- Author
- Denis Constales (UGent) , Hendrik De Bie (UGent) , Teppo Mertens (UGent) and Franciscus Sommen (UGent)
- Organization
- Project
- Abstract
- The monogenic Hua-Radon transform is defined as an orthogonal projection on holomorphic functions in the Lie sphere. Extending the work of Sabadini and Sommen (J Geom Anal 29:2709-2737, 2019), we determine its reproducing kernel. Integrating this kernel over the Stiefel manifold yields a linear combination of the zonal spherical monogenics. Using the reproducing properties of those monogenics, we obtain an inversion for the monogenic Hua-Radon transform.
- Keywords
- Holomorphic functions, Monogenic functions, Lie ball, Lie sphere, Radon-type transforms
Downloads
-
The monogenic Hua-Radon transform and its inverse.pdf
- full text (Accepted manuscript)
- |
- open access
- |
- |
- 407.23 KB
-
(...).pdf
- full text (Published version)
- |
- UGent only
- |
- |
- 497.90 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8756853
- MLA
- Constales, Denis, et al. “The Monogenic Hua–Radon Transform and Its Inverse.” JOURNAL OF GEOMETRIC ANALYSIS, vol. 32, no. 1, 2022, doi:10.1007/s12220-021-00749-3.
- APA
- Constales, D., De Bie, H., Mertens, T., & Sommen, F. (2022). The monogenic Hua–Radon transform and its inverse. JOURNAL OF GEOMETRIC ANALYSIS, 32(1). https://doi.org/10.1007/s12220-021-00749-3
- Chicago author-date
- Constales, Denis, Hendrik De Bie, Teppo Mertens, and Franciscus Sommen. 2022. “The Monogenic Hua–Radon Transform and Its Inverse.” JOURNAL OF GEOMETRIC ANALYSIS 32 (1). https://doi.org/10.1007/s12220-021-00749-3.
- Chicago author-date (all authors)
- Constales, Denis, Hendrik De Bie, Teppo Mertens, and Franciscus Sommen. 2022. “The Monogenic Hua–Radon Transform and Its Inverse.” JOURNAL OF GEOMETRIC ANALYSIS 32 (1). doi:10.1007/s12220-021-00749-3.
- Vancouver
- 1.Constales D, De Bie H, Mertens T, Sommen F. The monogenic Hua–Radon transform and its inverse. JOURNAL OF GEOMETRIC ANALYSIS. 2022;32(1).
- IEEE
- [1]D. Constales, H. De Bie, T. Mertens, and F. Sommen, “The monogenic Hua–Radon transform and its inverse,” JOURNAL OF GEOMETRIC ANALYSIS, vol. 32, no. 1, 2022.
@article{8756853, abstract = {{The monogenic Hua-Radon transform is defined as an orthogonal projection on holomorphic functions in the Lie sphere. Extending the work of Sabadini and Sommen (J Geom Anal 29:2709-2737, 2019), we determine its reproducing kernel. Integrating this kernel over the Stiefel manifold yields a linear combination of the zonal spherical monogenics. Using the reproducing properties of those monogenics, we obtain an inversion for the monogenic Hua-Radon transform.}}, articleno = {{16}}, author = {{Constales, Denis and De Bie, Hendrik and Mertens, Teppo and Sommen, Franciscus}}, issn = {{1050-6926}}, journal = {{JOURNAL OF GEOMETRIC ANALYSIS}}, keywords = {{Holomorphic functions,Monogenic functions,Lie ball,Lie sphere,Radon-type transforms}}, language = {{eng}}, number = {{1}}, pages = {{38}}, title = {{The monogenic Hua–Radon transform and its inverse}}, url = {{http://doi.org/10.1007/s12220-021-00749-3}}, volume = {{32}}, year = {{2022}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: