On a class of anharmonic oscillators
- Author
- Marianna Chatzakou (UGent) , Julio Delgado and Michael Ruzhansky (UGent)
- Organization
- Project
- Abstract
- In this work, we study a class of anharmonic oscillators within the framework of the Weyl-Hörmander calculus. We obtain spectral properties in terms of Schatten-von Neumann classes for their negative powers and derive from them estimates on the rate of growth for the eigenvalues of the anharmonic oscillator. In particular, we give a simple proof for the main term of the spectral asymptotics of these operators. We also study some examples of anharmonic oscillators arising from the analysis on Lie groups.
- Keywords
- Anharmonic oscillators, Schrödinger equation, Energy levels, Nonhomogeneous calculus, Microlocal analysis, Growth of eigenvalues, NONCOMMUTATIVE HARMONIC-OSCILLATORS, VON-NEUMANN PROPERTIES, PSEUDODIFFERENTIAL-OPERATORS, SCHATTEN CLASSES, WEYL CALCULUS, SPECTRUM, TRACES, SPACES
Downloads
-
1-s2.0-S0021782421001094-main.pdf
- full text (Published version)
- |
- open access
- |
- |
- 583.81 KB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8754755
- MLA
- Chatzakou, Marianna, et al. “On a Class of Anharmonic Oscillators.” JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, vol. 153, 2021, pp. 1–29, doi:10.1016/j.matpur.2021.07.006.
- APA
- Chatzakou, M., Delgado, J., & Ruzhansky, M. (2021). On a class of anharmonic oscillators. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 153, 1–29. https://doi.org/10.1016/j.matpur.2021.07.006
- Chicago author-date
- Chatzakou, Marianna, Julio Delgado, and Michael Ruzhansky. 2021. “On a Class of Anharmonic Oscillators.” JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES 153: 1–29. https://doi.org/10.1016/j.matpur.2021.07.006.
- Chicago author-date (all authors)
- Chatzakou, Marianna, Julio Delgado, and Michael Ruzhansky. 2021. “On a Class of Anharmonic Oscillators.” JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES 153: 1–29. doi:10.1016/j.matpur.2021.07.006.
- Vancouver
- 1.Chatzakou M, Delgado J, Ruzhansky M. On a class of anharmonic oscillators. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES. 2021;153:1–29.
- IEEE
- [1]M. Chatzakou, J. Delgado, and M. Ruzhansky, “On a class of anharmonic oscillators,” JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, vol. 153, pp. 1–29, 2021.
@article{8754755, abstract = {{In this work, we study a class of anharmonic oscillators within the framework of the Weyl-Hörmander calculus. We obtain spectral properties in terms of Schatten-von Neumann classes for their negative powers and derive from them estimates on the rate of growth for the eigenvalues of the anharmonic oscillator. In particular, we give a simple proof for the main term of the spectral asymptotics of these operators. We also study some examples of anharmonic oscillators arising from the analysis on Lie groups.}}, author = {{Chatzakou, Marianna and Delgado, Julio and Ruzhansky, Michael}}, issn = {{0021-7824}}, journal = {{JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES}}, keywords = {{Anharmonic oscillators,Schrödinger equation,Energy levels,Nonhomogeneous calculus,Microlocal analysis,Growth of eigenvalues,NONCOMMUTATIVE HARMONIC-OSCILLATORS,VON-NEUMANN PROPERTIES,PSEUDODIFFERENTIAL-OPERATORS,SCHATTEN CLASSES,WEYL CALCULUS,SPECTRUM,TRACES,SPACES}}, language = {{eng}}, pages = {{1--29}}, title = {{On a class of anharmonic oscillators}}, url = {{http://doi.org/10.1016/j.matpur.2021.07.006}}, volume = {{153}}, year = {{2021}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: