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ABSTRACT: Polymeric microcapsules composed by the layer-by-layer (LbL) approach have 14 

been used for various applications including drug delivery into cells and in vivo, conducting 15 

enzyme catalyzed reactions, performing sensoric functions. Typically, LbL-assembled 16 

microcapsules have been formulated via alternating deposition of positively and negatively 17 

charged polyelectrolytes onto sacrificial templates or so-called cores. In this work, we extend the 18 

LbL assembly to produce microcapsules solely based on nanoparticles instead of polymers. Both 19 

gold and silver nanoparticles have been deposited as oppositely charged layers in the LbL 20 

assembly. We have identified that 5 layers of nanoparticles is the minimum number of layers for 21 

a stable assembly of capsules on calcium carbonate templates. Subsequently, the composite 22 

capsules comprised of nanoparticles were applied as Surface Enhanced Raman Scattering (SERS) 23 

platform, where the nanoparticle-based shell of capsules is shown to enable SERS of both solutes 24 

and macromolecular structures such as bacterial cells. 25 

 26 
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1. Introduction 31 

In the recent years, application of polymeric micro- and nano- capsules has been steadily growing. 32 

In the general area of polymeric microcapsules, those assembled by the layer-by-layer (LbL) 33 

technique are particularly interesting due to flexibility of their design and a variety of stimuli, 34 

which can be used for controlling their assembly and their properties.[1–3] 35 

The LbL capsules have been introduced in the late 90-ies, while subsequently, encapsulation 36 

methods have been developed, including pH-based method,[4] temperature-based method,[5] 37 

encapsulation into templates,[6,7] while pH-based method is also used in the presence of enzymes 38 

(biodegradability).[8–10] In many applications, the shell of capsules and even cells is 39 

functionalized with nanoparticles, which could serve as “hot spots” for absorbing the respective 40 

external stimuli such as electromagnetic light waves in the case of laser-based release,[11–14] 41 

magnetic fields in the case of magnetic field-based activation,[15] and sound waves in the case of 42 

ultrasound.[16] In initially demonstrated release using ultrasound very high ultrasound intensities 43 

were used.[17] But substantial progress has taken place and the intensities necessary for 44 

microcapsule activation and opening substantially decreased.[18] An essential reduction of 45 

necessary ultrasound intensity was achieved by adsorbing or synthetizing in situ nanoparticles in 46 

the shell of polymeric capsules, for example, SiO2 nanoparticles on the capsule shells.[19,20] 47 

Nanoparticles have been already incorporated into the layers of microcapsules,[21] but the 48 

assembly was mainly done sequentially with polymers.[22–29] LbL layers of alternative 49 

deposition of SiO2 and TiO2 nanoparticles has led to effective antireflection coatings, but SiO2 50 

were used as stacks for essentially smaller TiO2 nanoparticles.[30] Nanoparticle adsorption on the 51 

surfaces has resulted to an enhanced surface plasmon Raman resonance enhancement.[28,31–34] 52 

Meanwhile different interfaces, where nanoparticles were used as surfactants have also been 53 
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considered by B. Binks.[35] Using solely nanoparticles as surfactants to build novel nanoscale 54 

platform has been reported by M. Haase[36] via oil-in-water emulsion approach. Developing a 55 

novel solely nanoparticle-based approach to capsule preparation would be promising in different 56 

fields such as those where the presence of polymers is either not required or even can or should be 57 

avoided.  58 

Polyelectrolyte multilayer capsules  have become powerful tools for different biomedical 59 

applications including drug delivery, theranostic and biosensing.[37] Especially, sensor and bio-60 

sensor related applications have been used for different,[38] so it would be logical to aim 61 

developing a sensor based on capsules for detection of molecules. One candidate for such sensor-62 

mechanisms involving nanoparticles is Surface-Enhanced Raman Scattering (SERS), where the 63 

fields, and as a result, scattering by molecules, is amplified due to plasmonic effect on 64 

nanoparticles.  65 

It is very promising to design the carrier with a dual even multiple functionality such as: delivery 66 

function, sensorics function and theranostics[39]. For this reason the functionalization of the 67 

carrier with plasmonic nanoparticles on the shell could provide the detection function for such 68 

carrier.[40] For example, among these reported lectures, silver and gold nanoparticles were 69 

common involved as enhancers.[41–43] 70 

Various functionalized porous carriers, such as calcium carbonate porous template,[44–46] 71 

hydroxyapatite[47] and silica particles[48], will enhance the detection ability by 6 order of 72 

magnitude. Other than the porous carrier the polymeric capsules with as a SERS platform also 73 

developed. Polyelectrolyte capsules[38] and the alginate hydrogel capsules[49] demonstrate 74 

possibility not only release substance under the ultrasound but also provide the amplification inside 75 

the C-elegance[50]. The microcapsules made of polymeric and metallic nanoparticles are also 76 



