Advanced search
1 file | 341.57 KB Add to list
Author
Organization
Abstract
If every point of a unital is fixed by a non-trivial translation and at least one translation has order two then the unital is classical (i.e., hermitian).
Keywords
NONCLASSICAL POLAR UNITALS, DESIGNS, SUBGROUPS, Unital, Involution, Translation, Hermitian unital

Downloads

  • s13366-022-00633-3.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 341.57 KB

Citation

Please use this url to cite or link to this publication:

MLA
Grundhoefer, Theo, et al. “Unitals with Many Involutory Translations.” BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, vol. 64, no. 2, 2023, pp. 287–97, doi:10.1007/s13366-022-00633-3.
APA
Grundhoefer, T., Stroppel, M. J., & Van Maldeghem, H. (2023). Unitals with many involutory translations. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 64(2), 287–297. https://doi.org/10.1007/s13366-022-00633-3
Chicago author-date
Grundhoefer, Theo, Markus J. Stroppel, and Hendrik Van Maldeghem. 2023. “Unitals with Many Involutory Translations.” BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY 64 (2): 287–97. https://doi.org/10.1007/s13366-022-00633-3.
Chicago author-date (all authors)
Grundhoefer, Theo, Markus J. Stroppel, and Hendrik Van Maldeghem. 2023. “Unitals with Many Involutory Translations.” BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY 64 (2): 287–297. doi:10.1007/s13366-022-00633-3.
Vancouver
1.
Grundhoefer T, Stroppel MJ, Van Maldeghem H. Unitals with many involutory translations. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY. 2023;64(2):287–97.
IEEE
[1]
T. Grundhoefer, M. J. Stroppel, and H. Van Maldeghem, “Unitals with many involutory translations,” BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, vol. 64, no. 2, pp. 287–297, 2023.
@article{8755217,
  abstract     = {{If every point of a unital is fixed by a non-trivial translation and at least one translation has order two then the unital is classical (i.e., hermitian).}},
  author       = {{Grundhoefer, Theo and Stroppel, Markus J. and Van Maldeghem, Hendrik}},
  issn         = {{0138-4821}},
  journal      = {{BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY}},
  keywords     = {{NONCLASSICAL POLAR UNITALS,DESIGNS,SUBGROUPS,Unital,Involution,Translation,Hermitian unital}},
  language     = {{eng}},
  number       = {{2}},
  pages        = {{287--297}},
  title        = {{Unitals with many involutory translations}},
  url          = {{http://doi.org/10.1007/s13366-022-00633-3}},
  volume       = {{64}},
  year         = {{2023}},
}

Altmetric
View in Altmetric