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Markov models for duration-dependent transitions:
Selecting the states using duration values or duration
intervals?
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Abstract In a Markov model the transition probabilities between states do
not depend on the time spent in the current state. The present paper explores
two ways of selecting the states of a discrete-time Markov model for a system
partitioned into categories where the duration of stay in a category affects the
probability of transition to another category. For a set of panel data, we com-
pare the likelihood fits of the Markov models with states based on duration
intervals and with states defined by duration values. For hierarchical systems,
we show that the model with states based on duration values has a better
maximum likelihood fit than the baseline Markov model where the states are
the categories. We also prove that this is not the case for the duration-interval
model, under conditions on the data that seem realistic in practice. Further-
more, we use the Akaike and Bayesian information criteria to compare these
alternative Markov models. The theoretical findings are illustrated by an anal-
ysis of a real-world personnel data set.

Keywords Markov chain · maximum likelihood · duration of stay · model
selection

1 Introduction

Markov models are widely employed to analyze transitions in a system parti-
tioned into categories. For instance, in a credit risk study the system consists
of bond issuing companies and the categories represent rating levels given to
these companies by rating agencies such as Fitch, Moody’s and Standard &
Poor’s (see D’Amico et al., 2006); in a manpower planning model the system
under study is a firm and the categories are the job levels or grades in that
firm (see Bartholomew et al., 1991). Systems, for instance manpower systems,
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can be of hierarchical nature so that the categories are ordered and transi-
tions within the system only occur from a category to the next level category
(Bányai et al., 2018).

Markov chain models are suitable for aggregated analysis at the level of
the states and hence assume that the transition probabilities for any given
state apply to all system units in that state. In such models the expected
state frequencies are calculated using the multinomial distribution where the
estimated transition probabilities are parameters. To obtain valid results, it
is thus required that all system units in a same state have similar transition
propensity. Bartholomew et al. (1991) point out that the state space of the
Markov chain should be chosen so as to reflect this homogeneity of system
units regarding the transition probabilities. Uche (1990) examines the effect of
heterogeneity on Markovian analysis and stresses the need to disaggregate sys-
tem units into homogeneous subgroups to which the Markovian analysis can
be applied. It is therefore necessary to strive, in the state selection phase of a
Markov model, for homogeneity of these states regarding the transition prob-
abilities (Bartholomew et al., 1991; De Feyter, 2006; Rombaut and Guerry,
2015).

A common instance where the transition homogeneity of states is not ful-
filled is when transitions between states depend on the duration of stay in the
originating state. For example, in manpower systems promotion probabilities
may depend on length of service in the grade and in a health context some
diseases are such that the probability of recovering from these depends on the
duration of past episodes of the disease (Patten, 2005). Ugwuowo and Mc-
Clean (2000) provide an overview of modelling approaches that account for
the heterogeneity of personnel in a manpower system. Observable as well as
latent sources of heterogeneity are tackled and the duration variable "length
of service" is explicitly mentioned as an important observable source of het-
erogeneity.

It is well known that transitions depending on the duration of stay (hence-
forth called “DS-transitions”) can be addressed by semi-Markov models that
allow for various distributional forms of the time spent in a state prior to a
transition to an other state. For more details on semi-Markov models, we refer
to Barbu and Limnios (2008). Dewar et al. (2012) study DS-transitions in a
hidden semi-Markov model through explicit parameterization and inference of
state duration distributions. Cartella et al. (2015) build a hidden semi-Markov
model for predicting maintenance and determine the optimal number of hidden
states as well as the optimal sojourn time distribution.

However, Markov models are of lesser complexity than semi-Markov models
and thus are less data demanding and more attractive to use in the eyes
of a decision maker. For example in a manpower planning context they are
transparent and easy to understand for practitioners (Parker and Caine, 1996).
It thus seems natural and valuable to look for ways to build DS-transitions
into the Markov chain framework.

In previous research DS-transitions in Markov models have been approached
in a variety of ways. Some empirical studies follow a stratification approach,
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where the population is divided into age subgroups and separate Markov mod-
els are set up for each of the subgroups (see Jiang and Sinha, 1989; Longini
et al., 1991; Duffy et al., 1997). A drawback of these approaches is that they do
not allow for long-run analyses for the population as a whole since transitions
between the age subgroups are not captured in the model making an analysis
across age subgroups impossible. Instead, based on the Markov chains for each
of the respective subgroups, the population as a whole can be modeled by a
mixed Markov model (Langeheine and Van de Pol, 1994; Frühwirth-Schnatter
et al., 2018).

Another approach is the use of Markov chain models of higher order. In
their model of U.S. GNP growth, Durland and McCurdy (1994) consider a
two-state Markov model where the state transition probabilities are described
by logistic functions of state duration.

Other papers deal with DS-transitions through the selection of states by
duration values or duration intervals. In a Markov model for major depressive
disorder, Patten (2005) uses an ordered set of temporary states in which a
patient can spend only one time-step before going to the recovery state or to
the next temporary state. These states are called tunnel states (Sonnenberg
and Beck, 1993) and they account for different probabilities of transition to the
recovery state based on depression episode durations. DS-transitions are also
incorporated in the so-called Cornell mobility model postulating the axiom
of cumulative inertia. This axiom expresses that the longer an individual has
stayed in a particular status, the more likely he will remain there. In the
context of social mobility, see McGinnis (1968), this means that an individual
who has already obtained a particular social status for some time has a higher
probability to remain in that status for the next time period compared to
a relative newcomer. For this reason, McFarland (1970) suggests to define
the states of the Markov model based on a social status combined with the
duration of stay in that status.

In this paper, we further investigate the technique proposed by Bartholomew
et al. (1991) to partition the system’s categories into subgroups by duration of
stay intervals and then to use these subgroups as the states of a Markov model.
First, we aim to address some of the problems with the proposed duration-
interval approach. Such a duration-interval model does not fulfill the required
homogeneity of states regarding the transition probabilities because, within
a category, a system unit can only make a transition (in one step) to the
next (age- or seniority) interval if it has reached the endpoint of the previ-
ous interval. Second, we prove that the likelihood of a set of panel data given
this duration-interval model cannot exceed the likelihood given the baseline
Markov model with the categories as the states if certain conditions on the data
are met. We propose to remedy these issues by disaggregating the duration
of stay intervals into discrete duration of stay point values, thus considering
subgroups according to the exact number of periods of time in the category.

The present paper is organised as follows. Section 2 looks at alternative
time-homogeneous and discrete Markov models by selecting the states in two
different ways: states equal to the categories partitioned in duration intervals
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and states equal to the categories divided by duration values. In Section 3,
we study the relative quality of the resulting Markov models using the Akaike
Information Criterion (AIC; Akaike, 1973) and the Bayesian Information Cri-
terion (BIC; Schwarz, 1978) for a given set of panel data. In Section 4 the find-
ings are illustrated using a real-world data set. We conclude with a discussion
in Section 5. Supporting lemmas and their proofs are gathered in Appendix A.

2 Markov models for duration-dependent transitions

In the following, we consider the case of an hierarchical system, i.e. a system
that can be divided into s categories C1, . . . , Cs, in such a way that one-step
transitions from one category to another only occur from Ci to Ci+1 (s ≥ 2,
1 ≤ i ≤ s− 1). An example of such a system is a hierarchical organization or
firm in which the employees can only promote from one grade to the next.

Choose i0 ∈ {1, . . . , s−1} so that Ci0 is a category for which the transition
probability to the next category Ci0+1 depends on the duration of stay in
Ci0 . For the sake of simplicity, denote A = Ci0 and B = Ci0+1. Suppose,
the duration effect is such that all system units with duration of stay ≤ k
in A have the same transition probability, say p1, to B and that those with
duration of stay > k in A face the transition probability p2 ( ̸= p1) to B.
Dichotomous duration effects of this kind appear in career mobility studies
that try to reveal for employees with comparable career attainment or career
success whether they are characterized by a fast-track or a slow-track career
progression (Forbes, 1987; Lyness and Thompson, 2000).

Suppose panel data on the system units’ categories are available. Generally,
these data are censored on both sides of the observation period. However, since
the focus of this paper is on comparing alternative Markov models, we consider,
for estimation purposes, the subset of the data with complete information
on the observed transitions from A to B. We call such subset AB-complete.
Formally, an AB-complete data set satisfies the following properties:

– A system unit that moves from A to B during the observation period has
also entered A during that period.

– A system unit that visits A during the observation period also makes a
transition to B during that period.

In any Markov chain model, the states should satisfy the homogeneity re-
quirement concerning the transition probabilities. In the following sections, we
discuss two ways of selecting the states. We compare the maximized likelihoods
of the data in view of the associated Markov chain models. The presented
approaches are fully described for the transitions from A to B but are also
transferable to any pair of consecutive categories Ci0 and Ci0+1 of the system.
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2.1 State selection by duration intervals

As a modeling approach to duration effects, Bartholomew et al. (1991) have
suggested to consider the Markov model with the states defined by length-of-
stay intervals in a category. We now formalize his idea.

Denote C = {C1, . . . , Cs}. Let A = Ci0 be a category for which a dichoto-
mous duration effect exists in the transition to the next category B = Ci0+1

(1 ≤ i0 ≤ s − 1). Let k be a natural number. Denote by A[0,k] the state of
being in category A for at most k periods of time, and by A(k,∞) the state of
being in A for more than k periods of time. We employ the notation “M(k)”
for a Markov chain with state space Ci0 ∪ S, where

Ci0 = C \ {Ci0 , Ci0+1} = C \ {A,B} (1)

and
S1 = A[0,k] , S2 = A(k,∞) , S3 = B , S = {S1, S2, S3}, (2)

and where the transition probabilities from state Si to state Sj , denoted πij ,
are subject to the constraints

π21 = π31 = π32 = 0 (3)

due to the hierarchical nature of the considered system.
For Ci, Cj ∈ Ci0 , let pij denote the transition probability from Ci to Cj .

Denote n(X,Y ) the number of one-step transitions from state X to state Y
and let n(X) =

∑
Y n(X,Y ). The maximized likelihood of the panel data

given M(k) and given the initial distribution among the states is then

L̂M(k) = L̂Ci0
· L̂S

where

L̂Ci0
=

∏
(Ci,Cj)∈C2

i̸=i0

p̂
n(Ci,Cj)
ij and L̂S =

∏
(Si,Sj)∈S2

π̂
n(Si,Sj)
ij (4)

and any factors 00 are set equal to one. The maximum likelihood estimators
of the various transition probabilities are given by

p̂ij =
n(Ci, Cj)

n(Ci)
, π̂ij =

n(Si, Sj)

n(Si)
. (5)

This state selection method seems a natural approach to the assumed du-
ration effects. However, there are some issues with it. First, we shall show
in Section 3 that, under certain conditions, the maximized likelihood L̂M(k)

cannot exceed the maximized likelihood of the same data given the baseline
Markov chain model with state space C, which we denote “M”. This entails
that the AIC- and BIC-values of model M(k) cannot be smaller than those
of model M (see for more details Section 3). A second issue is that state S1
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in model M(k) is not homogeneous regarding the transition probabilities. In-
deed, system units in S1 can only move to S2 if they have stayed exactly k
periods of time in category A. As such, the transition from S1 to S2 still re-
mains duration-dependent. In order to avoid these issues without sacrificing
the simplicity of a Markov chain model, we consider an alternative definition
of the states as explained in the following section.