 5 

suitable for performing label-free detection by SERS micro-spectroscopy.[51,52] In another 77 

study,[53] RNA detection using polymeric microcapsules with encapsulated gold nanoparticles 78 

has been made and presented. Furthermore, pH and carbamide sensing have been also realized 79 

using SERS.[54,55] 80 

The colloidal and chemical instability of nanoparticles may lead to a decreased intensity of the 81 

received SERS signal,[56] while their controlled aggregation of nanoparticles[57] or waveguide 82 

design[58] allow for a significant enhancement of the SERS signal. Furthermore, new approaches 83 

for development of SERS-based diagnostic platforms are currently pursued, including waveguide-84 

based designs[58] and fiber[59,60].  85 

SERS platforms have been applied in different fields including: in cell biology[57,61,62] and 86 

biomolecules[53,63,64] and environment.[65,66] SERS detection of molecules using 87 

microcapsules represents a different approach compared to using nanoparticles alone for detection 88 

of molecules. This is particularly noticeable for detection of, for example, exosomes[67–69] and 89 

bacteria[70,71]. Meanwhile, accurate, fast, simple and sensitive method of detection of 90 

microorganisms, such as Escherichia coli, which is involved in nosocomial, waterborne and 91 

foodborne infectious diseases, are important for food safety and human health care.[72] 92 

Accordingly, there has always been a strong driving force to develop a rapid, simple, and efficient 93 

method for bacterial cell detection with SERS application. 94 

Most of the microcapsules are hybrid, which contained organic and inorganic components. But the 95 

PEM microcapsules has a number of drawbacks such as material consuming and laborious process 96 

of synthesis, high permeability to small molecules, low reproducibility, aggregation and unknow 97 

long-term stability frequently using the synthetic polymers.[73] For this reason to design a novel 98 
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types of microcapsules based on inorganic components with capability to enhance the Raman 99 

signal still represents a significant challenge.  100 

In this work, we have assembled one new type of microcapsules purely composed of nanoparticles 101 

in an aqueous solution. Sequential adsorption of silver and gold nanoparticles has been carried out, 102 

where silver nanoparticles were synthesized in situ, while gold nanoparticles have been added 103 

upon sequential build-up of the layers of silver/gold capsules. The LbL assembly of nanoparticles 104 

has been carried out on calcium carbonate templates, which were subsequently removed forming 105 

the hollow capsules comprised of nanoparticles. Scanning electron microscopy analysis has been 106 

performed to examine the capsule structure. The constructed capsules have been applied as a SERS 107 

platform which achieved rapid detection of standard molecules and microorganisms. 108 

  109 
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2. Materials and methods 110 

2.1 Materials 111 

Gold(III) chloride trihydrate (HAuCl4, ≥99.9%), D-(+)-Glucose (C6H12O6, 180.16 Da, ≥99.5%), 112 

Tetraoctylammonium bromide (TOAB, [CH3(CH2)7]4N(Br), 98%), Toluene (99.8%), Sodium 113 

sulfate anhydrous (Na2SO4 ,>99.0%), 4-dimethylaminopyridine (DMAP, C7H10N2, ≥99%), 114 

Sodium carbonate (Na2CO3, ≥99.5%), Calcium chloride (CaCl2, ≥93.0%), Ammonium hydroxide 115 

solution (28.0-30.0% NH3 basis), Silver nitrate (AgNO3, >99%), Sodium borohydride (NaBH4, 116 

99%) and Rhodamine 6G (dye content ~95%, 479.01 Da) were purchased from Sigma-Aldrich. In 117 

all experiments, Milli-Q water with resistivity higher than 18.2 MΩ cm was used. 118 

2.2 Particle Synthesis  119 

Gold nanoparticles (AuNPs) were synthesized via the modified protocol of Gittins[74] as follows. 120 

