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Abstract

We consider unitals of order q with two points which

are centers of translation groups of order q. The group

G generated by these translations induces a Moufang

set on the block joining the two points. We show that

G is either SL(2, )q (as in all classical unitals and also

in some nonclassical examples), or PSL(2, )q , or a

Suzuki, or a Ree group. Moreover, G is semiregular

outside the special block.
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In [9] we considered unitals admitting all possible translations (see Section 1 for definitions)
and characterized the classical (hermitian) unitals by this property. The present paper takes a
more general view: We only assume translations with centers on a single block, and prove the
following.

Main Theorem. Let  be a unital of order q with two points which are centers of
translation groups of order q. Then the groupG generated by these two translation groups is
isomorphic to one of the following.
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(a) SL(2, )q or PSL(2, )q , where q is a prime power.
(b) The Suzuki group qSz( ), where ≥q = 2 2s2 6 for some odd integer ≥s 3.
(c) The Ree group qRee( ), where ≥q = 3 3r3 3 for some odd integer ≥r 1.

Moreover, the group G acts semiregularly on the set of points outside the block containing
the translation centers.

In the classical (i.e., hermitian) unital of order q, the group G as above is isomorphic to
SL(2, )q , compare [10, 3.1, 4.1]. It seems that no unital of odd order q is known where ≅G

PSL(2, )q ; for q = 3 there is no such unital by Proposition 2.1 (this uses [9, 2.3]). There exists a
nonclassical unital of order q = 4 such that ≅ ≅G ASL(2, )4 5, see [10, 4.1]. More examples (of
order 8) have been found by Möhler in her Ph.D. thesis [20, Section 6], see [21].

The unitals of order q with two points which are centers of translation groups of order q are
studied also by Rizzo in his Ph.D. thesis [25]. The last chapter of this thesis contains results
about embeddings of such unitals into projective planes of order q2. For generalized quad-
rangles, a situation analogous to the one considered in the present paper is treated in a series of
papers, see [17,34–36].

Our Main Theorem resembles results for projective planes (instead of unitals) obtained by
Hering [11,12], who considered groups generated by elations. The following statement is a very
special case of [12, Theorem 3.1]: If a projective plane of finite order q contains a triangle p z z, ,1 2

such that the group of all elations with center zj and axis pzj has order q for j = 1, 2, then the
plane is desarguesian and the group generated by these two elation groups is isomorphic
to SL(2, )q .

1 | UNITALS, TRANSLATIONS, AND MOUFANG SETS

A unital  U= ( , ) of order q > 1 is a 2‐ q q( + 1, + 1, 1)3 ‐design. In other words,  is an
incidence structure such that any two points inU are joined by a unique block in , there are
 U q= + 13 points, and every block has exactly q + 1 points. It follows that every point is on
exactly q2 blocks.

Lemma 1.1. Let  be a unital of order q, and let ∈φ Aut( ) be an automorphism of .
If φ fixes more than q q+ − 22 points then φ is trivial. In particular, if φ fixes a point x and
a block B not through x and all points on blocks joining x to a point on B then φ is trivial.

Proof. Let y be a point that is moved by φ. Joining y with each one of the fixed points
yields a set of blocks through y. At most one of those blocks can be a fixed block of φ,
and a nonfixed block contains at most one fixed point. If a fixed block through y exists
then that block contains at most q − 1 fixed points. For the number f of fixed points we
obtain ≥q f q− 1 − ( − 1)2 and ≤f q q+ − 22 . If no block through y is fixed then
≤ ≤f q q q+ − 22 2 .
The second assertion follows from the fact that the point set in question contains

q q q q( + 1) + 1 = + + 12 points. □

An automorphism of  is called a translation of  with center z if it fixes each block
through the point z. The set of all translations with center z is denoted by Γz[ ].
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A Moufang set is a set X together with a collection of groups ∈R( )x x X of permutations of X
such that each Rx fixes x and acts regularly (i.e., sharply transitively) on X x\ { }, and such that
the collection ∈R y X{ }y is invariant under conjugation by the little projective group ∈  R x Xx

of the Moufang set. The groups Rx are called root groups.
The finite Moufang sets are known explicitly:

Theorem 1.2. The little projective group of a finite Moufang set is either sharply two‐
transitive, or it is permutation isomorphic to one of the following two‐transitive permutation
groups of degree q + 1: PSL(2, )q with a prime power q > 3,  PSU(3, )f f2 with a prime
power ≥q f= 33 3, a Suzuki group BSz(2 ) = (2 )s s2

2 with ≥q = 2 2s2 6, or a Ree group
GRee(3 ) = (3 )r r2
2 with q = 3 r3 , where r and s are positive odd integers.

