
1. Introduction
Obtaining a spatial model of physical properties from sparse and noisy measurements is ubiquitous in geophysics 
and serves important goals such as process understanding and future state prediction. This may be quantitatively 
framed as the solution of an inverse problem and is often simply referred to as inversion. In brief, inversion 
estimates the values of the spatial model parameters by combining information regarding the model itself, the 
measured data and a forward operator, which gives a relation between model parameters and data by describing 
approximately the physical process by which the data arose. When data does not provide sufficiently independ-
ent information about the distribution of subsurface properties, inversion relies on regularization to stabilize the 
solution (Backus & Gilbert, 1967; Tikhonov & Arsenin, 1977). An alternative is to parameterize the model by 
means of a linear expansion of general basis functions (Davis & Li, 2011; Jafarpour, 2011; Jafarpour et al., 2009). 
Both of these approaches inherently bias the solution toward an a priori constraint which may not be realistic 
and therefore may hinder the use of the model for certain applications. Outcrops which are representative of the 
local geology may provide information on spatial patterns of certain subsurface characteristics. For example, the 
geometry of specific layer representative of a hydrofacies may be observed. Similarly, statistical information of 

Abstract Prior information regarding subsurface spatial patterns may be used in geophysical inversion 
to obtain realistic subsurface models. Field experiments require prior information with sufficiently diverse 
patterns to accurately estimate the spatial distribution of geophysical properties in the sensed subsurface 
domain. A variational autoencoder (VAE) provides a way to assemble all patterns deemed possible in a single 
prior distribution. Such patterns may include those defined by different base training images and also their 
perturbed versions, for example, those resulting from geologically consistent operations such as erosion/
dilation, local deformation, and intrafacies variability. Once the VAE is trained, inversion may be done in the 
latent space which ensures that inverted models have the patterns defined by the assembled prior. Gradient-
based inversion with both a synthetic and a field case of cross-borehole GPR traveltime data shows that using 
the VAE assembled prior performs as good as using the VAE trained on the pattern with the best fit, but it 
has the advantage of lower computation cost and more realistic prior uncertainty. Moreover, the synthetic 
case shows an adequate estimation of most small-scale structures. The absolute values of wave velocity are 
computed by assuming a linear mixing model which involves two additional parameters that effectively shift 
and scale velocity values and are included in the inversion.

Plain Language Summary Obtaining realistic images of the subsurface is important for 
characterizing processes that are sensitive to small-scale structures such as solute transport. Geophysical 
methods usually require additional information concerning the spatial patterns of the subsurface materials to 
obtain such realistic images. If more than one kind of pattern is deemed likely, enforcing a set of patterns in the 
geophysical image is not straightforward and traditional methods often result in over-simplified representations 
of the subsurface. In this work, we propose a new method that is capable of enforcing a diverse set of spatial 
patterns. The method is based on a pair of convolutional neural networks that form a model called variational 
autoencoder (VAE). The VAE is trained with a large number of samples of all the possible patterns and then 
it is capable of generating new patterns that are consistent with those of the training samples. The geophysical 
images are then constrained only to those generated by the VAE. We show that our method effectively 
assembles the set of possible patterns and provides a more realistic and less biased image when compared to 
other methods or even a VAE trained with a single kind of pattern.
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clay lenses in terms of shape, proportion, and size may be estimated (see Figure 2 for an example used here). If 
information regarding such spatial patterns of the subsurface is available it may be used together with measured 
data in order to improve model realism (Tarantola & Valette, 1982). This information is typically obtained from 
independent knowledge about the subsurface structure, for example, outcrops, boreholes, analogs. To integrate 
this information with measured data, the patterns must be described by techniques that account for their spatial 
nature (Linde et al., 2015). This has been generally achieved by using traditional geostatistical techniques, which 
usually provide more realistic models than classical regularization by means of imposing a covariance struc-
ture (Franklin, 1970; Hermans et al., 2012; Maurer et al., 1998), and also by using low-rank linear parameter-
izations such as principal component analysis or singular value decomposition and their corresponding kernel 
forms (Khaninezhad et al., 2012; Oware et al., 2019; Sarma et al., 2008; Vo & Durlofsky, 2014). The choice of 
representation technique depends on both the complexity of the spatial patterns and the information content of 
the measured data (Mariethoz, 2018). In general, it is recognized that multiple-point geostatistics (MPS) is more 
suited to reproduce highly connected spatial structures than covariance-based (or Gaussian random field) meth-
ods (Journel & Zhang, 2007; Strebelle, 2002). Recently, deep generative models (DGMs) have been proposed 
as an alternative to MPS to reproduce such complex spatial patterns (Chan & Elsheikh, 2019; Laloy et al., 2017; 
You et al., 2021).