30 mL of 30 mM HAuCl4 was added to 80 mL solution of 25 mM tetraethylammonium bromide 121 

in toluene. 25 mL freshly prepared NaBH4 was added to the mixture and stirred for 30 min. After 122 

that, two phases were split and the organic phase was subsequently washed with 0.1 M H2SO4 0.1 123 

M NaOH, and H2O for three times, afterwards dried with anhydrous Na2SO4. Last, 0.1 M DMAP 124 

solution with a ratio of 1:1 was used to transfer AuNPs in prepared nanoparticle mixtures into 125 

aqueous solution. 126 

Spherical calcium carbonate microparticle core was fabricated via a modified previous reported 127 

protocol.[75] 1 mL of Na2CO3 (0.33 M) was loaded into a 100 mL glass beaker, then an equal 128 

volume of CaCl2 (0.33 M) was injected rapidly and stirred at 600 rpm for 1 min. The color of the 129 
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mixture solution became milky-white immediately after mixing. The synthesized CaCO3 particles 130 

were carefully washed with 70% ethanol and dried for whole night at 100 °C. 131 

5% [Ag (NH3)2]OH solution, also known as Tollens’ reagent, was obtained by adding 0.5 M 132 

ammonium hydroxide to 0.5 M AgNO3 dropwise until the complex solution become transparent. 133 

2.3 Capsule synthesis 134 

To produce 4 bilayers silver and gold microcapsules, 10 mg of CaCO3 microparticle powder was 135 

placed in a 2 mL Eppendorf tube and dissolved in 1 mL of deionized water. The classic silver 136 

mirror reaction[45] was conducted on the CaCO3 core to form the first layer. A total of 200 µL of 137 

fresh Tollens’ reagent and 200 µL D-glucose were injected into the tube and was left on stirring 138 

for one hour. After that, silver nanoparticle coated CaCO3 microparticles were washed three times 139 

by water. After washing steps, 1 mL as-prepared AuNPs were added and stirred for 15 minutes for 140 

the fabrication of the next layer after 3 minutes of the ultrasound treatment. Wash the sediment 141 

and repeat with AuNPs for second layer until the supernatant shows red color to confirm the 142 

formation of nanoparticles. EDTA solution with a concentration of 0.2 M at pH 7 was added to 143 

remove the sacrificial CaCO3 core. Further, excessive EDTA salt was removed by washing with 144 

deionized water several times. 145 

2.4 Bacteria preparation and growth 146 

For experiments with bacteria the strain of Escherichia coli TOP10 was used with genetic 147 

properties: F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara leu) 148 

7697 galU galK rpsL (StrR) endA1 nupG. Bacterial suspension was obtained from the stationary 149 

overnight culture grown on NB1 medium (Carl Roth) at 37 oC on a rotary shaker with preset at 150 
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150 rpm. To wash out the media components we centrifuged 50ml culture at 5000g for 5 min and 151 

resuspended in 30 mL sterile 0.9% NaCl or Milli-Q water. Washing was repeated 3 more times. 152 

Finally, cells were resuspended in 1ml and frozen at -20 oC after addition of 10% glycerol. Before 153 

experiments, cells were thawed and washed one more time to wash out any cell debris as well as 154 

glycerol. 155 

2.5 Scanning Electron Microscopy (SEM) 156 

The morphology of the surface-modified particles and capsules both were examined in a scanning 157 

electron microscope (JEOL JSM 7100F SEM, JEOL Ltd., Japan). To study the fabrication process 158 

of the microcapsules, aliquots which own different quantity of layers for each type of 159 

microcapsules were taken for SEM. 160 

2.6 X-Ray Diffraction (XRD) 161 

The XRD patterns of the samples were recorded using a powder X-ray diffractometer (Rigaku 162 

MiniFlex, Rigaku Ltd., Japan) with Cu-Kα radiation (40 kV, 15 mA, NiCKβ-filter, 1.5406 Å) in 163 

the 2Θ angle range from 20 to 80° with a scanning step of 0.01° and a rate of 7°/min. Data were 164 

evaluated using the integrated X-ray powder diffraction software SmartLab Studio II and Database 165 

pdf4. 166 

2.7 Raman Spectroscopy 167 

Raman spectra were acquired on a Raman microscope (Alpha300, WiTec GmbH, Germany) with 168 

785 nm NIR (near-infrared) laser. To test the performance of substrates for surface enhancement 169 