This was proved (in the context of split BN‐pairs of rank one) by Suzuki [31] and Shult [27]
for even q, and by Hering, Kantor and Seitz [13] for odd q; these papers rely on deep results on
finite groups, but not on the classification of all finite simple groups. See also Peterfalvi [24].
Note that  ≅PSL(2, ) AGL(1, )2 3 ,  ≅ ≅APSL(2, ) AGL(1, )3 4 4 ,   ≅PSU(3, ) ASL(2, )4 2 3 ,
and ≅Sz(2) AGL(1, )5 are sharply two‐transitive. The smallest Ree group ≅Ree(3) PΓL(2, )8
is almost simple, but not simple.

Let  U= ( , ) be a unital of order q, and let Γ = Aut( ) be its automorphism group.
Throughout this paper, we assume that  contains two points∞ and o such that for ∈ ∞z o{ , } the
translation group Γz[ ] has order q. Then Γz[ ] acts transitively on B z\ { }, for any block B through z (see
[9, 1.3]). In particular, Γx[ ] has that transitivity property for each point x on the block ∞B joining∞
and o. The groupG generated by ∪∞Γ Γo[ ] [ ] contains the translation group Γx[ ] for each ∈ ∞x B , and

∞ ∈∞ ∞
( )B , (Γ )x B x B[ ] is a Moufang set, with little projective group ≔ ≅ ∕

∞ ∞
G G G GB B

†
[ ], where ∞

G B[ ]

is the kernel of the action on ∞B . This kernel coincides with the center Z ofG, see [9, 3.1.2] or [11,
2.11]. So G is a central extension of the little projective group G†.

Corollary 1.3. The kernel
∞

G Z=B[ ] acts semiregularly on ∞U B\ .

Proof. If ∈
∞

φ G Z=B[ ] fixes ∈ ∞x U B\ , then it fixes also xg for every ∈g G, hence all
points on blocks joining x to a point on ∞B . Thus Lemma 1.1 implies that φ is trivial. □

The following fact was observed in the proof of [12, Theorem 2.4].

Lemma 1.4. Let ∈X x X( , {Δ })x be a finite Moufang set. If the little projective group
∈  x XΦ = Δx is simple then Δ = [Δ , Φ ]x x x for every ∈x X , where Φx denotes the

stabilizer of x in Φ.

Proof. By the classification of finite Moufang sets, see 1.2, the simple group Φ is
isomorphic to PSL(2, )q ,  PSU(3, )t t2 , Sz(2 )s , or Ree(3 )r , where q > 3 with  q X+ 1 = ,
t > 2 with  t X+ 1 =3 , s > 1 with  X2 + 1 =s2 , or r > 1 with  X3 + 1 =r3 , respectively.
We have ≤[Δ , Φ ] Δx x x since Φx normalizes Δx; it remains to show that ≤Δ [Δ , Φ ]x x x .
This inclusion is an ingredient in simplicity proofs for Φ that use the Iwasawa criterion:

For Φ = PSL(2, )q the necessary commutators are computed in the proof of [33,
Theorem 4.4, p. 23]. The case where  Φ = PSU(3, )t t2 is covered by [15, Proof of
II.10.13, p. 244]. For Φ = Sz(2 )s the assertion follows from the commutator formula in
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[33, p. 205], and for Φ = Ree(3 )r the three commutator formulas in [4, Section 5,
p. 36/37] yield the assertion. □

Remark 1.5. The references in the proof of 1.4 yield the following sharper conclusion:
For every ∈y X x\ { } there exists an element ∈φ Φx y, such that Δx is equal to the set

∈δ φ δ{[ , ] Δ }x of commutators. See also the proof of [11, 2.11b].

Proposition 1.6. If G† is simple then G is a perfect central extension of G†, that is, G
coincides with its commutator group G′, and

∞
G B[ ] is isomorphic to a quotient of the Schur

multiplier of G†.

Proof. If ∈ ∞z B , ∈τ Γz[ ], and ∈γ Gz, then ∈γ τγ Γz
−1

[ ] and ∈τ γ τ γ τγ[ , ] = Γz
−1 −1

[ ]. Since
Γz[ ] acts regularly on ∞B z\ { }, every element of Γz[ ] is determined by its action on ∞B , that is,
by its image in G†. By 1.4 every element of Γz[ ] is a product of elements in Γz[ ] that are
commutators. Hence ≤ GΓ ′z[ ] for every ∈ ∞z B , and therefore G G′ = .

The kernel
∞

G B[ ] of the action on ∞B is the center of G, so the perfect group G is a
central extension of ∕

∞
G G G= B
†

[ ]. Therefore ∞
G B[ ] is isomorphic to a quotient of the

Schur multiplier of G†; see [18, 2.1.7], [15, V.23.3, p. 629], or [2, 33.8 (4), p. 169]. □

2 | SHARPLY TWO ‐TRANSITIVE GROUPS

Proposition 2.1. If ≤q 3 then  is the hermitian unital of order q.

Proof. Every unital of order 2 is isomorphic to the hermitian one, see, for example, [33,
10.16]. Now let q = 3. Since ≤G S†

4 is generated by elements of order 3, we have
≅G A= PSL(2, )†

4 3 ; in particular, G† is sharply two‐transitive. By [9, 2.3] the center

∞
Z G= B[ ] has even order, so there exists a central involution ζ in G.

