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Abstract

Factor score regression (FSR) is widely used as a convenient alternative to traditional

structural equation modeling (SEM) for assessing structural relations between latent variables.

But when latent variables are simply replaced by factor scores, biases in the structural

parameter estimates often have to be corrected, due to the measurement error in the factor

scores. The method of Croon (MOC) is a well known bias correcting technique. However, its

standard implementation can render poor quality estimates in small samples (e.g., less than

100). This paper aims to develop a small sample correction (SSC) that integrates two different

modifications to the standard MOC. We conducted a simulation study to compare the

empirical performance of (i) standard SEM, (ii) the standard MOC, (iii) naive FSR, and (iv)

the MOC with the proposed SSC. In addition, we assessed the robustness of the performance

of the SSC in various models with a different number of predictors and indicators. The results

showed that the MOC with the proposed SSC yielded smaller mean squared errors than SEM

and the standard MOC in small samples and performed similarly to naive FSR. However,

naive FSR yielded more biased estimates than the proposed MOC with SSC, by failing to

account for measurement error in the factor scores.
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A small sample correction for factor score regression

In the educational, behavioral, and social sciences, researchers often explore

relationships between latent variables such as motivation and intelligence. The most obvious

and widely adopted tool of choice to analyze these relationships is structural equation

modeling (SEM). SEM is a statistical modeling procedure that estimates the measurement

model and the structural relations simultaneously, and is (in combination with maximum

likelihood estimation) often regarded to be the gold standard (Bollen, 1989). However, there

are several disadvantages to (traditional) SEM. For example, a large sample size is a

desideratum and a misspecification of the model might affect the estimation of all parameters

(Bentler & Yuan, 1999; Boomsma, 1985; Nevitt & Hancock, 2004).

When substantive interest is primarily in assessing the structural relations between

latent variables, a straightforward alternative to SEM is factor score regression (FSR)

(Skrondal & Laake, 2001). In FSR, the parameters are estimated in two steps. In a first step,

confirmatory factor analysis is used to estimate the parameters of the measurement model,

and factor scores are predicted for each latent variable. In a second step, the factor scores are

used in place of the latent variables to estimate the (linear) relationships among the latent

variables. When the structural model is recursive (i.e., no feedback loops), the analysis in the

second step boils down to a series of linear regressions (Devlieger et al., 2016). When the

structural model is non-recursive, path analysis can be used (Devlieger & Rosseel, 2017). In

this paper, we use the term factor score regression for both settings. Factor scores can be

calculated in various ways, leading to different sets of observed factor scores. When using

Regression (Thomson, 1934; Thurstone, 1935) or Bartlett factor scores (Bartlett, 1937), these

are by construction always a linear combination of the observed indicators measuring the

latent variable. Therefore, they still contain measurement error and naively using them in

place of latent variables will result in biased regression coefficients (Bollen, 1989; Lastovicka &

Thamodaran, 1991; Shevlin et al., 1997). We describe other issues that can arise when using

this method in the Discussion section. In this paper, we refer to the method described above –

without any form of bias-correction – as factor score regression (FSR).

It is nevertheless possible to remove the bias in the estimated regression coefficients.

One possible approach is based on the work of Croon (2002), and termed the method of Croon

(MOC) by Devlieger et al. (2016). The MOC proceeds by removing the measurement error
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from the observed variance-covariance matrix of the factor scores in order to obtain a

consistent estimator of the variance-covariance matrix of the latent variables. This

(co)variance matrix can then be used to obtain asymptotically unbiased estimators of the

regression coefficients. Devlieger et al. (2016) and Takane and Hwang (2018) show in their

simulation studies that the MOC is a good performing alternative for SEM. As illustrated in

Devlieger and Rosseel (2017), a major advantage of the MOC is its robustness against local

misspecifications of the model.

While SEM and the MOC are useful methods, both methods can perform poorly in

small samples (N < 100). Some of the known problems that may occur if SEM is used with

(very) small samples are: (a) convergence problems, (b) inadmissible solutions (e.g., Heywood

cases), (c) biased estimates for variance components and (d) incorrect confidence intervals and

fit statistics (Bentler & Yuan, 1999; Boomsma, 1985; Nevitt & Hancock, 2004; Rosseel, 2020).

The reason is that the (frequentist) estimation methods that are typically used in SEM

(whether it be maximum likelihood estimation or generalized least squares) only work well if

the sample size is sufficiently large. To tackle the problem of non-convergence and inadmissible

solutions, De Jonckere and Rosseel (2022) suggest using bounded estimation. Their method

effectively decreases the rate of non-converge in small samples, but the variability of the

estimated regression coefficients in the structural model is still substantial. Smid and Rosseel

(2020) show that the MOC, being a two-step method, performs slightly better, but still

exhibits a lot of variability when the sample size is very small (say, N < 50). Nonetheless, as

long as the models are correctly specified, the estimates of the regression coefficients obtained

by SEM or the MOC remain unbiased, even in very small samples (Smid & Rosseel, 2020).

Indeed, it is well known that SEM and the MOC take into account the measurement

error, and therefore give unbiased results. What is less known by the users of both methods, is

the price to pay for these unbiased results. The bias-correction performed by SEM and the

MOC leads to a large variability of the parameter estimates, in particular when the sample

size becomes small. This is related to the concept of bias-variance trade-off, which implies that

a decreasing bias will lead to an increasing variance and vice versa (Hastie et al., 2006; James

et al., 2013). Therefore, in addition to bias, we also focus on the estimators’ variability and

mean squared error (MSE) in this paper. Cox and Hinkley (1979) stress that an estimate with

a small bias and a small variance might be preferable to one with no bias but a large variance.
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Small sample corrections have already been presented in the general SEM framework

(e.g., see Ozenne et al. (2020)). However, this is not the case for the MOC. Hence, in this

paper, we propose to modify the MOC with a small sample correction. Our modification is

based on earlier work reported in the measurement error models literature (Carroll et al.,

2006; Fuller, 1987; Wall & Amemiya, 2000). In the context of linear regression with

measurement error in the predictors, Fuller (1980) proposes two modifications in order to

improve small sample estimation. His aim is to reduce the variability by allowing some bias,

resulting in a better MSE accordingly. The goal of this paper is to incorporate these two

modifications into the MOC, and examine its performance.

The rest of this paper is structured as follows. First, we introduce a simple structural

equation model and the notation. We then describe different estimation methods to analyze

the relationships between latent variables: traditional SEM, FSR, and the MOC. Next,

information concerning measurement error models and Fuller’s modifications is given.

Thereafter, we show how to integrate these different adjustments into a single small-sample

correction for the MOC. Subsequently, two different simulation studies are described and the

results are presented. Lastly, we discuss the performance of the estimators, the robustness of

their performance in various models and provide some concluding thoughts.

A simple structural equation model

To facilitate the presentation of the correction techniques developed in this paper, we

consider a structural equation model with one latent predictor (denoted by ηx) measured by p

indicators, and one latent dependent variable (denoted by ηy) measured by q indicators. An

example with p = q = 3 is given in Figure 1. We use this simple model because it allows us

to present many formulas in an easy to understand scalar form. For general settings, we refer

the reader to Appendix A where all results are presented using matrix notation. The joint

model consists of two models: a measurement model and a structural model. The

measurement model can be written as

x = νx + λxηx + ϵx and y = νy + λyηy + ϵy, (1)

where x and y are the p × 1 and q × 1 vectors capturing the observed indicators measuring ηx

and ηy respectively; νx and νy are the vectors of intercepts, λx and λy the vectors containing
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the factor loadings, and ϵx and ϵy the vectors of the error variables. We assume that

E(ϵx) = E(ϵy) = 0 and denote Var(ϵx) = Θx and Var(ϵy) = Θy.

The structural model is given by

ηy = α + βηx + ζ, (2)

where ηx is the latent predictor and ηy is the latent dependent variable; α is the intercept, β

the regression coefficient, and ζ the residual error term. We assume that E(ζ) = 0,

Cov(ηx, ζ) = 0, and Cov(ϵx, ζ) = Cov(ϵy, ζ) = 0. We denote Var(ηx) = Ψx and Var(ζ) = Ψy.

Without loss of generality, we assume that the observed variables are centered and

therefore, νx = νy = 0 and α = 0. The remaining free parameters to be estimated in this

model are the free elements of λx, λy, Θx, Θy, as well as the scalar parameters Ψx, Ψy, and

β. We collect these free parameters in the parameter vector θ. The model-implied

variance-covariance matrix is written as Σ(θ) to stress that it is a function of the parameter

vector θ.

Maximum likelihood estimation in structural equation modeling

When all observed variables are continuous, a common estimator in structural

equation modeling is maximum likelihood estimation (MLE). When using MLE, the

parameter estimates are found by minimizing the discrepancy function

FML = tr(SΣ(θ̂)−1) − log|Σ(θ̂)| + log|S| − k, (3)

with S the observed variance-covariance matrix of the observed indicators, Σ(θ̂) the

model-implied variance-covariance matrix of the observed indicators, and k the number of

observed variables. Note that all the parameters in the parameter vector θ are estimated

simultaneously.

As mentioned before, SEM suffers from convergence issues in small samples.

Nonconvergence occurs when the applied optimization method (e.g., quasi-Newton

optimization) fails to acquire a solution satisfying certain criteria (Anderson & Gerbing, 1984;

Boomsma, 1985). De Jonckere and Rosseel (2022) show that bounded estimation leads to a

major decrease in the nonconvergence rate, without negative effects on the point estimates for
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the unbounded parameters. Given the focus on small samples in this paper, bounded

estimation (using standard bounds) is used for all estimators in this paper in order to avoid

convergence problems. Importantly, applying standard bounds prevents the elements of Θx

and Θy from being negative, thereby avoiding Heywood cases.