Raman spectroscopy (SERS), Rhodamine 6G water solution (10−3, 10−4, and 10−5 M) was used as 170 

an analyte. All SERS maps (30 × 25 μm) of R6G with concentrations of 10−3, 10−4 and 10−5 M, 171 
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were recorded using a Nikon 40×/ 0.6 NA objective with laser power of 16 mW and integration 172 

time of 5 seconds per spectrum. Enhancement factors (EF) were calculated according to the 173 

formula: 174 

 𝐸𝐸𝐸𝐸 =
𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐼𝐼𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

∙
𝑝𝑝𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

∙
𝑐𝑐𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 (1) 

where ISERS and IRaman are intensities of the SERS amplified signal and initial signal of the control 175 

analyte; pSERS and pRaman are laser power for SERS spectra and control analyte; cSERS and cRaman 176 

are the concentration of R6G for SERS spectra and the control analyte, respectively.  177 

In prior of the acquisition of signals from Raman, suspension of E. coli cells was washed with 178 

0.9% NaCl and Milli-Q water. The washed suspension of bacterial cells was pipetted on 179 

microcapsules and then SERS measurements were made on dried samples. 180 

Enhancement factors for bacterial (EFB) were calculated according to the formula: 181 

 𝐸𝐸𝐸𝐸𝐸𝐸 =
𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐼𝐼𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

∙
𝑝𝑝𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 (2) 

where ISERS and IRaman are intensities of the SERS amplified signal and initial signal of the control 182 

bacteria; pSERS and pRaman are laser power for SERS spectra and control bacteria, respectively. 183 

2.8 Image analysis 184 

Analysis of SEM and Raman images was done by using ImageJ software 185 

(http://rsb.info.nih.gov/ij/). SERS maps were chosen to count the capsules. 186 

 187 
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3. Results and discussion 188 

The schematic of design and study of the inorganic Ag/Au capsules as SERS platform is 189 

highlighted in Scheme 1. In the first step, calcium carbonate templates for microcapsules are 190 

prepared. Calcium carbonate particles were chosen as templates because of their biocompatibility, 191 

easiness of preparation and controllable size, shape. For preparation of calcium carbonate particle 192 

templates, solutions containing the corresponding salts of CaCl2 and Na2CO3 were poured into a 193 

beaker upon rigorous steering to fabricate porous calcium carbonate cores. SEM analysis (scheme 194 

1b, c) showed that the obtained vaterite particles (4.01 ± 0.05 µm) with spherical shape contained 195 

5 % of the calcite. 196 

 197 

Scheme 1. Schematics of the experiment showing major steps employed for the preparation of all-198 

nanoparticle capsules. 199 

In the next step, the formation of the nanoparticle shell was performed. For this purpose, AgNPs 200 

and AuNPs were used, but they were prepared differently. AgNPs were obtained via an in-situ 201 

synthesis named silver-mirror reaction. Based on SEM (scheme 1d, e) analysis, we obtained that 202 

AgNPs with two main sizes (0.09 ± 0.02 µm and 0.20 ± 0.03 µm, R2=0.9823) are present on the 203 
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surface, while the shape of both particles is almost spherical. This various size represent the 204 

synthesis in a surface and the size of the particles are limited by the porous size which are 90 nm 205 

of the calcium carbonate from other and number of the particles are formatted in solution and have 206 

a larger size up to 250nm average 200 nm.[75,76] 207 

Such an approach represents an easy way of directly coating the surfaces of capsules as it was 208 

discussed earlier.[13] For an alternating layer in the LbL assembly, AuNPs were used. Although 209 

there are many ways for preparation of AuNPs, having a high concentration of nanoparticles is 210 

very important for an effective coverage of the surface of all particles.[77] That is why in the 211 

synthesis of AuNPs with size 6 nm we have chosen a method of AuNPs with a high yield (i.e. high 212 

concentrations) which are stabilized by 4-dimethylaminopyridine (DMAP). After the 213 

microcapsule assembly was complete, calcium carbonate templates on which the capsules formed 214 

were removed by EDTA producing microcapsules with nanoparticle on the walls.  215 

