
Unitals with many involutory translations
- Author
- Theo Grundhoefer, Markus J. Stroppel and Hendrik Van Maldeghem (UGent)
- Organization
- Abstract
- If every point of a unital is fixed by a non-trivial translation and at least one translation has order two then the unital is classical (i.e., hermitian).
- Keywords
- NONCLASSICAL POLAR UNITALS, DESIGNS, SUBGROUPS, Unital, Involution, Translation, Hermitian unital
Downloads
-
s13366-022-00633-3.pdf
- full text (Published version)
- |
- open access
- |
- |
- 341.57 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8755217
- MLA
- Grundhoefer, Theo, et al. “Unitals with Many Involutory Translations.” BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, doi:10.1007/s13366-022-00633-3.
- APA
- Grundhoefer, T., Stroppel, M. J., & Van Maldeghem, H. (2022). Unitals with many involutory translations. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY. https://doi.org/10.1007/s13366-022-00633-3
- Chicago author-date
- Grundhoefer, Theo, Markus J. Stroppel, and Hendrik Van Maldeghem. 2022. “Unitals with Many Involutory Translations.” BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY. https://doi.org/10.1007/s13366-022-00633-3.
- Chicago author-date (all authors)
- Grundhoefer, Theo, Markus J. Stroppel, and Hendrik Van Maldeghem. 2022. “Unitals with Many Involutory Translations.” BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY. doi:10.1007/s13366-022-00633-3.
- Vancouver
- 1.Grundhoefer T, Stroppel MJ, Van Maldeghem H. Unitals with many involutory translations. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY. 2022;
- IEEE
- [1]T. Grundhoefer, M. J. Stroppel, and H. Van Maldeghem, “Unitals with many involutory translations,” BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022.
@article{8755217, abstract = {{If every point of a unital is fixed by a non-trivial translation and at least one translation has order two then the unital is classical (i.e., hermitian).}}, author = {{Grundhoefer, Theo and Stroppel, Markus J. and Van Maldeghem, Hendrik}}, issn = {{0138-4821}}, journal = {{BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY}}, keywords = {{NONCLASSICAL POLAR UNITALS,DESIGNS,SUBGROUPS,Unital,Involution,Translation,Hermitian unital}}, language = {{eng}}, pages = {{11}}, title = {{Unitals with many involutory translations}}, url = {{http://dx.doi.org/10.1007/s13366-022-00633-3}}, year = {{2022}}, }
- Altmetric
- View in Altmetric