2.2 State selection by duration values

Let A[0,k] = ∪k
t=0At, where At is the event of being in category A for exactly

t periods of time. Define M̃(k) to be a Markov chain with state space Ci0 ∪ S̃,
where S̃ = {S̃1, . . . , S̃k+3} and

S̃1 = A0 , S̃2 = A1 , . . . , S̃k+1 = Ak , S̃k+2 = A(k,∞) , S̃k+3 = B, (6)

and such that the transition probabilities from states S̃i to S̃j , denoted τij ,
are subject to the constraints{

τij = 0, if j ≤ i or i+ 2 ≤ j ≤ k + 2,
τ1,k+3 = · · · = τk+1,k+3

(7)

by virtue of the hierarchical nature of the considered system.
The maximized likelihood of the data in view of M̃(k) conditional on the

initial distribution among the states is

L̂M̃(k) = L̂Ci0
· L̂S̃ ,

where L̂Ci0
is given by (4) and L̂S̃ =

∏
(S̃i,S̃j)∈S̃2 τ̂

n(S̃i,S̃j)
ij (and possible factors

00 are taken equal to one). For the sake of simplicity, let us denote τ1,k+3 =
· · · = τk+1,k+3 = τ1 and τk+2,k+3 = τ2. Using the constraints (7) on the
transition probabilities, we can rewrite the expression for L̂S̃ as follows:

L̂S̃ = (1− τ̂1)
∑k+1

i=1 n(S̃i,S̃i+1)τ̂
∑k+1

i=1 n(S̃i,S̃k+3)
1 (1− τ̂2)

n(S̃k+2,S̃k+2)τ̂
n(S̃k+2,S̃k+3)
2 ,

(8)
where

τ̂1 =

∑k+1
i=1 n(S̃i, S̃k+3)∑k+1

i=1 n(S̃i)
, τ̂2 =

n(S̃k+2, S̃k+3)

n(S̃k+2)
.

The state spaces of models M(k) and M̃(k) are connected as follows

S1 = ∪k+1
i=1 S̃i , S2 = S̃k+2 , S3 = S̃k+3, (9)

hence
∑k+1

i=1 n(S̃i, S̃i+1) = n(S1, S1)+n(S1, S2),
∑k+1

i=1 n(S̃i, S̃k+3) = n(S1, S3),∑k+1
i=1 n(S̃i) = n(S1). Denoting nij = n(Si, Sj) and ni = n(Si) for simplicity,

(8) can be rewritten as

L̂S̃ =
(
1− n13

n1

)n11+n12
(

n13

n1

)n13
(
1− n23

n2

)n22
(

n23

n2

)n23

(10)
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In the next section, we show that L̂M̃(k) does always exceed the maximized
likelihood of the same data given the baseline Markov chain model with state
space {C1, . . . , Cs}, except for the case when τ̂1 = τ̂2.

3 Likelihood fit comparison

In a model selection process using an information criterion, the maximized
likelihoods of the data in view of the candidate models are considered. We
now compare – conditional on the initial distribution among the states – the
likelihoods for the duration-interval model M(k) and the duration-value model
M̃(k) to the baseline Markov chain model M, having the set C = {C1, . . . , Cs}
of categories as state space. To this end, we adopt the following notation:

∆ℓℓM1-M2
= ln L̂M1

− ln L̂M2
, (11)

where Mi ∈ {M̃(k),M(k),M} for i = 1, 2 and k ≥ 1.
For model M, we have

L̂M =
∏

(Ci,Cj)∈C2

p̂
n(Ci,Cj)
ij = L̂Ci0

· nAA
nAAnAB

nAB

nAnA
,

where L̂Ci0
is given by (4) and nAA = n(A,A), nAB = n(A,B) and nA =

nAA + nAB . With the use of the auxiliary function ϕ defined as

ϕ(t1, t2) = φ(t1) + φ(t2)− φ(t1 + t2), (12)

where

φ(t) =

{
t ln t if t > 0

0 if t = 0,
(13)

the log-likelihood of model M can be rewritten as

ln L̂M = ln L̂Ci0
+ ϕ(nAA, nAB). (14)

The log-likelihoods of models M(k) and M̃(k) can also be expressed using
the function ϕ. We hereby need some supporting lemmas which are proven in
Appendix Appendix A. By lemma 1

ln L̂M(k) = ln L̂Ci0
+ ln L̂S

= ln L̂Ci0
+ ϕ(n11, n12) + ϕ(n11 + n12, n13) + ϕ(n22, n23) (15)

and by lemma 2

ln L̂M̃(k) = ln L̂Ci0
+ ln L̂S̃

= ln L̂Ci0
+ ϕ(n11 + n12, n13) + ϕ(n22, n23). (16)
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Using (14), (15) and (16), we can now express the differences in maximized
log-likelihoods in terms of the one-step transition frequencies nij = n(Si, Sj)
(1 ≤ i ≤ j ≤ 3), nAA and nAB :

∆ℓℓM(k)-M = ϕ(n11, n12) + ϕ(n11 + n12, n13) + ϕ(n22, n23)− ϕ(nAA, nAB)

(17)

∆ℓℓM̃(k)-M = ϕ(n11 + n12, n13) + ϕ(n22, n23)− ϕ(nAA, nAB) (18)

∆ℓℓM(k)-M̃(k) = ϕ(n11, n12) (19)

We are now ready to formulate our main results on the signs of the log-
likelihood differences.

