Table 2. 

PEB results 

Group results 
Comparison of the 36 shift models revealed the 0 s shifting as the 

winning model. In Fig. 2, the log Bayes factors (free energy model i 
minus free energy of the worst model) are plotted. The model with the 
lowest free energy was the model with the largest negative shift (− 15 
sec). 

PEB results before and after BMR showed no consistent relations 
between the connectivity parameters and pain intensities at group level 
(all posterior probabilities of being different from zero <= 0.95). One 
connection of note is the connectivity from the DLPFC-r to the DLPFC-l, 
which showed on average a negative relation with AMP (β = − 0.060, 
posterior probability = 0.92), but was pruned away after BMR. Con-
nectivity changes related to increasing and decreasing pain were not 
consistent at group level (all posterior probabilities <0.95). Likewise, 
one connection from the dACC to DLPFC-l showed a negative relation 
with increasing pain (β = − 0.192, posterior probability = 0.95). This 
connection was pruned away after BMR. Some connectivity parameters 
were related to aSLP. Before BMR, the following connections had 
negative relations (posterior probability > 0.95) with aSLP: the 
connection from S1-l to S2-l (β = − 0.277, posterior SD β = 0.132), from 
S2-l to pIC-l (β = − 0.279, posterior SD β = 0.127), from aIC-l to dACC (β 
= − 0.244, posterior SD β = 0.126) and from pIC-l to dACC (β = − 0.251, 
posterior SD β = 0.124). The first three connections were still present 
after BMR. 

Individual results 
In Figs. 3 and 4 and Supplementary Fig. 2, the individual results from 

the within-session level PEB and within-subject level PEB are displayed. 
For visual purposes, columns 1 to 4 show the beta values from the 
within-session level PEB and are thresholded at a posterior probability of 

Fig. 2. Bayesian model comparison of the different shift models from ¡15 to 20 s. The log Bayes factors (free energy model i minus free energy of the worst 
model) are plotted. The model with the lowest free energy was the model with the largest negative shift (-15 sec). 
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higher than 0.75. Column 5 shows the beta values from the within- 
subject PEB, thresholded at a posterior probability higher than 0.95. 
The connectivity from the DLPFC-r to the DLPFC-l showed at group level 
a negative relation with AMP, but was pruned away after BMR. Looking 
at individual results (Fig. 3), we see that two patients had this negative 
relation consistently across sessions whereas one patient showed an 
opposite relation. Other patients showed both negative and positive 
relations in some single sessions. On average, the connection from the 
dACC to the DLPFC-l showed a negative relation with increasing pain, 
however this connection was removed after BMR. Three patients showed 
this negative relation consistently across sessions, and one patient 
showed a positive relation across sessions. Other patients showed both 
negative and positive relations in single sessions (Fig. 4). Supplementary 
Fig. 2, shows the relations with aSLP. 

Although averaging the free energies of the different shift models 
across sessions and participants showed a clear winning model (the 
instant mapping model), when looking at the winning model separately 
for sessions within patients, there was some variability. As a post-hoc 
analysis, the analysis was repeated where we took individual-specific 
winning models to the group level. Again, no consistent group results 
were found. 

Sensitivity analysis 

Even though no consistent group connectivity-pain relations were 
found, for completeness we present the group results of the sensitivity 
analysis showing the influence of each connectivity parameter on 
spectral outcomes in each source. On average, an increase in forward 
connectivity from the S1-r to the S2-r was related to increases in oscil-
lations between 64 Hz and 71 Hz in the S2-r. In the pIC-r, two clear 

clusters of increases in oscillations between 17 and 23 Hz and 28–41 Hz 
related to changes in connectivity from S2-r to pIC-r were found. In the 
aIC-r, 6–7 Hz and 10 Hz oscillations were related to connectivity from 
the pIC-r to the aIC-r. Connectivity from the pIC-l to the aIC-l was related 
to an increase in oscillations between 13 and 19 Hz and 22–43 Hz in the 
aIC-l. Several increases around 28 to 59 Hz oscillations were found in the 
dACC, which were related to increases in connectivity to these regions 
from the pIC-l, aIC-r and aIC-l. 

Other connections also had an influence on oscillations in the dACC 
and multiple connections had a relation with oscillations in the frontal 
regions. Connectivity from the dACC to the DLPFC-r was related to in-
creases between 31 and 51 Hz in the DLPFC-r. In the mPFC, increased 
oscillations between 13 and 15 Hz, 22–23 Hz and 29–45 Hz were found 
for the connection from the dACC. The full group sensitivity results are 
displayed in Fig. 5. 

Individual results 
The lack of consistency in group results could support the idea of a 

strong individuality in the relationship between effective connectivity 
and pain. Besides the group results of the sensitivity analysis that 
represent some consistent spectral outcomes over patients, connectivity 
patterns also showed different spectral outcomes depending on the 
participant. Individual sensitivity profiles can be found in the Supple-
mentary material (Supplementary Fig. 3). The average across windows 
and sessions was taken to compute t-values for visualisation. 