The product G Z′ induces the commutator group ≅G C( )′† 2
2. Thus G Z′ has index 3,

and G′ acts transitively on ∞B . For ∈ ∞z B , the translation group Γz[ ] is not contained in
G′. We obtainG G G G= ′Γ ′ = ′Γz z[ ] [ ], andG′ has index 3 inG. This means that ≤Z G′, and
G is a covering group of A4. Then ≅G SL(2, )3 by [18, 2.12.5]. This group acts regularly
on ∞U B\ , see [9, 3.5].

We verify that  is obtained by the construction described in [10, 2.1]. The central
involution ζ does not fix any point apart from those on ∞B . Therefore, the point set ∞U B\

is partitioned by fixed blocks of ζ ; these are obtained as the blocks joining ∈ ∞x U B\ with
its image under ζ . The group G acts on this set of fixed blocks. There are six such blocks,
and at least one of them is fixed by a subgroup S of order 4 inG. We pick a point a on that
block and identify the elements ofG with the affine points via ↦γ aγ . Then the block in
question is S.

There are four blocks through a that join a to points on ∞B , their intersections with

∞U B\ are identified with the Sylow 3‐subgroups (viz., the translation groups) in G. Let D
be any one of the remaining four blocks through a. Then D is not stabilized by any
translation, and not stabilized by ζ . As SL(2, )3 contains only one involution, we infer
that the stabilizer of D in G is trivial. Therefore, the set  ≔ ∈Dδ δ D{ }−1 consists of
four different blocks through a.
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It has been proved in [10, 3.3] that the subgroup S and the set  are unique, up to
conjugation. The points at infinity are the centers of translations. Therefore each such
point is incident with those blocks whose points outside ∞B form an orbit under the
corresponding translation group. This completes the proof that  is isomorphic to the
hermitian unital 3

, see [10, 3.3]. □

Now we determine certain central extensions of finite sharply two‐transitive permutation
groups; the following result is a variation of [12, Lemma 1.1] that is suitable for our purpose.

Theorem 2.2. Let G X( , ) be a finite sharply two‐transitive permutation group with
 X > 1 and let p be the prime dividing  X . If E is a central extension of ∕G E Z= by a group
Z of order p, then E splits over Z (as a direct product E Y Z= × with ≅Y G), or we have
one of the following:

(a)    X G= 2 = and E is cyclic of order 4.
(b)  X = 4, ≅G A= PSL(2, )4 3 , and ≅E SL(2, )3 .
(c) ∈ X p= {3 , 5 , 7 , 11 }2 2 2 2 2 and ⋊E P H= where P is the Heisenberg group of order p3

and H is isomorphic to Q8, SL(2, )3 , S2− 4, or SL(2, )5 , respectively.

We describe the groups in item (c). The Heisenberg group of order p3 consists of all
unipotent upper triangular matrices in GL(3, )p . By Q8 we denote the quaternion group of
order 8, and S2− 4 is the binary octahedral group, that is, the double cover of S4 containing just
one involution, see [32, 3.2.21, p. 301] or [16, XII.8.4]; this double cover is isomorphic to the
normalizer of SL(2, )3 in SL(2, )9 . The extension groups E in item (c) do not split over Z since
P is not abelian.

Proof of 2.2. It is well known that  X p= n is a power of a prime p and that the Sylow
p‐subgroup of G is an elementary abelian normal subgroup of order pn in G; see, for
example, [26, 7.3.1] or [23, 8.4] or [16, XII.9.1].

Let P be a Sylow p‐subgroup of E. Then  P p= n+1 and ≤Z P; moreover ∕P Z is the
regular normal subgroup of G, hence P is normal in E. Each point stabilizer (or
Frobenius complement) Gx has order p − 1n , and its preimage ≤E Ex has order
p p( − 1)n . The group Ex splits as a direct product H Z× with ≅H Gx by the abelian (in
fact, central) case of the Schur–Zassenhaus theorem; see [26, 9.1.2 or 11.4.12] or [23, 10.3]
or [15, I.17.5, p. 122]. Then

⋊E P H=

and H acts (by conjugation) sharply transitively on the set of nontrivial elements of ∕P Z .
If H is trivial, then    X G= 2 = , and E splits or is cyclic as in item (a). From now on

let  H > 1. Then ∕C H Z( )P is a proper H ‐invariant subgroup of ∕P Z , hence trivial. This
means that C H Z( ) =P . If P is abelian, then P C H P H Z P H= ( ) × [ , ] = × [ , ]P , see [6,
5.2.39] or [26, 10.1.6] or [15, III.13.4, p. 350], and then ⋊ ⋊E P H Z P H H= = × ([ , ] )

splits over Z .
Now let P be nonabelian. Then P′ is a nontrivial subgroup of Z , as ∕P Z is

(elementary) abelian, hence P Z′ = . The center of P yields a proper H ‐invariant
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subgroup of ∕P Z ; this subgroup is trivial, hence Z is the center of P (and the Frattini
subgroup is P P P ZΦ( ) = ′ =p ). Thus P is an extraspecial p‐group.

The commutator map gives a nonzero symplectic form f on ∕P Z with values in the
prime field p, and f is not degenerate, hence n m= 2 is even; see [26, p. 140] or [15,
III.13.7, p. 353]. The automorphism group H induced by H on P has trivial intersection
with the group of inner automorphisms of P and acts trivially on Z , hence ≅H H is
isomorphic to a subgroup of the symplectic group mSp(2 , )p by Winter [41, Theorem 1
or (3A), p. 161].

First we assume that the permutation group G X( , ) is of type I (in the notation of [16,
XII.9.2]), which entails that   ≤ ⋊H LΓ (1, ) = GL(1, ) Aut( )p p pn n n ; see [16, XII.9.2]. In
another terminology, this means that the corresponding nearfield (with multiplicative
group H) is a Dickson nearfield, compare [8, p. 834]. The cyclic group

 ∩ ≤H GL(1, ) *p pn n has order at least ∕p n( − 1)n . If this cyclic group is reducible on
p
n , then it is contained in a proper subfield of pn , hence ∕ ≤ ∕p n p( − 1) − 1n n 2 and

therefore ≤∕p n+ 1n 2 ; if ∩H FGL(1, )pn is irreducible, then its order divides ∕p + 1n 2

by [41, Cor. 2] or [15, Satz 9.23, p. 228] as ≤H nSp( , )p . In both cases we have
≤ ≤∕ ∕p n2 − 1 − 1n n2 2 , which is false for ≥n 6. If n = 4 then p = 2 and  H = 15,

hence H is cyclic and irreducible, but 15 does not divide 2 + 12 . As n m= 2 is even, there
only remains the case where n = 2, and ∈p {2, 3} follows.

If p = 2 then  X = 4 and ≅G A= PSL(2, )4 3 ; moreover, E is a covering group of A4

since ≤Z P E= ′ ′, hence ≅E SL(2, )3 by [18, 2.12.5], as in item (b). For p = 3 we have
 X = 9 and  H = 8. Each involution ∈h H induces on ∕ ≅P Z 3

2 a diagonalizable linear
transformation h without eigenvalue 1, hence h = −id. Thus H contains just one
involution, and H is cyclic or ≅H Q8 (these two possibilities correspond to the two
nearfields of order 9, one of them being the field 9). The cyclic case is ruled out because

 Sp(2, ) = SL(2, )3 3 contains no element of order 8. Thus ≅H Q8 as in the first case of
item (c).

Now we assume that G X( , ) is not of type I. Then n = 2 and there are just seven
possibilities for the isomorphism type of H , with ∈p {5, 7, 11, 23, 29, 59}: see [16, XII.9.4]
or [23, 20.3] or [8, 2.4]. This rephrases a famous result of Zassenhaus, which says that
there are only seven finite nearfields which are not Dickson nearfields. The condition

 ≤H Sp(2, ) = SL(2, )p p excludes four of these seven possibilities (those where H

contains central elements other than±id), see [16, XII.9.4, XII.9.5] or [8, 2.4]. This leads to
the three cases for H in item (c) with ∈p {5, 7, 11}.

For all our odd primes p, the extraspecial group P of order p3 has exponent p:
Otherwise the exponent is p2 and some nontrivial element of ∕P Z is fixed by every
automorphism of P by [41, Cor. 1]; this is a contradiction to the action of H on ∕P Z .
Therefore P is isomorphic to the Heisenberg group of order p3, see [6, 5.5.1] or [15,
p. 355]. □

Theorem 2.3. If G† is sharply two‐transitive on ∞B , then ≤q 3 and  is the hermitian
unital of order q.

Proof. By Proposition 2.1 it suffices to show that ≤q 3. Thus we assume that q > 3 and
aim for a contradiction.

The degree q + 1 of G† is a power of some prime r , say q r+ 1 = n. By [9, 3.1] the
kernel

∞
G B[ ] is the center Z of G, and r divides  Z by [9, 2.3]. Thus we can choose a
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subgroup U of index r in Z ; then ∕G U is a central extension of G† by the group ∕Z U of
order r . Such an extension ∕G U does not split: If ∕ ∕ ∕G U Z U Y U= × then Y contains all
Sylow s‐subgroups of G with ≠s r , hence all translation groups Γx[ ] with ∈ ∞x B ; thus
Y G= , which is a contradiction to ∕ Z U r= . Theorem 2.2 implies that ≠n r= 2 and
that the Sylow r‐subgroup of ∕G U is not abelian (and more, as in item (c), but we do not
need more). Let R be a Sylow r‐subgroup ofG and let ≔H Γo[ ]. Then ∕RZ Z is the regular
normal subgroup of G†, and R is characteristic in RZ , which is normal in G; hence R is
normal in G. The group RHR RH= contains all conjugates of H in G, hence

⋊G RH R H= = . Thus ∩ ∩∞ ∞ ∞∞
Z G G R H R Z H R Z= = = ( ) = ( ) =B o o[ ] , , which

gives ≤Z R. The group R is not abelian, but ∕R Z is abelian and has order r2; thus Z
is the center of R. Now a (special case of a) result of Wiegold says that  R′ divides r ; see
[39, Theorem 2.1], [32, p. 261], [18, Lemma 3.1.1, p. 113], or [15, p. 637]. We claim that
R Z′ = . Otherwise we can choose U as above with ≤R U Z′ < , and then ∕R U is an
abelian Sylow r‐subgroup of ∕G U , contrary to Theorem 2.2.