Theorem 1 For an AB-complete data set satisfying nAA > 2nAB and for
k ≥ 1, it holds that ∆ℓℓM(k)-M < 0 if

τ̂23 > p̂AB and
(
n2 ≥ 3

2nAB or n12 ≤ 3
4nAB

)
. (20)

Proof See Appendix A.

Theorem 2 For an AB-complete data set, it holds that ∆ℓℓM̃(k)-M ≥ 0 with
equality if and only if τ̂13 = τ̂23 = p̂AB.

Proof See Appendix A.

Theorem 3 For an AB-complete data set, it holds that ∆ℓℓM(k)-M̃(k) ≤ 0

with equality if and only if n11 = 0 or n12 = 0.

Proof See Appendix A.

The above theorems allow to draw some conclusions about model selection,
when the models M(k), M̃(k) and M are compared using common information-
theoretic criteria such as the Akaike Information Criterion (AIC; Akaike, 1973)
and the Bayesian Information Criterion (BIC; Schwarz, 1978). Both criteria
assess model fit penalized for the number of estimated parameters. AIC and
BIC are defined as:

AIC = −2 ln L̂+ 2K, BIC = −2 ln L̂+K · lnn,

where L̂ is the maximized likelihood of the data given the model, K is the
number of estimable (free) parameters of the model and n is the number of
observations in the dataset at hand. In an information-theoretic approach,
models with smaller AIC/BIC-values are ‘preferred’ over models with larger
AIC/BIC-values. Among the candidate models, the model with the smallest
AIC-value need not be the model with the smallest BIC-value and vice versa.
For more details on the interpretation of information-theoretic criteria, we
refer to Anderson and Burnham (2004). In the context of Markov chains,
AIC and BIC have been used and studied to estimate the order of the chain
(Katz, 1981). Cartella et al. (2015) determine for a hidden semi-Markov chain
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the optimal number of hidden states by AIC. A discussion on selecting the
number of latent classes in a latent Markov model using AIC and BIC is given
by Bacci et al. (2014).

The AIC- and BIC-differences between two candidate models M1 and M2

are expressible in terms of the corresponding log-likelihood difference and the
difference in number of estimable parameters:

∆AICM1-M2
= −2∆ℓℓM1-M2

+ 2∆KM1-M2
, (21)

∆BICM1-M2
= −2∆ℓℓM1-M2

+∆KM1-M2
· lnn. (22)

Using the terminology of Bartolucci et al. (2012, Chapter 4), the Markov chain
models M(k) and M̃(k) are ‘constrained’ in the sense that the transition matrix
is parameterized in a way specific to the system studied. By the constraints (3)
and (7), we have ∆KM(k)-M = 2, ∆KM̃(k)-M = 1 and ∆KM(k)-M̃(k) = 1. Under
the conditions of Theorem 1, we have ∆ℓℓM(k)-M < 0, hence, by (21) and (22),
both∆AICM(k)-M and∆BICM(k)-M will be positive. In this case, both AIC and
BIC lead to the non-selection of model M(k) over the baseline Markov model
M. More generally, this conclusion holds when ∆ℓℓM(k)-M < min{2, lnn}.

Furthermore, the signs of ∆AICM̃(k)-M and ∆BICM̃(k)-M depend on the
value of the log-likelihood difference ∆ℓℓM̃(k)-M. If τ̂13 = τ̂23 = p̂AB (no du-
ration effect), we have ∆ℓℓM̃(k)-M = 0 by Theorem 2 and thus ∆AICM̃(k)-M
and ∆BICM̃(k)-M will be positive, so that AIC and BIC will not select M̃(k)

over the baseline Markov model M in that case. The same conclusion holds
when 0 < ∆ℓℓM̃(k)-M ≤ 1 for AIC; if BIC is used, it holds only when n > e2.
In practice, the number of observations n in the panel data set is sufficiently
high, hence we assume n > e2 from this point on. If 1 < ∆ℓℓM̃(k)-M ≤ ln

√
n,

M̃(k) is chosen over M by AIC but not by BIC. If ∆ℓℓM̃(k)-M > ln
√
n > 1,

both AIC and BIC select model M̃(k) over M. Finally, model M̃(k) is selected
over model M(k) by both AIC and BIC, because of Theorem 3. These results
on pairwise comparison of the models M(k), M̃(k) and M are summarized in
Table 1.

Table 1: Model selection via AIC and BIC in case n > e2 for various log-
likelihood difference values.