The bilayer of AgNPs and AuNPs covers the surface of calcium carbonate particles until the 216 

core is completely covered with the increasing number of bilayers of AgNPs and AuNPs, as shown 217 

in Figure 1a-e. Meanwhile, most walls of capsules with 4 layers were destroyed when the template 218 

was removed, as it can be seen in Figure 1f. Note that the stable hollow microcapsule were obtained 219 

with the minimum of 5 layers of nanoparticles, as it is shown in Figure 1g, h, i and j. 5 layers is 220 

sufficient even though the gold particles are small (6 nm), they contribute to the shell stability as 221 

well. SEM images (Figure S1) can also show that there is no significant difference between the 222 

size of capsules with a diameter of approximately 4.1-4.3 µm (4.11± 0.96 µm, 4.38± 0.77 µm, 223 

4.33± 0.67 µm, 4.28± 0.61 µm depended on the structure) compared with the size of the initial 224 

calcium carbonate cores 4.01 ± 0.05 µm. 225 
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 226 

Figure 1. SEM images of calcium carbonate with adsorbed nanoparticles (top row a-e) and hollow 227 

capsules obtained after CaCO3 dissolution (bottom row f-j) with different number of the metal 228 

nanoparticles layers: (a, f) 4 layers - (Ag/Au)×2 ; (b, g) 5 layers - (Ag/Au)×2/Ag ; (c, h) 6 layers- 229 

(Ag/Au)×3; (d, i) 7 layers - (Ag/Au)×3/Ag and (e, j) 8 layers - (Ag/Au)×4.  230 

The efficient dissolution of calcium carbonate template was proved by the X-Ray diffraction 231 

(XRD) (Figure 2) processed via the Rietveld analysis. The samples with CaCO3 core inside (Figure 232 

2a) have one main peak (29.32°) assigned to the (104) plane and some feeble peaks, which 233 

correspond to calcite (CaCO3) as well as the peak of silver and gold. All spectra of capsules with 234 

the dissolved CaCO3 cores only have four main diffraction peaks at 38.03°, 44.20°, 64.29°, and 235 

77.20° could are assigned to (111), (200), (220), and (311) planes of AgNPs, respectively (Figure 236 

2b) and well-matched with the Database pdf4. It should be noted that the peaks at 38.05°, 44.22°, 237 

64.32° and 77.24° could be also assigned to (111), (200), (220), and (311) planes of AuNPs (Figure 238 

2b), which are challenging to distinguish from those of AgNPs. In addition, it was noticed that the 239 

vaterite core converted to calcite, this can be assigned to a long synthesis process in an aqueous 240 

solution. There are no calcium carbonate peaks found on XRD spectra of all samples obtained after 241 
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calcium carbonate dissolution (Figure 2b), which means that microcapsules were formed only by 242 

metal nanoparticles. 243 

 244 

Figure 2. XRD diffraction spectra of (a) calcium carbonate core with adsorbed nanoparticles and 245 

(b) hollow all nanoparticle microcapsules synthesized with different composite structures: 246 

(Ag/Au)×2, (Ag/Au)×2/Ag, (Ag/Au)×3, (Ag/Au)×3/Ag, (Ag/Au)×4, respectively; where the red 247 

and green dash lines indicate silver/gold and calcite (C), respectively. 248 

The SERS capability of Au/Ag microcapsules were tested by measuring R6G as a model analyte. 249 

The mechanism of adsorption of this molecule is the physical sorption on the surface of the 250 

scaffold. As the hollow microcapsules only could be obtained with at least 5 layers of 251 

nanoparticles, the effect of the concentrations of R6G on the SERS sensitivity Au/Ag 252 

microcapsules with 6 layers and 8 layers both were measured.  253 

Prior acquiring SERS spectra, microcapsules were incubated in solution of R6G at different 254 

concentrations of 10−3, 10−4, 10−5 M for 20 min. Typically, R6G has the most intensive fingerprint 255 

peaks located at 1308 cm-1, 1357 cm-1, 1506 cm-1 representing the C-C aromatic stretching of the 256 
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dye (R6G), as it is shown in Figure 3. Peaks appearing in the spectrum at 1178 cm-1 and 795 cm-1 257 

are due to the in-plane and out-plane bending of C−H, respectively, while the band at 1076 cm-1 258 

can be assigned to residual calcium carbonate (Figure 3a). 259 

To evaluate the efficiency of these microcapsules as a SERS platform, an analytical enhancement 260 

factor (EF) was calculated by applying eq 1 based on the intensity of the most intensive peak of 261 