Thus R Z′ = has order r , and R is an extraspecial group of order r3. Since ≠r 2 the
group H = Γo[ ] contains an involution α inducing inversion on ∕ ∕R R R Z′ = , hence α fixes
each subgroup between Z and R.

Each subgroup of order r2 is normal in R with abelian quotient, and thus contains
R Z′ = . As the group H acts transitively on the set of nontrivial elements of ∕R R′, it also
acts transitively on the set of subgroups of order r2 in R. If S is one of those subgroups then
R acts transitively on the set of noncentral subgroups of order r in S. There are r such
subgroups, and the involution α (which leaves S invariant) fixes at least one of them, sayT .

The number of points not on ∞B is q q r r r+ 1 − ( + 1) = ( − 1)( − 2)3 2 2 2 , and not
divisible by  r R=3 . Therefore, there exists some subgroup of order r fixing at least one
point x not on ∞B . That subgroup is not contained in the center because the latter acts
semiregularly on ∞U B\ , see [9, 1.7]. We have noted in the previous paragraph that the
noncentral subgroups of order r form a single conjugacy class in HR. Thus the group T
fixes some affine point x . Then T T= α fixes also xα, and the point o where ∞B meets the
block joining x and xα. This contradicts the fact that T induces a subgroup of order r in
the regular normal subgroup on ∞B . □

3 | UNITARY GROUPS

Lemma 3.1. Let r be prime power, and let d be a divisor of r + 1. Then the following hold:

(a) Every element of order d in GL(3, )r2 is diagonalizable over r2 .
(b) If A is an element of order d in  SU(3, )r r2 then the characteristic polynomial of A is

X t X t X− + − 1A A
3 2 , where tA is the trace of A.

(c) Two elements of order d in  SU(3, )r r2 are conjugates under  SU(3, )r r2 if, and only
if, they have the same trace.

Proof.

(a) Let ∈A GL(3, )r2 be an element of order d. The minimal polynomial of A then
divides X − 1r+1 , and every characteristic root is a root of that polynomial. These
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roots lie in r2 because r + 1 divides the order of the multiplicative group of r2 . As
the minimal polynomial has only simple roots, the matrix A is diagonalizable in

GL(3, )r2 .
(b) Now assume  ∈ A SU(3, )r r2 . Let λ be one of the characteristic roots of A, then

λ λ λ λ= = 1r . In the characteristic polynomial ⋅X A X c Xdet( id − ) = + +3
2

2

c X c+1 0, the constant c0 equals A−det = −1. The coefficient c2 equals t− A, where tA is
the trace of A. Expanding the product of the linear factors, we obtain t c= −A 2 as the
sum λ λ λ+ +0 1 2 of all characteristic roots of A. The coefficient c1 is obtained as
λ0 λ λ λ λ λ λ λ λ λ λ λ t+ + = + + = + + = A1 1 2 2 0 2

−1
0
−1

1
−1

2 0 1 .
(c) Let A and B be elements of order d in  SU(3, )r r2 . Clearly t t=A B holds if A and B

are conjugates. Conversely, assume t t=A B. We have seen above that A and B have
the same characteristic polynomial. Therefore, they are conjugates in GL(3, )r2 .
According to [29, I, 3.5, III, 3.22] (or [37, Case A(ii), p. 34] or [5, Lemma 5 with
remarks on p. 12]) they are also conjugates in the unitary group  U (3, )r r2 .

Finally, the group  U (3, )r r2 contains diagonal elements of arbitrary determi-
nant in ∈ s ss{ = 1}q2 . As such diagonal matrices centralize each other diagonal
matrix, we can adapt the conjugating element of  U (3, )r r2 in such a way that the
conjugation is achieved by an element of  SU(3, )r r2 . □

The following lemma is a consequence of results in [22, Thm. 1.6, Thm. 1.3]; we give a
direct proof for the reader's convenience.

Lemma 3.2. Let r = 2e and let  ∈ A SU(3, )r r2 be noncentral with A = 1r+1 . Then A2

is the product of two elements of  SU(3, )r r2 with orders dividing 4.