M1 M2 ∆KM1-M2
∆ℓℓM1-M2

AIC BIC
M(k) M 2 · < 2 M M

M̃(k) M 1 0 ≤ · < 1 M M

M̃(k) M 1 1 < · < ln
√
n M̃(k) M

M̃(k) M 1 · > ln
√
n M̃(k) M̃(k)

M(k) M̃(k) 1 −∞ < · <∞ M̃(k) M̃(k)

Noteworthy is the agreement of AIC and BIC on the selection of model
M̃(k) over M whenever the number of observations n does not exceed the value
e2∆ℓℓ

M̃(k)-M .
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4 Illustrative example

We use a real-world panel data set of academic staff of a Belgian Univer-
sity from 1999 to 2013. To study the career advancement from grade A to
grade B, we consider all the faculty members who entered grade A and even-
tually promoted to grade B during the aforementioned time horizon. For
A = “lecturer” and B = “senior lecturer”, we thus observe nAB = 68 fac-
ulty members for which nAA = 172. Their career progression from lecturer
to senior lecturer takes nAA

nAB
+ 1 = 3.52 years on average with a maximum

of T = 10 years. To illustrate Theorems 1 and 2, we compare the maximized
likelihood of the data given models M(k) and M̃(k) to the baseline Markov
chain model M for values of k ranging from 1 to T − 2. The results are shown
in Table 2. Therein, ∆ℓℓM(k)-M = ψ(n11, n12) where ψ is defined by (24), and
∆ℓℓM̃(k)-M = ∆ℓℓM(k)-M − ϕ(n11, n12) using (17) and (18).

Table 2: Model comparison results for the career progression from lecturer
(A) to senior lecturer (B). Figures in bold correspond to the value of k where
∆ℓℓM̃(k)-M is maximal.

k n11 n12 n2 τ̂23 ∆ℓℓM(k)-M ∆ℓℓ
M̃(k)-M

1 55 43 117 0.37 −63.18 4.02
2 98 34 74 0.46 −67.46 7.84
3 132 18 40 0.45 −51.97 3.07
4 150 11 22 0.50 −37.59 2.55
5 161 5 11 0.45 −21.67 0.76
6 166 4 6 0.67 −17.00 1.95
7 170 1 2 0.50 −5.93 0.21
8 171 1 1 1.00 −4.88 1.27
nAB = 68, nAA = 172, p̂AB = 0.28

For all tabulated values of k, ∆ℓℓM(k)-M is negative. This agrees with The-
orem 1, since, for all k, τ̂23 > p̂AB and n12 < 3

4nAB = 51. Remark that
all entries in the last column of Table 2 are positive, as they should be by
Theorem 2.

The model comparison results for the career progression from senior lec-
turer (A) to professor (B) are displayed in Table 3. Again, ∆ℓℓM(k)-M < 0 for
all values of k. This is also in agreement with Theorem 1 because τ̂23 > p̂AB

and n2 > 3
2nAB = 99 (if k ≤ 2) or n12 < 3

4nAB = 49.5 (if k ≥ 3).
In Tables 2 and 3, ∆ℓℓM̃(k)-M attains its maximum value at k = 2. Since

∆ℓℓM̃(2)-M > 1 in both tables, model M̃(2) is selected over the baseline model

M by AIC (see Table 1). According to Table 1, BIC selects model M̃(2) over
model M in both career progression examples, as the number n of observations
in the panel dataset, calculated as the academic staff size multiplied by the
number of years (14), is well below e2(7.84) ≈ 6452640 for a single university
institution in Belgium.



Title Suppressed Due to Excessive Length 11

Table 3: Model comparison results for the career progression from senior lec-
turer (A) to professor (B). Figures in bold correspond to the value of k where
∆ℓℓM̃(k)-M is maximal.

k n11 n12 n2 τ̂23 ∆ℓℓM(k)-M ∆ℓℓ
M̃(k)-M

1 62 55 178 0.31 −68.91 11.98
2 117 50 123 0.41 −79.75 22.18
3 167 28 73 0.38 −72.91 7.32
4 195 17 45 0.38 −55.53 3.67
5 212 11 28 0.39 −41.32 2.51
6 223 8 17 0.47 −31.86 2.90
7 231 6 9 0.67 −23.61 4.37
8 237 2 3 0.67 −10.14 1.42
9 239 1 1 1.00 −4.94 1.54
nAB = 66, nAA = 240, p̂AB = 0.22

Considering the above observations, the promotion probability of individ-
uals who remain at most two years in their grade appears to contrast with the
promotion probability of those having a longer length of service in that grade.
In Figures 1 and 2, the promotion rates for different grade seniority values
are shown together with error bars based on one standard error of proportion
estimation. The horizontal dotted line represents p̂AB . It is clear from these
figures that k = 2 is the only value that splits the graph in two homogeneous
parts with similar promotion rates.

5 Discussion

Bartholomew et al. (1991) have suggested that transitions depending on the
length of stay in a state could be incorporated into the Markov chain frame-
work by a suitable definition of the states using length-of-stay intervals. For-
malising this idea, the model M(k) tries to capture the situation in which
transition probabilities over the length-of-stay intervals [0, k] and (k,∞) are
different. Although the state space definition of model M(k) seems a natural
choice, there are some issues related to it. First, the state-homogeneity regard-
ing the transition probabilities, which is required in a Markov model, cannot
be fulfilled when the states are based on duration intervals. In addition, we
prove Theorem 1 which entails that, for non-censored panel data satisfying
certain conditions, model M(k) cannot be preferred over the baseline Markov
chain model M which ignores the duration effects, when AIC and BIC are used
as model selection tool criteria. In the light of the presumed duration effect,
the result of Theorem 1 surprises. So far, it is unclear whether the result still
holds for a censored data set.