Discussion 

Although fluctuating pain is an almost daily experience in CM and 
other chronic pain conditions, relations between brain dynamics and 

Fig. 3. Individual results of relations between the connectivity parameters and AMP in each session and across sessions. Columns 1 to 4 represent the beta 
values from the within-session level PEB and are thresholded at a posterior probability > 0.75. Column 5 represents the beta values from the within-subject PEB, 
thresholded at a posterior probability > 0.95. 

I. Bassez et al.                                                                                                                                                                                                                                   



Neurobiology of Pain 12 (2022) 100100

7

ongoing pain have been sparsely investigated. Here, we aimed to 
investigate how dynamic effective connectivity between pain-related 
regions relates to the fluctuating intensity of ongoing headache in CM. 
Our pain rating regressors allowed us to examine brain dynamics related 
to pain intensity (AMP), pain intensity changes (SLP), and pain- 
unrelated processes such as decision making, motor processing, and 
changes of visual input (aSLP). At the group level, we found no consis-
tent relations between the connectivity parameters and AMP. In addi-
tion, no consistent connectivity changes related to SLP were found. The 
regressor encoding aSLP showed consistent negative relations with the 
connections from S1-l to S2-l, S2-l to pIC-l, and aIC-l to dACC, thus 
mostly encompassing the left ascending pathway. It is not unsurprising 
that pain-related connections decrease during processes such as decision 
making, visual and motor processing as connections in other networks 
might increase, thereby shifting attention from pain (Schulz et al., 2020; 
Tracey et al., 2002). However, individual data show a more complex 
picture by suggesting that each patient exhibits their own signature of 
migraine-related pain encoding in the brain. 

Ongoing variations of pain experience in chronic migraine 

In a prior publication using the same design and the same patients in 
fMRI, we applied linear mixed effects models to relate cortical activity 
and functional connectivity across the whole brain to the same de-
scriptors of the rating process: AMP, SLP and aSLP (Mayr et al., 2022; 
Mayr et al., 2021). Although the data type and analysis strategies 
differed, the same type of regressors were used to relate brain dynamics 
to AMP. At group level, several regions and connections were found to 
be related to AMP and SLP. Importantly, we assessed the similarity be-
tween individual cortical results of the CM patients and group results by 

computing spatial correlations. Variability across individual patterns of 
connectivity-AMP relations and activity-AMP were large and did not 
resemble the findings at group level. These previous publications mirror 
the large individual differences in connectivity-pain relations found in 
the present study, where we used a linear Bayesian model by taking 
uncertainties of individual connectivity-pain relations into account. 

Preselection of cortical regions 

Previous findings of structural and functional abnormalities reported 
in pain-related areas in patients with migraine (Borsook et al., 2016; 
Filippi and Messina, 2019; Jia and Yu, 2017; Tolner et al., 2019) sup-
ported our motivation to examine the primary and secondary somato-
sensory cortices, the DLPFC, the medial prefrontal cortex and the dorsal 
ACC. However, the phenomena investigated in these studies may not be 
comparable with our findings; most connectivity studies on episodic 
migraine used a resting state design and tested in the interictal phase 
during the absence of any headache (Colombo et al., 2015; Maleki and 
Gollub, 2016; Russo et al., 2017). Although aberrant connectivity be-
tween pain-related structures has been found in CM (Hsiao et al., 2021; 
Lee et al., 2019; Schwedt et al., 2013), the widespread results, methods 
and study designs makes it difficult to infer hypotheses on the under-
lying deviant connections. Unfortunately, the demanding computational 
analysis allows the investigation of only a small number of preselected 
cortical regions. 

Further studies on cortical effects of ongoing variations of pain 

There are a few studies that are either investigating applied fluctu-
ating tonic pain in healthy controls or naturally evolving endogenous 

Fig. 4. Individual results of relations between the connectivity parameters and SLP in each session and across sessions. Columns 1 to 4 represent the beta 
values from the within-session level PEB and are thresholded at a posterior probability > 0.75. Column 5 represents the beta values from the within-subject PEB, 
thresholded at a posterior probability > 0.95. 
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back pain. For example, a seminal study by Baliki et al. contrasted 
increasing pain to stable and decreasing chronic back pain which 
showed higher activity in the right insula, S1, S2, mid cingulate and the 
cerebellum (Baliki et al., 2006). Further studies found mPFC activity to 
be related to ongoing pain intensity (Baliki et al., 2006; Hashmi et al., 
2013; May et al., 2019; Nickel et al., 2017; Schulz et al., 2015). In 
particular, gamma oscillations in the mPFC were found to be related to 
subjective pain intensity of both tonic pain (Nickel et al., 2017; Schulz 
et al., 2015) and chronic back pain (May et al., 2019). Connectivity at 
alpha frequencies in the sensorimotor-prefrontal network has also been 
shown to be associated with tonic pain in healthy controls (Nickel et al., 
2020). Based on these studies, we would have expected some results 
containing connectivity parameters from and to the mPFC. However, 
these previous studies were analysing the amplitude of cortical pro-
cesses in different samples; they are not directly comparable to the 
present variable connectivity scores in migraine patients. Furthermore, 
mPFC activity being related to subjective tonic or chronic back pain 
intensity may not be consistent across subjects. In the supplementary 
material of the study of Schulz et al. (Schulz et al., 2015), some partic-
ipants indeed showed clear positive relations between prefrontal gamma 
oscillations and pain intensity but others showed no or even negative 
relations. In a similar study on chronic back pain (May et al., 2019), 
group data showed a positive relation between ongoing pain and gamma 
oscillations at the Fz electrode, but some patients showed no or negative 
relations. From the 31 patients, only 9 showed a positive relation that 
had a p-value lower than 0.1. 