Proof. We use coordinates such that the hermitian form is described by x y +0 2

x y x y+1 1 2 0 . The element  ≔ ∈






 J

1 0 0
0 1 0
1 0 1

SU(3, )r r2 is an involution, and ≔Fu v,









u v
u

1
0 1
0 0 1

belongs to  SU(3, )r r2 if v v uu+ = . Note also that F = idu v,
4 , and F = idu v,

2

holds if u = 0 (then ∈v r). The product






JF

u v
u

u v
=

1
0 1
1 + 1

u v, has trace v + 1, and its

characteristic polynomial is X v X v X+ ( + 1) + ( + 1) + 13 2 .
Let tA be the trace of the given matrix A and put ≔v t + 1A . The norm map
 → ↦N x xx x: : =r r

r+12 is surjective, hence we find ∈u r2 such that uu v v= + .
We abbreviate ≔F Fu v, and infer from 3.1 that JF and the diagonalizable matrix A have
the same characteristic polynomial, hence also the same set of eigenvalues. If JF is
diagonalizable, then JF has the same order as A, and 3.1 implies that A is conjugate to JF
in  SU(3, )r r2 . Now A2 is conjugate to JF JFJF JFJ F( ) = = ( )2 −1 .

It remains to consider the case where JF is not diagonalizable. Then the characteristic
polynomial has a root λ with multiplicity 2 (not 3 since A is not central), and A is
conjugate to the diagonal matrix λ λ λdiag( , , )−2 where ≠N λ λ λ( ) = = 1r+1 3. Thus JF is
similar (i.e., conjugate in GL(3, )r2 ) to its Jordan normal form
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λ
λ

λ

0 0
1 0

0 0

,
−2

hence JF( )2 is similar to λ λ λdiag( , , )2 2 −4 which is similar to A2. The matrix JF( ) =2

JFJF JFJ F= ( )−1 is conjugate to A2 in  SU(3, )r r2 by 3.1. □

Remark 3.3. The assumption that A is not central is needed in 3.2. Indeed, for any field
F of characteristic two, nontrivial central elements of n FGL( , ) are never products of two
elements in Sylow 2‐subgroups. In fact, a nontrivial central element is of the form u id

with ∈u F . The elements of Sylow 2‐subgroups are unipotent (i.e., they have 1 as their
only characteristic root). If the product of unipotent elements S T, equals u id then
S uT= −1 is a unipotent element with characteristic root u, so u = 1 and the product is
trivial, indeed.

Theorem 3.4. The little projective groupG† is not isomorphic to  PSU(3, )r r2 , for any r .

Proof. If G† is isomorphic to  PSU(3, )r r2 then the translation groups are the root
subgroups, that is, the (Sylow) subgroups of order r3 in  PSU(3, )r r2 . In particular, we
have q r= 3. For r = 2 we have q = 8, andG† is (isomorphic to) the sharply two‐transitive
group   ≅ ⋉ QPSU(3, )4 2 8 3

2; this is excluded by 2.3.
From now on, let r > 2. The group  PSU(3, )r r2 is perfect, and G is a perfect central

extension of  PSU(3, )r r2 , see 1.6 or [9, 3.1]. For the case at hand, we know that
 SU(3, )r r2 is the universal cover of  PSU(3, )r r2 , see [7, Thm. 2]. So we assume that
 SU(3, )r r2 acts (not necessarily faithfully) on the unital  such that the root subgroups

induce transitive groups of translations with center on ∞B . Assume first that r is odd, and
let 2a be the highest power of 2 dividing ∞ U B r r r\ = ( + 1) ( − 1)3 3 3 . Then 2a divides
r r( + 1)( − 1)3 and 2a+1 divides    r r r r( + 1) ( − 1)( + 1) = SU(3, )r r

3 3 2 . So some point
in ∞U B\ is fixed by some involution  ∈ γ SU(3, )r r2 . We use coordinates such that the
hermitian form defining  SU(3, )r r2 2 is given by x y x y x y+ +0 2 1 1 2 0 . Then the matrices

∕











1 0 0
1 1 0
−1 2 −1 1

and








1 −4 −8
0 1 4
0 0 1

belong to root groups of  SU(3, )r r2 , and their product

∕











1 −4 −8
1 −3 −4
−1 2 1 1

is an involution (and represents an involution in  PSU(3, )r r2 ). All

involutions in  SU(3, )r r2 are conjugate by 3.1, hence γ is a product of two root
elements and does not fix any point outside ∞B ; this is a contradiction.

Therefore r is even. Let p be a prime dividing r + 1, and letm be the largest integer such
that pm divides r + 1. Then p is odd (because r is even), and p m2 divides r r r( + 1) ( − 1)3 3 2

   = SU(3, )r r2 .
If p > 3 then p does not divide r r− + 12 , and pm+1 does not divide ∞ U B\ =

r r r r r( + 1) ( + + 1)( − 1)3 3 2 . So there exists at least one orbit whose length is not
divisible by pm+1, and there exists an element γ of order p in the stabilizer of some point
not in ∞B . If γ is not central in  SU(3, )r r2 then γ2 is a product of two root elements (see
3.2) and does not fix any point outside ∞B . So γ is a central element of order p > 3 in