In a manpower planning context, the conditions of Theorem 1 can be inter-
preted as follows. The inequality nAA > 2nAB reflects that the nAB promotees
in the data-set stay on average more than three periods of time in grade A
before promoting to B. The employee who promotes to B at the moment
he attains a grade seniority of at most k in A, can be called a fast-tracker.
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Fig. 1: Promotion rates from lecturer to senior lecturer by grade seniority, with
error bars based on one standard error of proportion estimation.
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Fig. 2: Promotion rates from senior lecturer to professor by grade seniority,
with error bars based on one standard error of proportion estimation.
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Employees who remain longer in A before promoting to B are then named
slow-trackers. The inequality τ̂23 > p̂AB reflects that fast-track promotions
are not as common as slow-track promotions in the data-set. The inequality
n2 ≥ 3

2 nAB signifies the employees spend on average at least 3/2 periods of
time in a slow-track career progression state in A before switching to B. Fi-
nally, the inequality n12 ≤ 3

4 nAB expresses that at least 25% of the promotees
in the data-set are fast-trackers. These conditions seem realistic in practice,
as our illustrative example in Section 4 demonstrates.

To avoid the issues of the duration-interval model M(k) mentioned above,
we have adapted its state space by disaggregating the state A[0,k] into its
duration-value component states A0, . . . , Ak having equal one-step transition
probabilities to category B. The Markov chain so obtained is denoted M̃(k).
The states A0, . . . , Ak have the property that the only one-step transition from
Ai (0 ≤ i ≤ k) is either to B, or to Ai+1 (if i < k) or A(k,+∞) (if i = k). These
duration-value component states are examples of what Sonnenberg and Beck
(1993) call tunnel states, i.e. states that can only be visited in a fixed order
and without transitions to themselves.

Let k∗ be a duration-of-stay cut-off value for which the likelihood differ-
ence ∆ℓℓM̃(k∗)-M between models M̃(k∗) and M is maximized. Provided that
complete information on the history from category A to category B is avail-
able and used, we have by Theorem 2 that ∆ℓℓM̃(k∗)-M is non-negative. If in

addition ∆ℓℓM̃(k∗)-M > 1, the AIC will select model M̃(k∗) over M, see Table 1.
In both our examples, we have found k∗ = 2. Figures 1 and 2 suggest that
this value of k∗ corresponds with the clearest cut between the fast-track and
slow-track promotion rates.

To introduce and study properties of the duration-interval model and
duration-value model, we have focused on the transitions between two ar-
bitrarily chosen categories A and B, for which a duration effect is present.
Nevertheless our finding can be generalized to the case of multiple categories
with duration effects. By a recursive argument, the state selection by duration
intervals for all involved categories can never result in a Markov model with
smaller AIC-value.

We conclude with the following thoughts on the duration-interval model.
The hidden Markov model has a two-layered structure consisting of observable
variables and hidden states. Similarly, the duration-interval model has also two
layers, being the categories and the corresponding states based on duration
intervals. In the hidden Markov model, AIC and BIC enable to determine the
optimal number of hidden states (Bacci et al., 2014; Cartella et al., 2015).
In this way, the AIC and BIC criterion are useful in determining the best
level of disaggregation of the categories into duration intervals. Suppose this
approach results in a situation where the duration effect is described by κ cut-
points, say k1 < · · · < kκ where κ ≥ 2, instead of one cut-point k as described
in the present paper. Then it would be of interest to see if the unexpected
result of Theorem 1 continues to hold in this case, i.e. does the corresponding
duration-interval model M(k1, . . . , kκ) still have a poorer likelihood fit to a set
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of panel data than the baseline Markov model? To our knowledge, this is an
open question.
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Appendix A Proofs of theorems and lemmas

Let us recall the definition of the following functions:

φ(t) =

{
t ln t if t > 0

0 if t = 0,
(13)

ϕ(t1, t2) = φ(t1) + φ(t2)− φ(t1 + t2). (12)
and

ψ(x, y) = ϕ(x, y) + ϕ(x+ y, nAB − y) + ϕ(nAA − x− y, y)− ϕ(nAA, nAB). (24)
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Lemma 1 ln L̂S = ϕ(n11, n12) + ϕ(n11 + n12, n13) + ϕ(n22, n23)

Proof Using (4), (5) and the fact that n2 − n23 = n22, we obtain

ln L̂S = φ(n11) + φ(n12) + φ(n13) + φ(n22) + φ(n23)− φ(n1)− φ(n2)

= φ(n11) + φ(n12)− φ(n11 + n12)

+ φ(n11 + n12) + φ(n13)− φ(n1)

+ φ(n22) + φ(n23)− φ(n2)

= ϕ(n11, n12) + ϕ(n11 + n12, n13) + ϕ(n22, n23).

Lemma 2 ln L̂S̃ = ϕ(n11 + n12, n13) + ϕ(n22, n23)

Proof It follows from (10) that

L̂S̃ =
(n11 + n12)

n11+n12 n13
n13 n22

n22 n23
n23

n1
n1 n2

n2 ,
using n1 = n11 + n12 + n13 and n2 = n22 + n23. Hence,

ln L̂S̃ = φ(n11 + n12) + φ(n13) + φ(n22) + φ(n23)− φ(n1)− φ(n2)

=
(
φ(n11 + n12) + φ(n13)− φ(n1)

)
+

(
φ(n22) + φ(n23)− φ(n2)

)
= ϕ(n11 + n12, n13) + ϕ(n22, n23).

Lemma 3 The function ϕ, defined by (12), is homogeneous of the first degree, i.e.

ϕ(tx, ty) = t ϕ(x, y) for all t, x, y ≥ 0

Proof By (13), we have that φ(tu) = t φ(u) + uφ(t) for all t, u ≥ 0. The result then follows
from (12).

Lemma 4 The function ϕ, defined by (12), is convex.