Factor score regression

FSR is a two-step method. In the first step, confirmatory factor analysis (CFA) is used

to estimate the parameters of the measurement model. As with SEM, convergence issues may

also occur here. Therefore, we again use MLE with bounded estimation for the CFA. Because

the two measurement models (for x and y) do not share any parameters (no cross-loadings or

residual correlations), we can estimate both measurement models separately. Once the

parameters of the measurement model are estimated, we can compute factor scores for both

latent variables as follows:

fx = axx and fy = ayy, (4)

where ax and ay are the factor score vectors. There are multiple ways to compute the factor

score vector a, leading to different factor scores. The two most common predictors are the

Regression (Thomson, 1934; Thurstone, 1935) and Bartlett predictor (Bartlett, 1937). Using

the Bartlett method, the factor score vectors aB
x and aB

y are defined as:

aB
x =

[
(λT

x Θ−1
x λx)λT

x Θ−1
x

]T
and aB

y =
[
(λT

y Θ−1
y λy)λT

y Θ−1
y

]T
. (5)

In the Regression method, the factor score vectors aR
x and aR

y are defined as:

aR
x =

[
Var(ηx)λT

x Σ−1
x

]T
and aR

y =
[
Var(ηy)λT

y Σ−1
y

]T
. (6)

In the second step, we use the factor scores to estimate the regression coefficient β of the

structural model. The ordinary least-squares estimator of β can be found from the

variance-covariance matrix of the factor scores as follows:

β̂fs = ̂Var(fx)
−1 ̂Cov(fx, fy), (7)



A SMALL SAMPLE CORRECTION FOR FSR 8

where the ’fs’ subscript indicates that the estimate is based on factor scores. This estimator

is biased regardless of the sample size, except in the trivial setting where ̂Cov(fx, fy) = 0, or

when there is no measurement error (ϵx = ϵy = 0) (Fuller, 1987). But see also Skrondal and

Laake (2001) where an unbiased estimate only under specific settings can be obtained using a

bias-avoiding FSR method.

The method of Croon

The source of the bias when using naive FSR is that the variance–covariance matrix of

the factor scores differs from the variance–covariance matrix of the latent variables. Hence,

the MOC (Croon, 2002) performs a correction to the variance-covariance matrix of the factor

scores so that the corrected variance-covariance matrix is consistent for that of the latent

variables. For clarity, we call the elements of the initial variance-covariance matrix the

(co)variances of the factor scores, in this case denoted by Var(fx), Var(fy), and Cov(fx, fx). The

elements of the corrected variance-covariance matrix are named the estimated (co)variances of

the latent variables, denoted by Var(ηx)Croon, Var(ηy)Croon, and Cov(ηx, ηy)Croon.

The variance of a latent variable based on the variance of the factor scores can be

obtained by the formula:

̂Var(ηx)Croon = scale−2
x

[ ̂Var(fx) − offsetx
]

= (aT
x λx)−2 [ ̂Var(fx) − λT

x Θxλx
]
. (8)

Furthermore, the covariance of a latent variable based on the covariance of the factor scores

can be obtained by:

̂Cov(ηx, ηy)Croon = (scalex × scaley)−1 ̂Cov(fx, fy) = (aT
x λx aT

y λy)−1 ̂Cov(fx, fy). (9)

Thereafter, it is possible to obtain an unbiased estimate of the regression parameter using the

corrected variance in Eq. (8) and covariance in Eq. (9):

β̂Croon = ̂Var(ηx)
−1
Croon

̂Cov(ηx, ηy)Croon. (10)

The formulas above simplify when the Bartlett predictor is used to compute the factor scores,

because in this case: scalex = scaley = 1. For a more comprehensive description of the MOC,

we refer readers to Devlieger et al. (2016) and Devlieger and Rosseel (2017).



A SMALL SAMPLE CORRECTION FOR FSR 9

Fuller’s modifications for small sample estimation

We now present the two modifications for the small sample estimator suggested by

Fuller (1980). Consider a simple linear regression model with one predictor and one

independent variable. Using the notation of Fuller (1987), we can write this as:

Yi = α + β xi + ei, i = 1, 2, . . . , N, (11)

where the xi are assumed to be independent drawings from a N(µx, σxx) distribution, and the

ei are independent N(0, σee) random variables. It is also assumed that ei is independent of xi.

If we write mxx and mxY for the sample (co)variance of xi (and Yi), then the least squares

estimator

β̂ols =
[

N∑
i=1

(xi − x̄)2
]−1 N∑

i=1
(xi − x̄)(Yi − Ȳ ) = m−1

xx mxY , (12)

is unbiased for β. The estimator β̂ols is also the maximum likelihood estimator for β, and has

the smallest variance of unbiased linear estimators (Fuller, 1987). Next, consider a

measurement error model where it is impossible to observe xi directly. Instead, we observe the

sum

Xi = xi + ui, (13)

where ui is a N(0, σuu) random variable, indicating the measurement error. In the absence of

measurement error, σuu equals zero. This model is referred to as the classical measurement

error model (Buonaccorsi, 2010; Carroll et al., 2006). In this measurement error model the

least squares estimator

β̂naive =
[

N∑
i=1

(Xi − X̄)2
]−1 N∑

i=1
(Xi − X̄)(Yi − Ȳ ) = m−1

XX mXY , (14)

will now be biased. The impact of the measurement error is attenuation of the regression

coefficient toward zero. However, if an estimate of σuu > 0 is available, it is possible to obtain

an unbiased estimator for β by using the method of moments (Buonaccorsi, 2010; Carroll

et al., 2006; Fuller, 1980, 1987):