Individual signatures of AMP encoding in migraine using DCM 

Therefore, the most important question we have to address is 

whether this study was able to reveal brain dynamics related to pain in 
individual patients. Each patient underwent four recording sessions to 
investigate consistency of pain processing patterns. Across all sessions, 
16 of the 20 patients showed one or more consistent relation with some 
connectivity parameter in the pain network and AMP, and 17 patients 
showed one or more consistent relation with falling and rising pain. The 
variable results do not just encompass differences in the magnitude of 
relations between connectivity and pain processing across individuals, 
but also in the directionality of the relations. For example some patients 
show enhanced connectivity from region A to B when their pain in-
creases, whereas others show decreased connectivity. The interpretation 
of these findings depends mostly on the function(s) encoded by that 
region and whether that region can have both inhibitory and excitatory 
connections with other regions. Variability in the sensitivity profiles do 
suggest that a change in connectivity between two regions may have 
different spectral outcomes depending on the patient. Mayr et al. (Mayr 
et al., 2022) also found qualitative differences across patients in re-
lations between brain connectivity and AMP. These findings open the 
question whether there are mechanisms that determine a positive, 
negative, or non-existent relation between brain activity and AMP for a 
given connection. 

Requirements for the applicability of individual descriptors brain dynamics 

The current study design aimed to approximate the daily-life expe-
rience of migraine patients, which is the experience of fluctuating pain 
intensity. The assessment of repeated sessions is mandatory in order to 
minimise the influence of random noise that may occur within single 
sessions. To better understand the inherently dynamic individual pain 
experience, it is important to further investigate the stability of the 

Fig. 5. Group results of sensitivity analysis. T values thresholded with the maximum statistic correction. Positive (red) values correspond to connectivity 
increases resulting in increases in power (at a certain frequency in a specific region), while negative values correspond to decreases in power. 
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relevant pain-related cortical processes over time (Mun et al., 2019). 
Similar to our previous study (Mayr et al., 2022), we suggest that 
individual-specific neural reorganisation due to repeated attacks could 
underlie qualitative rather than gradual/quantitative differences be-
tween individuals. Such reliable cortical target processes could be uti-
lised to accurately predict the pain ratings in each patient. In a follow-up 
study, we will use machine learning techniques to explore whether pain 
ratings can be predicted on the basis of the individual brain dynamics 
that we have analysed in the present investigation. We would assume a 
better prediction at the individual level compared to predictions that are 
based on data from the entire sample. In a similar vein, we expect a 
stronger future focus on individual analyses (Martucci et al., 2014). 
Consequently, determining individually unique and stable brain dy-
namics that encode AMP and SLP in single patients could be a prereq-
uisite to define a reliable target for possible neuromodulatory 
interventions (Jensen et al., 2014). 

Limitations 

This study was a first step to gain insight into relations between 
fluctuating connectivity and the almost daily headaches that CM pa-
tients experience. Thus, we began with testing the cortical networks 
most frequently cited in the pain literature. Nevertheless, there is a 
possibility that we have not selected the network most important for 
pain processing in CM. 

In addition, other models might be better suited to investigate the 
dynamically evolving pain-related oscillations. Sophisticated methods 
like hidden Markov models (Hughey and Krogh, 1996) could be used to 
examine transitions of different brain states and how these states relate 
to the reported pain. Auto-regressive models on the pain ratings and 
comparing models with different regressors of smoothed fitted ratings 
could gain further insight. 

Finally, the present design does not allow to include a healthy control 
group. This group would likely show some fluctuating network activity. 
However, the pain rating would consist of a rating time course of zeros. 
A “correlation” with zeros is mathematically not possible and a healthy 
control group using this design is therefore not possible. Future studies 
on ongoing changes in chronic pain should include other types of dis-
eases. However, based on this and previous neuroimaging findings on 
ongoing fluctuations of chronic pain, we do not hypothesise meaningful 
results for group statistics but individually unique patterns of chronic 
pain related processing in the brain (Mayr et al., 2022). 

Summary and outlook 

The current findings support other studies from our research group 
showing that individual patients have unique patterns of brain dynamics 
underlying their chronic pain that are difficult to capture. Using neu-
roimaging to find a biomarker for subjective pain intensity at the group 
level might not lead to fruitful results. Finding the appropriate neuro-
imaging method and analysis to establish brain markers that are stable 
throughout multiple recording sessions of the same patient may be the 
way forward to guide individualised treatments. Finding subtypes of 
patients that process pain in the same way would be valuable but would 
require a large sample of patients, each with repeated recordings. 
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