Proof Let u, v > 0. We prove that the Hessian matrix of ϕ at (u, v), denoted H, is positive
semi-definite. Using standard calculus,

H =

[
v

u(u+v)
− 1

u+v

− 1
u+v

u
v(u+v)

]
=

1

uv(u+ v)

[
v2 −uv
−uv u2

]
. (23)

The eigenvalues of H are 0 and u2+v2

uv(u+v)
. They are both non-negative, hence H is positive

semi-definite.

Lemma 5 For the function ϕ, defined by (12), holds

ϕ(a, b) + ϕ(c, d) ≥ ϕ(a+ c, b+ d) for all a, b, c, d ≥ 0

with equality if and only if ad = bc.

Proof The inequality is an immediate consequence of the convexity and homogeneity prop-
erties of the function ϕ (lemmas 3 and 4):

ϕ(a, b) + ϕ(c, d) ≥ 2ϕ(a+c
2
, b+d

2
) = ϕ(a+ c, b+ d).

Suppose ad = bc. If ad = 0 = bc, then equality holds surely because ϕ(u, v) = 0 if u = 0
or v = 0. If ad = bc ̸= 0, then c = ta and d = tb for some number t ̸= 0. Hence, by the
homogeneity of ϕ,

ϕ(a, b) + ϕ(c, d) = ϕ(a, b) + ϕ(ta, tb)

= (1 + t)ϕ(a, b)

= ϕ((1 + t)a, (1 + t)b) = ϕ(a+ c, b+ d).
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Now suppose equality holds. Then, by homogeneity of ϕ,

ϕ(a, b) + ϕ(c, d)

2
= ϕ(a+c

2
, b+d

2
).

Consequently, the function f(t) = ϕ(u, v) with u = a+ t(c− a) and v = b+ t(d− b) is linear
on [0, 1], because ϕ is convex. So, f ′′(t) = 0 for all t ∈ (0, 1). Using the Hessian matrix of ϕ
in (23), we obtain

f ′′(t) = (c− a)2H11 + 2(c− a)(d− b)H12 + (d− b)2H22

=
[(b− d)u− (c− a)v]2

uv(u+ v)
=

(ad− bc)2

uv(u+ v)
,

and the result ad = bc thus follows from f ′′(t) = 0.

Lemma 6 For the function ϕ, as defined in (12), holds that ϕy : t 7→ ϕ(t, y) is strictly
decreasing and strictly convex for all y > 0.

Proof Using standard calculus, ϕy ′(t) = ln t − ln (t+ y) < 0 and ϕy
′′(t) = y

t(t+y)
> 0, if

t > 0.

Lemma 7 If nAA > 2nAB, it holds that ψ(nAA − 3
2
nAB , nAB) < 0.

Proof Let α = nAA/nAB . By (24) and Lemma 3,

ψ(nAA − 3
2
nAB , nAB) = h(α)nAB

where
h(t) = ϕ1(t− 3

2
) + ϕ1(

1
2
)− ϕ1(t)

and ϕ1 is the function u 7→ ϕ(u, 1). Since ϕ1 is strictly convex (Lemma 6), its first derivative
is strictly increasing and therefore h is strictly decreasing. Furthermore,

h(2) = ϕ( 1
2
, 1) + ϕ( 1

2
, 1)− ϕ(2, 1) = 2ϕ( 1

2
, 1)− ϕ(2, 1) = 0

by Lemma 3. Consequently, h(α) < 0 since α > 2.

Lemma 8 If nAA > 2nAB, it holds that ψ(nAA − 3
4
nAB ,

3
4
nAB) < 0.

Proof Let α = nAA/nAB and β = 3/4. By (24) and Lemma 3,

ψ(nAA − βnAB , βnAB) = h(α)nAB

where
h(t) = ϕ(t− β, β) + ϕ(t, 1− β)− ϕ(t, 1).

With the use of the function ϕ1 : u 7→ ϕ(u, 1) and equations (13) and (12) we can rewrite
h(t) as

h(t) = ϕ1(t− β)− ϕ1(t) + ϕ(β, 1− β).

Since ϕ1 is strictly convex (Lemma 6), its first derivative is strictly increasing and
therefore h is strictly decreasing. The result now follows from the fact that h(2) < 0.

Lemma 9 If nAA ≥ 3nAB, it holds that ψ(nAB , nAB) < 0.

Proof Let α = nAA/nAB . By (24) and Lemma 3,

ψ(nAB , nAB) = h(α)nAB

where
h(t) = ϕ(1, 1) + ϕ1(t− 2)− ϕ1(t)

and ϕ1 is the function u 7→ ϕ(u, 1). Since ϕ1 is strictly convex (Lemma 6), its first derivative
is strictly increasing and therefore h is strictly decreasing. Furthermore, h(3) = ln 16

27
< 0.

Hence, since α ≥ 3 the monotonicity of h yields h(α) < 0 and the result follows.
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Lemma 10 If nAA > 2nAB, it holds that ψ(nAA−nAB
2

, nAB) < 0.

Proof Let α = nAA/nAB . By (24) and lemmas 3 and 6,

ψ(nAA−nAB
2

, nAB) = h(α)nAB ,

where
h(t) = ϕ(t− 1, 2)− ϕ(t, 1).

Using standard calculus,
h′(t) = ln (t− 1)− ln t < 0,

so that the function h is strictly decreasing. Furthermore, h(2) = 0 which can be verified by
straightforward computation. Hence, since α > 2 the monotonicity of h yields h(α) < 0 and
the result follows.