β̂mm = (mXX − σuu)−1 mXY . (15)
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Note that σuu in Eq. (15) plays the same role as offsetx in Eq. (8). Fuller (1980, 1987)

suggests an alternative estimator with better small sample properties. To construct this

alternative estimator, Eq. (15) needs two adjustments. Fuller (1980, 1987) proposes the

following alternative estimator

β̂λ,α =
[
Ĥxx + α (N − 1)−1 σuu

]−1
mXY , (16)

where Ĥxx is an estimator of σxx, and α > 0 is a fixed number to be specified. Furthermore,

Ĥxx =


mXX − σuu if λ̂ ≥ 1 + (N − 1)−1

mXX −
[
λ̂ − (N − 1)−1]

σuu if λ̂ < 1 + (N − 1)−1,

(17)

with λ̂ the root of the determinantal equation

∣∣ mZZ − λ diag(0, σuu)
∣∣ = 0, (18)

where mZZ is the sample variance-covariance matrix of both Xi and Yi, containing the

elements mXX , mXY and mY Y in its upper triangular part.

Fuller’s correction involves two modifications. First, a decision based on λ̂ is

implemented in Eq. (17) to ensure Ĥxx is positive definite. This modification is named the

λ-correction from here on. Second, including the parameter α in Eq. (16) ensures a less right

skewed distribution of the estimated regression coefficients, thereby reducing the variability at

the cost of some bias as we explain in the next section. This modification is named the

α-correction throughout this paper. Both modifications have different functions and can be

employed separately from each other. Together they form the alternative estimator presented

by Fuller (1980, 1987) for better small sample estimation in the presence of measurement error.

Combining Fuller’s modifications and the method of Croon

In this section, we show how the two modifications of Fuller (1980) can be

incorporated into the MOC estimator. For the considered model, only Var(ηx)Croon needs to
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be corrected. First, the λ-correction is performed:

̂Var(ηx)λ =


̂scale

−2
x

[
V̂ar(fx) − ̂offsetx

]
if λ̂ ≥ 1 + (N − 1)−1

̂scalex
−2 [

V̂ar(fx) −
[

λ̂ − (N − 1)−1 ] ̂offsetx

]
if λ̂ < 1 + (N − 1)−1,

(19)

where λ̂ is the smallest root of the determinantal equation:

∣∣ ̂Var(fx) − λ̂ ̂offsetx

∣∣ = 0. (20)

This decision based on λ̂ ensures that ̂Var(ηx)λ is positive. Thereafter, the α-correction is

performed: ̂Var(ηx)ssc = ̂Var(ηx)λ + ̂scale
−2
x α (N − 1)−1 ̂offsetx, (21)

where α > 0 is a fixed number to be specified. In this model, the offset terms are not needed

for the covariances, and therefore ̂Cov(ηx, ηy)ssc = ̂Cov(ηx, ηy)Croon. Now that we have

obtained the corrected terms, we can again find an estimate of the regression parameter β as

usual:

β̂ssc = ̂Var(ηx)−1
ssc

̂Cov(ηx, ηy)ssc. (22)

We call the adjusted estimator in Eq. (22) with the two modifications the method of Croon

with a small sample correction (SSC). The two modifications can be employed separately by

leaving out the decision based on λ̂ or by setting α equal to zero. As a consequence, it is

possible to implement solely the λ-correction into the MOC. This latter extension of the MOC

is named the MOC-λ method from here on.

If we assume λ̂ ≥ 1 + (N − 1)−1, Eq. (21) can be rewritten differently, giving more

insight into the rationale behind the α-correction:

̂Var(ηx)ssc = scale−2
x

[
V̂ar(fx) −

(
1 − α (N − 1)−1)

offsetx

]
. (23)

The rationale of the correction is that the variance of the factor scores is subtracted with only

a fraction (1 − α (N − 1)−1) of the offsetx parameter. This results in less variability at the

cost of a certain amount of bias. The amount of bias and reduction in variability depends on

the value of α. Meaningful values for α range from 0 to N − 1, where using 0 is equivalent to
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the MOC and using N − 1 is identical to FSR when working with the Bartlett predictor. Two

suggestions have been made in the literature regarding the value of α. On the one hand, Fuller

(1980, 1987) proposes to use α = p + 1 (with p the number of predictors). On the other hand,

Wall and Amemiya (2000) suggest using α = p + 5. In our simulation study, we also consider

α = (N − 1)/2, which assumes a mid-position between FSR and the MOC. This way, the

effect of the correction is larger and adjusts to the sample size at hand. On the other hand,

the correction term no longer vanishes if the sample size increases, resulting in biased

estimates even when the sample size is very large. This version of the correction is therefore

only useful when the sample size is small.

Simulation studies

Two simulation studies were performed. In the first study, we examined the operating

characteristics of the MOC with SSC estimator as compared to other estimators. We have

considered 12 different conditions varying in sample size and reliability of the indicators.

Given the focus on small sample estimation, the following sample sizes were chosen: N = 20,

30, 50, 100, 200, and 2000. In the second study, we assessed the robustness of the performance

of the three specifications of α in different models (varying in the amount of latent variables

and indicators). We only considered models where the amount of observations is larger than

the number of variables in the model. For this reason, we left the smallest sample size (N =

20) out in the second simulation study, resulting in 10 distinct conditions per model. The data

generation and analysis were done using R (version 4.1.0) (R Core Team, 2020) and the lavaan

package (version 0.6-10) (Rosseel, 2012).