 SU(3, )r r2 , contradicting the fact that the center of  SU(3, )r r2 has order 3 or is trivial.
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There remains the case where p = 3 is the only prime divisor of r + 1. Then
r + 1 = 2 + 1 = 3d m for positive integers d and m. We infer that ∈r = 2 {2, 8}d , see, for
example, [23, Lemma 19.3]; this is an old result of Levi ben Gerson from 1343, see [3,
Section 4, pp. 169 ff]. Since r > 2 we have r = 8 andm = 2. Then 3 = 3m3 +1 is the highest
power of 3 dividing ⋅ ⋅ ⋅ ⋅∞ U B r r r r r\ = ( + 1) ( + + 1)( − 1) = 2 3 7 19 733 3 2 9 3 but
3 = 3 m5 2 +1 divides   ⋅ ⋅ ⋅   r r rSU(3, ) = ( + 1) ( − 1) = 2 3 7 1964 8

3 3 2 9 5 . We now find an
element γ of order 3 in the stabilizer of a point not in ∞B . If γ is not central in

 SU(3, )64 8 then γ γ= −2 is a product of two root elements (see 3.2) and does not fix any
point outside ∞B . So γ is a central element of order 3 in  SU(3, )64 8 and fixes every
point in , see 1.3. This means that  SU(3, )64 8 induces on  a group isomorphic to

 PSU(3, )64 8 , of order ∕ ∕ ⋅ ⋅ ⋅r r r( + 1) ( − 1) 3 = (8 + 1)8 (8 − 1) 3 = 2 3 7 193 3 2 3 3 2 9 4 .
Since 34 does not divide ∞ U B\ we still find an element of order 3 in the stabilizer of a
point not on ∞B , and reach a contradiction using 3.2 again. □

4 | SUZUKI GROUPS AND REE GROUPS

Theorem 4.1. If G† is a Suzuki group then ≥q 26 andG G= †, andG acts semiregularly
on ∞U B\ .

Proof. We haveG = Sz(2 )s† for some odd integer ≥s 1, and the unital has order q = 2 s2 .
The smallest Suzuki group ≅Sz(2) AGL(1, )5 is sharply two‐transitive, and excluded by
2.3.

The Schur multiplier of Sz(2 )3 is elementary abelian of order 4, see [1], compare [40,
4.2.4] and [18, 7.4.2]. If ζ is a central involution in G then ζ acts trivially on ∞B , and
joining any point x with x ζ gives a block B fixed by ζ . If that block does not meet ∞B then
ζ fixes at least one of the q + 1 = 65 points on B. This contradicts 1.3. So B contains a
point z of ∞B . Then there exists a translation τ with center z such that x x=ζ τ . The
translations have order dividing 4, hence τζ is an element of order 2 or 4 fixing x . If τ has
order 4 then τζ τ( ) =2 2 is nontrivial translation fixing x . This is impossible, so τ is an
involution. The automorphisms ζτ and τ induce the same action on ∞B . In particular, the
involution ζτ fixes no point on ∞B apart from z. For each point ∈ ∞y U B\ , the block
joining y and yτζ is fixed by τζ , and meets ∞B in a fixed point of τζ ; that point has to be z.
This means that τζ fixes every block through z, and is a translation with center z. Now

∈ζ τ τζ= ( ) Γz[ ] is a translation fixing every point on ∞B . This contradicts the fact that a
nontrivial translation fixes only one point. So G G= † holds if G = Sz(2 )† 3 .

If G = Sz(2 )s† with s > 3 then G G= † because the Schur multiplier is trivial; see [1],
compare [40, 4.2.4] and [18, 7.4.2]. Thus we have G G= = Sz(2 )s† for ≥s 3.
Consequently, each element of order 2 or 4 in G is a translation. Apart from the
elements of order 4, every element in Sz(2 )s is strongly real, that is, a product of two
involutions; see, for example, [19, 24.7, 24.6]. In particular, every nontrivial element is
the product of two translations (viz., elements of order dividing 4), and does not fix any
point in ∞U B\ . So the action of G on ∞U B\ is semiregular. □

The following result is contained in [12, 2.6]; we give a more detailed proof.
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Lemma 4.2. In the Ree group rRee( ) with ≥r = 3 3e2 +1 , every element of prime order is
the product of two elements with orders dividing 9.

Proof. All involutions in rRee( ) are conjugate (also for r = 3), so each of them is contained
in a subgroup isomorphic to  ≅ ≅ ⋊P L CRee(3) Γ (2, ) SL(2, )8 8 3. The factorization

( ) ( )( )u
u

1 + 1
0 1

= 1 1
1 0

0 1
1

in SL(2, )8 , where ∈u 8 satisfies u u+ + 1 = 03 , shows

that every involution is the product of an element of order 3 with an element of order 9 (it is
also the product of two elements of order 9, see [9, Case (6), p. 429]).

The root elements of rRee( ) have orders dividing 9; thus it remains to consider
elements with prime order p > 3. We have

 r r r r r r r r r rRee( ) = ( + 1) ( − 1) = ( − 1)( + 3 + 1)( − 3 + 1),3 3 3 2

and rRee( ) contains subgroups isomorphic to PSL(2, )r , namely, subgroups of index 2 in
centralizers of involutions, see [38, p. 62]. If p divides r − 12 , then PSL(2, )r contains a
Sylow p‐subgroup of rRee( ), and every element of PSL(2, )r is a product of two elements
(transvections) of order 3 by [9, 3.4] or [11, 2.7].