1506 cm-1 (Figure 3b). The microcapsules fabricated with AuNPs as the outermost layer only 262 

demonstrate amplification up to than 20 folds properties. This issue could be due to the organic 263 

stabilizer surrounding on AuNPs decrease the local conductivity of the metallic surface. 264 

 265 

Figure 3. SERS spectra (a) and EF (b) based on the intensity of the peak of 1506 cm-1 for varying 266 

concentrations (10−3, 10−4, and 10−5 M) of R6G adsorbed by microcapsules with the shell 267 

comprising of (Ag/Au)×4. The mean value of the EF is shown near the corresponding boxes. Laser 268 

power: 120 mW. 269 

To prove this concept, we studied the EF of 7 layer capsules possessing the following structure 270 

(Ag/Au)×3/Ag with non-stabilized AgNPs as the outermost layer. These microcapsules showed a 271 
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significant increase of amplification signals up to 107 at the lowest laser power (0.05 mW), as it is 272 

shown in Fig. 4a. It can be noted that two outliers appear when the laser power is 0.1 and 0.5 mW 273 

at the concentration of R6G of 10-4 M. These suggests that so-called “hot spots” contribute to the 274 

SERS signals enormously. We further calculated an enhancement factor based on the Raman 275 

intensity at 1506 cm−1 for all imaged areas (3*3=9 points), as shown in Fig. 4b. The EF calculated 276 

from three independent scanned area (Fig. 4b) could be seen on the scanned maps. EF did not show 277 

significant variation in the scanned area. 278 

Such high amplification can be explained by the structure of the microcapsules shell that all 279 

nanoparticles of the in the shell touch each other. In this case, the optimal distance between 280 

nanoparticles and conductivity could be provided.[78,79] 281 

  282 
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 283 

 284 

Figure 4. (a) EF of R6G adsorbed by microcapsules with shell of (Ag/Au)×3/Ag calculated on the 285 

different laser power (0.05 mW – 1 mW) showing a value range of 104-107. The left group was 286 

measured with R6G of 10-3 M, and right was measured with R6G of 10-4 M. Two pots out of the 287 

box are outliers. (b) EF map of R6G adsorbed by microcapsules with shell of (Ag/Au)×3/Ag from 288 

were calculated based on acquiring the Raman intensity and eq 1 at 1506 cm−1 from three 289 

independent areas (column from left to right) highlighted with the red square in optical microscopy 290 

images (bottom row) with various laser power (0.1 mW, 0.5 mW and 1 mW). 291 

SERS detection of bacteria using microcapsules 292 

For demonstrate the proof of principal using designed contains in biomedicine for detect the 293 

microorganisms such as bacteria we used model organism the E. coli strain. The SERS spectra for 294 

different power of laser (Fig. 5). Bacterial Raman spectra (blue line) shown in Fig. 5 consist of 295 

bands representing the cell contents, primarily proteins, lipids, carbohydrates, and nucleic 296 

acids.[80] For example, strong Raman peaks located at 1000 and 1659 cm−1 were assigned to 297 
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proteins,[81,82]; the peak at 1446 cm−1 was assigned to carbohydrates or lipids,[81,82] 1029; and 298 

1128 cm−1 have been previously attributed to carbohydrates,[82,83] 721 cm-1 corresponds to 299 

nucleic acids[82,83]. Table 1 shows the main Raman peaks of the three spectra and the tentative 300 

assignment for the most relevant bands. It is observed that there is a significant SERS enhancement 301 

at different laser power and a clear trend of variation of enhancement with increase in the laser 302 

power between the range of 1000-1700 cm-1 in Fig. 5 (red and green line), while SERS 303 

enhancements did not present enormous difference in this range. 304 

On the other hand, there were more vibrational bands observed in SERS spectra of E. coli, which 305 

depend on the power of laser. For example, peaks at 1190, 1399, 1503 cm-1 appear only in the 306 

SERS spectra, can result in the high SERS signals. To use such platform to detect bacterial cells, 307 

it is essential to estimate the enhancement factor for SERS signals. In this case, we used eq 2 based 308 

on the most intensive SERS peak present at 1446 cm-1, which corresponds to the CH2 and CH3 309 

vibrations of proteins and lipids to count the EFB. The enhancement factor of E. coli was measured 310 

to be up to 7.8 ×104 and 2.8 ×103 with laser power of 1.5 mW and 5 mW, respectively.  311 
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Table 1 Assignments of SERS signatures of Escherichia coli acquired from microcapsules and 312 
Raman bands of Escherichia coli taken from bacteria suspension in water based on recent 313 
literature. [80,82,84–88] 314 