Simulation study 1

For the first simulation study, two data generating models based on Eq. (25) were

considered. They differed only in terms of the reliability of the indicators. The first model had

a reliability of 0.5 for all indicators, while in the second model the reliability was set to 0.8.

The conditions corresponded respectively to low and high reliability or, in other words, a

condition with a higher and a lower amount of measurement error (Brunner & Austin, 2009;

Nunnally & Bernstein, 1994). Both models contained three correlated (latent) predictors (ηu,

ηv, ηw) and one (latent) dependent variable (ηy). All latent variables were measured by three

observed indicators. In this study, the parameters of interest were the regression coefficients.
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The true parameter values β for both models were: βu = 0.5, βv = 2, and βw = 4. The true

standardized parameter values βz for both models were: βz
u = 0.072, βz

v = 0.302, and

βz
w = 0.502. Figure 2 depicts the data-generating model with the true parameter values. For

each simulated dataset, we fitted the same model in Figure 2. We then compared seven

different estimators: (1) traditional SEM (SEM-MLE), (2) the standard MOC, (3) the

MOC-λ, (4) FSR (using Bartlett factor scores), and (5-7) the SSC with one of the three

suggested values for α, being: α = p + 1 = 4, α = p + 5 = 8, and α = (N − 1)/2. Bounded

estimation was used for all estimators to obtain a higher number of converged solutions. Note

that SEM-MLE refers to the estimation method (using MLE) and not the modelling

procedure. The MOC-λ method was added to the simulation to see whether the λ-correction

is beneficial for the MOC.

To evaluate each estimator, the following performance criteria were considered: the

proportion of simulated datasets where the method converged (from here on named the

convergence rate), the relative mean bias, the empirical standard deviation (ESD), and the

mean squared error (MSE) of the estimators. Table 1 summarizes the performance criteria.

We simulated 10000 samples, for each of the 6 × 2 = 12 settings.

Simulation study 2

In the second simulation study, six data generating models were considered. They

differed in terms of the reliability of the indicators, as well as in the number of latent

predictors and indicators. The first three models had a reliability of 0.5 for all indicators,

while in the last three models the reliability was set to 0.8. Hence, there was again a condition

with low and high reliability (Brunner & Austin, 2009; Nunnally & Bernstein, 1994). Model 1

and 4 both contained three correlated (latent) predictors (ηu, ηv, ηw) and one (latent)

dependent variable (ηy). All latent variables were measured by three observed indicators.

Model 2 and 5 included three correlated (latent) predictors (ηu, ηv, ηw) and one (latent)

dependent variable (ηy) as well. However, in contrast to the other models, all latent variables

were measured by six observed indicators. Model 3 and 6 contained six correlated (latent)

predictors (ηr, ηs, ηt, ηu, ηv, ηw) and one (latent) dependent variable (ηy). As in model 1 and

4, all latent variables were measured by three observed indicators. As before, the parameters

of interest were the regression coefficients. For convenience the true parameter values β for all
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models were set to one: (βr = 1, βs = 1, βt = 1,) βu = 1, βv = 1, and βw = 1. The true

standardized parameter values βz for all models were: (βz
r = 0.134, βz

s = 0.155, βz
t = 0.161,)

βz
u = 0.134, βz

v = 0.155, and βz
w = 0.161. A visualisation of the models and their specific

parameter values can be found in the online supplementary material.

Analogous to the first simulation study, we have compared the same seven estimators.

Bounded estimation was again used for all estimators to obtain a higher number of converged

solutions. In contrast to the first simulation study, the interest lies here in the robustness of

the performance of the different specifications of α in the SSC. In order to asses the

performance, we used the averaged mean squared error: the mean squared error was averaged

over the regression coefficients for every estimator in each model separately. We simulated

10000 samples, for each of the 10 settings (5 different samples sizes x 2 reliabilities) per model.

Results simulation study 1

Based on the bias-variance trade-off, a certain pattern in the results was anticipated.

On the one hand, we expect SEM and the MOC to be the best performing estimators with

respect to bias, but the worst regarding variability. On the other hand, we foresee FSR and

the SSC with the largest α-value to have the largest bias, but the lowest variability. Moreover,

we expect the bias and variability to converge towards zero as the sample size grows larger.

Except for FSR and the SSC with the largest α-value we anticipate the bias to remain, even in

large sample sizes. Finally, it is expected that the patterns will be less distinct when the

reliability is high. Tables with the values of the considered performance criteria for the various

estimators and settings can be found in the online supplementary material.

Convergence rate

Because methods (2)-(7) were adaptations of FSR, they would all either converge or

fail to converge for the same dataset. Hence, we grouped these methods together only when

assessing convergence rates, and compared SEM-MLE and FSR. Table 2 reveals a high overall

proportion of successful replications. The lowest convergence rates (99.30% and 99.89%) are

detected for SEM-MLE in the conditions with low reliability and the smallest sample sizes. In

fact, a converged solution is acquired 9930 out of 10000 times when N = 20, and 9989 out of

10000 times when N = 30, both in case of low reliability. From a sample size of 50 onwards,

the convergence rates reach approximately 100% for all conditions.
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Bias

As expected, the results plotted in Figures 3 and 4 display that the mean bias

decreases when the sample size grows. Similarly, the differences between the estimators

become smaller, but remain larger with low reliability. In contrast to SEM-MLE, the MOC,

and MOC-λ, the bias of FSR and the SSC does not converge to zero, as anticipated. Figures 3

and 4 show that the bias remains largest for FSR and the SSC with the largest α-value. This

is in particular true for the model with low reliability.