Lemma 11 ψ(0, nAAnAB
nAA+nAB

) = 0.

Proof Denote ρ = nAAnAB
nAA+nAB

. Then, nAB −ρ = nAB
nAA

ρ and nAA−ρ = nAA
nAB

ρ, so that, using
(24) and Lemma 3,

ψ(0, ρ) = ϕ(θ, nAB − ρ) + ϕ(nAA − ρ, ρ)− ϕ(nAA, nAB)

= ϕ(ρ, nAB
nAA

ρ) + ϕ(nAA
nAB

ρ, ρ)− ϕ(nAA, nAB)

= ρ
nAA

ϕ(nAA, nAB) + ρ
nAB

ϕ(nAA, nAB)− ϕ(nAA, nAB)

=
(

ρ
nAA

+ ρ
nAB

− 1
)
ϕ(nAA, nAB) = 0.

Lemma 12 ψ(0, nAB) = ψ(nAA − nAB , nAB) > 0.

Proof By (24), ψ(0, nAB) and ψ(nAA −nAB , nAB) are both equal to ϕnAB (nAA −nAB)−
ϕnAB (nAA), where ϕnAB is the function u 7→ ϕ(u, nAB). According to Lemma 6, ϕnAB is
strictly decreasing and the result follows.

Lemma 13 For an AB-complete data set, we have that τ̂23 > p̂AB is equivalent to g(n11, n12) >
0, where

g(x, y) = nABx+ (nAA + nAB)y − nAAnAB.

Hence, if τ̂23 > p̂AB, the point (n11, n12) in xy-plane lies above the line through the points
(0, nAAnAB

nAA+nAB
) and (nAA, 0).

Proof Because of AB-completeness, it holds that n23 = n12. Furthermore, n2 = n22+n23 =
n22 + n12 = nAA − n11. Consequently, since τ̂23 = n23/n2 and p̂AB = nAB/(nAA + nAB),
we have

τ̂23 > p̂AB ⇔
n12

nAA − n11
>

nAB

nAA + nAB

⇔ n12(nAA + nAB) > (nAA − n11)nAB

⇔ g(n11, n12) > 0.

Proof of theorem 1

Proof In expression (17), we can eliminate the variables n13, n22 and n23, since nAA =
n11+n12+n22, and, by the AB-completeness assumption, nAB = n13+n23 and n12 = n23.
Hence, ∆ℓℓM(k)-M = ψ(n11, n12), where

ψ(x, y) = ϕ(x, y) + ϕ(x+ y, nAB − y) + ϕ(nAA − x− y, y)− ϕ(nAA, nAB). (24)

The function ψ is convex, since each of the first three terms in (24) is a convex function
of (x, y), as a composition of the convex function ϕ (Lemma 4) and an affine function from
R

2 to R2.
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Let α = nAA − nAB . By assumption, α > 0. Let β = min{nAB ,
α
2
} and denote the

following points in xy-plane: a(0, nAAnAB
nAA+nAB

), b(β, nAB), c(α, nAB), d(0, nAA), e(nAA −
3
2
nAB , nAB) and f(nAA − 3

4
nAB ,

3
4
nAB). Because nAA > 2nAB , the 3-simplex ecf is a

subset of the 4-simplex abcd, see figure 3.
Take k ≥ 1 sufficiently large, so that τ̂23 > p̂AB . Then, using Lemma 13 and the fact

that n11 ≥ n12 whenever k ≥ 1, the point p(n11, n12) in xy-plane must be contained in the
4-simplex abcd.

Suppose ∆ℓℓM(k)-M ≥ 0. We prove that p must then belong to the 3-simplex ecf . First,
we observe that ψ is non-positive on the 5-simplex abefd, because ψ is convex and ψ is
non-positive in all vertices of abefd (lemmas 11, 9, 10, 7, 8). Hence, because p ∈ abcd and
ψ(p) = ∆ℓℓM(k)-M ≥ 0, we have p ∈ ecf . Consequently, n11 > nAA − 3

2
nAB and n12 >

3
4
nAB . But then, (20) cannot be satisfied, since nAA − n11 = n22 + n12 = n22 + n23 = n2.

Proof of theorem 2

Proof Denote n11 + n12 = a, n13 = b, n22 = c and n23 = d. Then, nAA = a + c and
nAB = b+ d. Hence, using (18), we have

∆ℓℓ
M̃(k)-M = ϕ(a, b) + ϕ(c, d)− ϕ(a+ c, b+ d),

which is non-negative by Lemma 5.
Furthermore, ∆ℓℓ

M̃(k)-M = 0 is equivalent to ϕ(a, b)+ϕ(c, d) = ϕ(a+ c, b+ d), which in
turn is equivalent to ad = bc by Lemma 5. Finally, τ̂13 = τ̂23 = p̂AB if and only if ad = bc,
since τ̂13 = b

a+b
, τ̂23 = d

c+d
and p̂AB = b+d

a+c+b+d
.

Proof of theorem 3

Proof If n11 > 0 and n12 > 0, we have by the binomial theorem that nn11
11 nn12

12 < (n11 +
n12)n11+n12 , hence ϕ(n11, n12) < 0 using (12). The theorem now follows from (19) and the
fact that ϕ(n11, n12) = 0 if n11 = 0 or n12 = 0.
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(a) case: nAB ≤ 1
3
nAA

(b) case: 1
3
nAA < nAB ≤ 2

5
nAA

(c) case: 2
5
nAA < nAB < 1

2
nAA

Fig. 3: Location of the points a through f in the xy-plane