Peak position (cm-1) 

Chemical groups assignment Raman SERS 

87 mW 1.5 mW 5 mW 
 621 619 CC twisting—tryptophan 
 648 648 Tyrosine 
 684 673 Valine 
 706 710 Calcium Carbonate 
 731 733 Adenine ring stretching; peptidoglycan 
 749 749 Tryptophan 
 781 781 Cytosine, uracil (ring stretching) 
 796 799 C–O–P–O–C—RNA binding 

825 842  Tyrosine 
 878 874 CCH deformation (Agar) 
 938 932 C–C stretching (amide III)—protein 
 964 964 CCH deformation (Agar) 

1000 988 988 C–C skeletal stretching of aromatic ring—phenylalanine/tyrosine 
 1021  Bacteria metabolism (?) 
 1056  Carbohydrates 

1095 1083 1090 Nucleic acids (PO2−symmetrical stretching); 
C–C and C–O–C skeletal stretching—glycosidic linkage of saccharides 

1121 1155  carbohydrates 
 1190 1200 Amide III; C–C tyrosine stretching, phenylalanine, tryptophan (protein) 

1248 1239 1248 C–N e N–H stretching (amide III); thymine and adenine (ring 
breathing); CH2 lipids deformation; saccharides 

1316 1281 1280 C–N and N–H stretching (amide III); CH2 and CH3 —protein 
deformation; guanine breathing ring 

1330 1345 1355 

CH2 and CH3 —fatty acids and protein deformation; 
N–H stretching (amide III); 

C–C stretching—tryptophan; 
adenine, guanine (ring breathing) 

 1399 1396 –COO− symmetric and asymmetric stretching—peptidoglycan 
1446 1427 1435 CH2 and CH3 deformations—lipids and proteins 

 1503 1506 –C–C conjugated stretching—carotenoids 
 1533 1557 Tryptophan; exopolysaccharides 
 1598 1603 C–C ring stretching—phenylalanine, tyrosine and tryptophan 

1659 1625 1654 C–O stretching (amide I); C–C stretching—lipids 
 315 
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 316 

Figure 5. (a) SERS spectra of E. coli TOP10 obtained from microcapsules (blue). Normal Raman 317 
spectrum of E. coli; (purple) and (green) are SERS spectra of E. coli immobilized on microcapsules 318 
with laser power 5 mW and 1.5 mW, respectively. 319 

In recent years, structural fabrication by nanoarchitectonics corresponds to the creation of a 320 

rising tide in material design. Nanoarchitectonics has begun to spread into many fields and became 321 

a common and basic concept, as seen in various applications such as nanostructured materials, 322 

supramolecular assemblies, hybrid materials, fabrication methodologies.[89] LbL assemblies of 323 

inorganic particle hybrid onto porous CaCO3 particles achieved in this work and another 324 

nanoarchitectonics-based work[30] by high precision deposition of alternating stacks of SiO2 and 325 

more densely packed TiO2 nanoparticles are both using the cost-effective LbL process and opens 326 

up possibilities in numerous technologically relevant applications. 327 

Conclusions 328 

Novel LbL inorganic microcapsules are designed using alternative adsorption of the gold 329 

nanoparticles and in situ synthesis of the silver nanoparticles as layers. It is found in our work that 330 

5 layers of metal nanoparticles is the minimum number of layers to form a stable shell. Such hollow 331 
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capsules keep the same spherical shape and size 4.25 ± 0.82 µm. The microcapsules are found to 332 

be efficient SERS substrates for a label-free detection of Rhodamine 6G. All types of the capsules 333 

reveal high enhancement factors in range of 106-107. The proof of principal of using such capsules 334 

for microorganism detection was shown by the bacteria immobilization on the particles surface. 335 

We demonstrate that the microcapsules provide sensitivity and 13 additional peaks related to the 336 

bacteria composition have been detected as well the enhancement of the major bacteria’s peak 337 

104/109. We foresee that developed approaches would be feasible for the rapid diagnostics and 338 

discrimination of microorganisms particularly bacterial cells, which remains one of the most 339 

challenged tasks in health care, clinical, environmental, food field. 340 
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