The findings show identical results for the MOC and MOC-λ regarding (relative) bias

in most conditions. The λ-correction was used (which means ̂Var(η)Croon was not positive

definite) substantially when the reliability was low and the sample size was small. The

correction was used about 4.43% when N = 20 and 1.58% when N = 30. It was used less

frequently in the following three conditions: 0.20% when the reliability was low and N = 50,

0.01% when the reliability was low and N = 100, and 0.06% when the reliability was high and

N = 20. The findings suggest that the λ-correction does not have a beneficial effect for the

(relative) bias.

Interestingly, the (relative) bias seems to depend on how large the regression coefficient

is. If the true value is small (e.g., βu = 0.5), then the bias is positive. If the true value

becomes larger (e.g., βw = 4), then the bias is negative.

Empirical standard deviation

As expected, the results suggest that the empirical standard deviation reduces as the

sample sizes grows. The differences between the estimators become smaller as well, especially

in case of high reliability. The findings reveal no major differences between MOC-λ, FSR, and

the SSC. The lowest ESD value is found for FSR and the SSC with the largest α-value.

Figures 5 and 6 display similar results for all estimators from a sample size of 100 onwards.

The results imply that SEM-MLE is the worst performing estimator in the smaller

sample sizes (N ≤ 50), in particular when the reliability was low. Figures 5 and 6 show that

the MOC performed well in most conditions, except in the condition with the smallest sample

size (N = 20) and low reliability. In this condition, MOC-λ outperformed the MOC.

Therefore, suggesting the λ-correction contributes to a lower variability of the estimator. As

mentioned above, the λ-correction is only used substantially when the reliability is low for the
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two smallest sample sizes. In all other conditions, the MOC and MOC-λ have identical results.

Mean squared error

As expected, the findings show decreasing mean squared error values as the sample

size grows larger. Figures 7 and 8 indicate that the differences between the estimators become

smaller as well, even more so in case of high reliability.

The overall worst performing method is SEM-MLE, specifically in the conditions with

low reliability and small sample sizes. From a sample size of 100 onwards, SEM-MLE performs

similar to the other estimators. The MOC shows comparable results to the other FSR

estimators. However, its performance is poor in the conditions with low reliably and a sample

size of 20 or 30. Hence, the λ-correction contributes to a lower MSE in these conditions.

In most conditions, the best performing method in terms of MSE is FSR, followed by

the SSC with the largest α-value. On the other hand, FSR is the worst performing estimator

when considering the MSE of β̂w in the two largest sample sizes (N = 200, 2000).

Results simulation study 2

As in the first simulation study, the findings show decreasing average mean squared

error values as the sample size grows larger. Figures 9 and 10 indicate that the differences

between the estimators become smaller as well, especially in case of high reliability.

Regarding the best and worst performing methods, the same results as in the first

simulation study can be observed. The worst performing methods regarding average MSE are

SEM-MLE and the MOC. The best performing method is FSR, followed by the SSC. From a

sample size of 100 onwards, the methods perform more alike. Additionally, the results reveal

once more the relevance of the λ-correction in the smallest sample sizes (N = 30, 50) when

reliability is low. This can be verified in Figures 9 and 10, which summarize the average MSE

values for the three models with low and high reliability (respectively).

In line with the earlier findings, FSR is the best performing method with respect to

average MSE in most conditions (i.e., when N ≤ 200). To assess the robustness of the results

obtained from the three specifications for α specifically, we examine the average MSE of the

methods relative to FSR. By using this relative average MSE, the differences in performance

compared to other methods can be easily illustrated. The relative average MSE values are

shown in Tables 3 and 4 for the three models with low and high reliability (respectively).
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As expected, the largest relative average MSE values can be found for SEM-MLE and

MOC(-λ). The differences become smaller when the sample size grows and when the reliability

of the indicators is high. In the results, the same patterns can be observed across the three

different models. After FSR, the SSC with α = (N − 1)/2 has the lowest average MSE values,

followed by the specifications α = p + 5 and α = p + 1 (respectively). Despite of the different

number of latent predictors and indicators, the findings suggest that the performance of the

SSC with the three specifications for α is similar. Furthermore, the results indicate that the

model with more indicators per latent variable has lower average MSE values.

Summary of simulation studies

In the first simulation study, the overall convergence rates were high for both

SEM-MLE and the FSR methods. This high number of converged solutions suggests a

beneficial effect from the use of bounded estimation (in this case standard bounds), as

discovered earlier by De Jonckere and Rosseel (2022). The λ-correction was often used in the

smallest sample sizes when reliability is low. Nevertheless, it had a profound impact on the

ESD and MSE in the condition with the very small sample sizes. The results for the FSR

methods were acquired using the Bartlett predictor. However, identical results can be

obtained using the Regression predictor.