It remains to consider primes p > 3 that divide r r± 3 + 1; this includes the prime
divisor 7 of  Ree(3) . The corresponding Sylow p‐subgroups are cyclic, hence all
subgroups of order p are conjugate, and rRee( ) contains the Frobenius group ⋊C Cp 3 of
order p3 , see [38, IV.3, p. 83]. The inclusion ⋊ ≤C C AGL(1, )p p3 yields that every
element of order p in ⋊C Cp 3 is a commutator, hence it is the product of two conjugate
elements of order 3. □

Theorem 4.3. IfG† is a Ree group thenG G= †, and the action ofG on ∞U B\ is semiregular.

Proof. We have G r= Ree( )† with ≥r = 3 3e2 +1 , and the unital has order q r= 3.
We first prove thatG G= † if r = 3; then  ≅ ≅ ⋊G P L C= Ree(3) Γ (2, ) SL(2, )†

8 8 3. As
in [9, Case (6), p. 429], we note that the final term D of the commutator series ofG is a cover
of SL(2, )8 , which has no proper cover (see [15, V.25.7] or [30]), hence ≅D SL(2, )8 . There
exists a translation ∈α G D\ of order 3 such that ⋉   α D α D, = induces ≅ ∕

∞
G G G B
†

[ ] on

∞B , as in [9, Case (6), p. 429]. HenceG is the direct product of ⋉ α D with the center
∞

G B[ ] of
G. Each Sylow 3‐subgroup of ⋉ α D has order 33 and acts faithfully on ∞B , hence it is a full
translation group Γz[ ] for some ∈ ∞z B . There exist at least two such Sylow 3‐subgroups (as D
is simple), and together they generate G. Hence ⋉ G α D= and

∞
G B[ ] is trivial.

For r > 3, the Ree group rRee( ) is simple and has trivial Schur multiplier; see [1]. So
G G= † holds for every ≥r 3, and the Sylow 3‐subgroups ofG are the translation groups.
By 4.2 the stabilizer Gc of a point ∈ ∞c U B\ cannot contain any element of prime order,
hence Gc is trivial. □

5 | PROOF OF THE MAIN THEOREM

Let  be a unital of order q with two points which are centers of translation groups of order q.
Then the groupG generated by these two translation groups induces a Moufang set (as defined
in Section 1) on the block ∞B containing the translation centers (see [9, 3.1], where our present
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groupG is called Ĝ). We have listed the possibilities for the little projective groupG† in 1.2. The
groupG† cannot be a unitary group, see 3.4. IfG† is sharply two‐transitive then ∈q {2, 3} and 

is the hermitian unital of order q, see 2.3; thus ≅G SL(2, )q .
Now assume that G† is isomorphic to PSL(2, )q but not sharply two‐transitive. Then q > 3,

the groupG† is simple, andG is a perfect central extension ofG† by 1.6. In most cases, the Schur
multiplier of SL(2, )q is trivial. In those cases, we have ≅G SL(2, )q or ≅G PSL(2, )q . The
Schur multiplier of SL(2, )q is not trivial only if ∈q {4, 9}. In these cases, the arguments in
[9, p. 428, (2)] show that ≅G SL(2, )4 if q = 4 and ≅G SL(2, )9 or ≅G PSL(2, )9 if q = 9. By
[9, 3.5], the action of G on ∞U B\ is semiregular (this also applies if ≤q 3).

If G† is a Suzuki or Ree group then G G= †, and the action on ∞U B\ is semiregular, see 4.1
and 4.3. The smallest Suzuki group ≅Sz(2) AGL(1, )5 is sharply two‐transitive, and excluded
by 2.3.

In each one of the cases discussed above, the order q of the unital turns out to be a prime
power (thanks to the restriction ∈q {2, 3} in the sharply two‐transitive case).

6 | SIMPLIFICATIONS OF A PREVIOUS PAPER

The present paper yields some simplifications of the classification of the unitals admitting all
translations in [9], as we explain now. The elimination of the sharply two‐transitive groups in 2.3
leaves only Moufang sets which are determined uniquely by the isomorphism type of their root
groups, see [9, 3.3]. Thus the mapping  →g : c considered in [9, p. 430] is constant, and
Proposition 4.2 in [9] is not needed anymore; the proof of that proposition depends on the
classification of the finite simple groups. By 3.4 one can omit the consideration of unitary groups.

The classification of the finite simple groups is still involved at the very end of the proof in
[9, p. 430], when we quote a result by Kantor which uses the classification of finite doubly
transitive groups. If the order q of the unital is a power of 2, then the classification of finite
simple groups can be avoided, because the doubly transitive groups of degree q + 13 are
classified in [14, Theorem 2]; see also [28].
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