As mentioned above, the SSC performed well in terms of MSE in the considered

conditions. The rationale of the SSC is to introduce some bias for less variability. This

trade-off has a beneficial effect for the MSE in small sample estimation. Out of the three

suggestions, the estimator with α = (N − 1)/2 performed best in terms of MSE. Although it

had the largest bias, combined with the smaller ESD it resulted in a lower MSE for most

cases. We suggested the value (N − 1)/2 as it adjusts to the sample size at hand and assures a

mid-position between FSR and the MOC, but for use in small samples only. Additionally, the

SSC with the suggestions from Fuller (1980, 1987) and Wall and Amemiya (2000) surpassed

SEM-MLE, MOC, and MOC-λ in all conditions.

SEM-MLE and the MOC were the worst performing estimators regarding ESD and

MSE, particularly in the smaller sample sizes. However, both estimators outperformed FSR

and the SSC regarding bias in most conditions. SEM-MLE and the MOC were particularly

superior in terms of bias in case of low reliability and larger sample sizes. The results also
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showed decreasing bias of SEM-MLE and the MOC as the sample size grows. Furthermore,

the ESD will also reduce, which will eventually (in lager sample sizes) result in a better

performance compared to FSR and the SSC.

For the second simulation study, in each of the considered models, highly similar

patterns were present in the results. This illustrates the robustness of the performance of the

three α-values for the SSC in models varying in the number of latent predictors and

indicators. Furthermore, the estimators performed slightly better in the model where latent

variables were measured by more indicators.

Discussion

The goal of this paper was to (a) evaluate the performance of (i) standard SEM, (ii)

the standard MOC, (iii) naive FSR, and (iv) the MOC with the proposed SSC in small

samples sizes and (b) assess the robustness of the performance of the different specification for

the SSC in different models. We assessed the estimators in terms of convergence rates, relative

mean bias, empirical standard deviation, and mean squared error. The comparison was

performed in 12 different conditions, with varying sample sizes and reliability of the indicators.

The findings reveal FSR as the best overall performing predictor, followed by the SSC

with the largest α-value. Only for the conditions where N = 200 or N = 2000 and reliability

was low, FSR was not the best performing estimator for the regression coefficient βw. In fact,

FSR was then the worst performing predictor in terms of MSE in both cases. Therefore, the

results suggest that both the reliability and sample size at hand play an important role. Our

findings are in line with those of Devlieger et al. (2016) where FSR was the worst performing

estimator (compared to SEM-MLE and the MOC) regarding MSE in sample sizes above 300.

Furthermore, the findings demonstrated that the performances of the different specifications of

α were similar across the considered models. The average MSE values of all methods were

lowest in the model with more indicators.

Although the FSR and SSC estimators had the best performance in most of the

conditions,they do not take the measurement error (entirely) into account. This results in a

lower MSE in small samples. However, despite the beneficial effect on the MSE, the

consequences of not taking measurement into account should not be neglected. On the one

hand, the regression parameters can be over- or underestimated depending on the correlation
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structure between the latent variables (Cole & Preacher, 2014). On the other hand, an

inflation of the type I error rate may occur under certain circumstances (Brunner & Austin,

2009). Moreover, the more complex the model becomes, the worse the consequences of both

problems.

When analyzing relationships between latent variables, we encourage researchers to

not choose a method ill-considered. Instead, we recommend to consider the sample size,

complexity of the model, reliability of the indicators at hand, and to use the best method for

the situation. If the sample size is large enough (N ≥ 200), one might be better off using

SEM-MLE or the MOC instead of FSR or the SSC. However, if the sample size is small

(N ≤ 100), one might consider using FSR or the SSC instead of SEM-MLE or the MOC.

Additionally, the goal of the research should be taken into account. If bias is important,

unbiased methods such as SEM and the MOC are favored in larger sample sizes, or the SSC

with the smallest α-value (= p + 1) if the sample size is small. If bias is not of primary

importance (and a lower variability is), methods such as FSR and the SSC with the largest

α-value (= (N − 1)/2) are favored. The small sample correction lets researchers choose a

compromise between ignoring measurement error (i.e., using FSR) and taking into account

measurement error (i.e., using SEM or the MOC).

Like all simulation studies, our study was not without any limitations. The first

limitation of this study is that only certain conditions and models were examined. Although

these conditions and models may be commonly found in the literature, different settings may

lead to different results. The second limitation is that we have not considered the type I error

and the power as performance criteria. Future research should look into hypothesis testing to

see how well the SSC and other estimators perform in (small) sample sizes, preferably using a

different simulation model to see how general the results obtained in this paper are.
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Appendix A: formulas in matrix notation

The statistical model in structural equation modeling

Consider a structural equation model with p observed variables and m latent variables.

The measurement model is defined as

y = ν + Λη + ϵ, (24)

where y, ν, and ϵ are p × 1 vectors of respectively the observed variables, intercepts, and

residual errors. The p × m matrix Λ contains the factor loadings relating the latent to the

observed variables. We denote Var(ϵ) = Θ. The structural model is defined as

η = α + Bη + ζ, (25)

where η, α, and ζ are m × 1 vectors containing the latent variables, intercepts, and residual

error terms respectively. B is an m × m matrix containing regression coefficients. The

diagonal elements of B must be zero, and (I − B) should be invertible. We assume that

E(ϵ) = 0, E(ζ) = 0, Cov(η, ϵ) = 0, and Cov(ϵ, ζ) = 0. The model-implied variance-covariance

matrix Var(y) = Σ is given by

Σ = ΛVar(η)ΛT + Θ, (26)

where

Var(η) = (I − B)−1Ψ(I − B)−T . (27)

Factor score regression

The factor scores can be obtained by

f = Ay, (28)

with A the m × p factor score matrix. Using the Bartlett method (Bartlett, 1937, 1938), the

factor score matrix is defined as:

AB = (ΛT Θ−1Λ)ΛT Θ−1. (29)
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In the Regression method (Thomson, 1934; Thurstone, 1935), the factor score matrix is

defined as:

AR = Var(η)ΛT Σ−1. (30)

In the second step (once the factor scores are calculated), an estimate of the regression

parameters can be obtained as follows:

β̂fs = ̂Var(fx)
−1 ̂Cov(fx, fy). (31)

This estimator is biased regardless of the sample size, except in the trivial setting wherêCov(fx, fy) = 0, or when there is no measurement error (ϵ = 0) (Fuller, 1987).

The method of Croon

Croon (2002) presented his correction formulas in scalar form. We provide here the

formulas in matrix form:

Var(η)Croon = D−1 [Var(f) − E] D−T (32)

with E an m × m matrix defined as

E = AΘAT , (33)

and where D is an m × m matrix defined as

D = AΛ. (34)

Note that when Bartlett factor scores are used, D = I, but this is not true for regression factor

scores. Using the Croon corrected (co)variance matrix in Eq. (32), we can obtain unbiased

estimates for the regression parameters:

β̂Croon = ̂Var(ηx)
−1
Croon

̂Cov(ηx, ηy)
Croon

. (35)
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Small sample correction

To ensure that the small sample correction formulas are valid for both Bartlett and

regression factor scores, we first define

Var(f)⋆ = D−1 Var(f) D−T (36)

and

E⋆ = D−1 E D−T . (37)

Eq.(32) can then be rewritten as

Var(η)Croon = Var(f)⋆ − E⋆. (38)

The λ-correction can be expressed as follows:

V̂ar(η)λ =


V̂ar(f)⋆ − Ê⋆ if λ̂ ≥ 1 + (N − 1)−1

V̂ar(f)⋆ −
[

λ̂ − (N − 1)−1 ]
Ê⋆ if λ̂ < 1 + (N − 1)−1,

(39)

where N is the sample size, and λ̂ is the smallest root of the determinantal equation

| ̂Var(f) − λ̂ Ê| = 0. This decision based on λ̂ ensures that ̂Var(η)λ is positive definite. The

α-correction then proceeds as follows:

V̂ar(η)ssc = V̂ar(η)λ + α (N − 1)−1 Ê⋆
, (40)

where α is a fixed number to be specified. Once the elements of the variance-covariance

matrix are corrected, it is possible to obtain estimates of the regression parameters β:

β̂ssc = ̂Var(ηx)−1
ssc

̂Cov(ηx, ηy)
ssc

. (41)
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Performance criteria Formulas

Convergence rate # estimator converged
R

Mean bias 1
R

∑R
i=1(b̂i − b)

Relative mean bias 1
R

∑R
i=1

(
b̂i

b
− 1

)
Empirical standard error

√
1

R−1
∑R

i=1(b̂i − b̄)2

with b̄ = 1
R

∑R
i=1 b̂i

Mean squared error
∑R

i=1(b̂i − b)2

Table 1
Overview of performance criteria. For a given simulated dataset, the estimator is denoted by
b̂i and its true value denoted by b. The number of simulations is denoted by R.
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low reliability high reliability

N SEM-MLE FSR SEM-MLE FSR

20 99.30 99.84 99.96 99.96

30 99.89 99.94 100 100

50 100 99.97 100 100

100 100 100 100 100

200 100 100 100 100

2000 100 100 100 100

Table 2
Overview of convergence rates in percentage. Bounded estimation was used for all estimators.
The latent variables were handled separately in the FSR methods, implying that convergence
was only achieved if the factor analysis was successful for all four measurement models.
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Figure 1
A simple structural equation model.
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Figure 2
Simulation model. The variances of the latent predictors varied in both models. For the model
with low reliability, these were: Var(ηu) = 1.2, Var(ηv) = 1.3, and Var(ηw) = 0.9. For the
model with high reliability, these were: Var(ηu) = 4.8, Var(ηv) = 5.2, and Var(ηw) = 3.6.
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Figure 3
Relative bias in case of low reliability.
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Figure 4
Relative bias in case of high reliability.
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Figure 5
Empirical standard deviation in case of low reliability (some values lie out of scale, these can
be found in the corresponding table in the online supplemental material).
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Figure 6
Empirical standard deviation in case of high reliability.



A SMALL SAMPLE CORRECTION FOR FSR 36

Figure 7
Mean squared error in case of low reliability (some values lie out of scale, these can be found
in the corresponding table in the online supplemental material).
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Figure 8
Mean squared error in case of high reliability (some values lie out of scale, these can be found
in the corresponding table in the online supplemental material).
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Figure 9
Average mean squared error in case of low reliability (some values lie out of scale, more
information regarding these values can be found in Table 3).
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Figure 10
Average mean squared error in case of high reliability (some values lie out of scale, more
information regarding these values can be found in Table 4).
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