MPS and DGMs rely on a gridded (pixel) representation for generating high-resolution spatial realizations. An 
Euclidian space 𝐴𝐴 ℝ

𝑁𝑁 may be assumed for this representation where N is the number of pixels, then models may 
be seen as points in a high-dimensional model space. Since the spatial patterns are restricted, however, the set 
of possible models will not cover the whole model space. This subset may be stated by a prior probability distri-
bution (Tarantola & Valette, 1982). While both MPS and DGMs are able to approximate such prior distribution 
and generate new samples with patterns similar to those contained in a training data set (e.g., a large training 
image, TI), DGMs present some advantages for inversion. First, contrary to MPS which either saves the number 
of occurrences of patterns (Straubhaar et al., 2011; Strebelle, 2002) or queries them directly from the TI (Mari-
ethoz et al., 2010), DGMs build a continuous prior probability distribution from which spatial realizations of the 
patterns are generated. This continuous probability distribution means that DGMs may provide (1) more diverse 
patterns, that is, they generate models whose patterns are not necessarily contained in the training image, effec-
tively interpolating between training samples, (2) a direct continuous perturbation step while exploring the model 
space (Laloy et al., 2017), and (3) the possibility of assembling different kinds of patterns in a single prior prob-
ability distribution (Bergmann et al., 2017). Second, given certain conditions, DGMs may also allow for gradient 
information (of the objective function) to be used in inversion which may substantially reduce the computational 
cost (Laloy et al., 2019; Lopez-Alvis et al., 2021; Mosser et al., 2018). This is typically not available for inversion 
with MPS, for which other ways of exploring the model space have been used (Caers & Hoffman, 2006; Hansen 
et al., 2012; Hu et al., 2001; Linde et al., 2015).

There were two main advances that allowed for DGMs to be applicable to high-resolution images: (1) neural 
networks that preserve complex spatial information, and (2) inference algorithms that are able to train instances of 
these networks that specifically include a continuous probability distribution within their layers. A common type 
of neural network that fulfills the first point are (deep) convolutional neural networks (CNNs; Fukushima, 1980; 
LeCun et  al.,  1989). CNNs are widely used in image processing and computer vision and have shown to be 
able to process highly complex spatial patterns (Krizhevsky et al., 2017). DGMs may use CNNs as their gener-
ative mapping and therefore produce new high-resolution samples with the training spatial patterns (Radford 
et al., 2016). Given the high-dimensionality of the model space, the training of such models was only possible 
with the introduction of inference algorithms that were able to cope with such high-dimensionality. Two main 
algorithms are currently used to train DGMs: amortized variational inference (Kingma & Welling, 2014; Zhang 
et al., 2018) and adversarial learning (Goodfellow et al., 2014). The former gives rise to variational autoencoders 
(VAEs) while the latter produces generative adversarial networks (GANs).

Both VAEs and GANs may be used to generate samples that display the training patterns by sampling from a 
n-dimensional probability distribution (where typically n ≪ N). However, when used for inversion, the concern 
is not only on pattern accuracy but also on the feasibility of efficiently exploring the possible models that fit the 
data, or in Bayesian terms, efficiently integrating model prior information with the measured data by means of 
the forward operator (Canchumuni et al., 2019; Jiang & Jafarpour, 2021; Laloy et al., 2019; Mosser et al., 2018). 
It was recently argued that with certain choice of parameters VAEs may control both the degree of nonlinearity 
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and the topological changes of their generative mapping, which in turn allows 
the gradient to be used in a computationally efficient inversion (Lopez-Alvis 
et  al.,  2021). Such choice of parameters is also useful in controlling the 
diversity of samples: instead of only generating samples very close to the 
training samples, the probability distribution expands or covers larger regions 
between the samples what can counterbalance the lack of diversity or finite 
nature of the training image. This improved diversity may be useful when the 
goal is to generate a prior probability distribution which is assembled from 
different types of patterns (e.g., different TIs), including the case when base 
patterns are perturbed by operations such as deformation, erosion-dilation, 
and intrafacies variability. This may be advantageous for field data because it 
increases the number of possible patterns in the subsurface which leads to a 
better representation of model prior information or uncertainty.

In this work, DGMs are used to impose spatial patterns during geophysical 
inversion. In particular, the ability of VAEs to build an assembled prior from 

different base TIs and their perturbed versions is tested. The impact of such assembled prior for modeling the 
subsurface is assessed by making use of gradient-based inversion for both synthetic and field cases of cross-bore-
hole ground-penetrating radar (GPR) traveltime data. A recently published study by Jiang and Jafarpour (2021) 
in the subject of flow data matching was also aimed at representing a set of TIs with a single VAE. Using both 
2D and 3D synthetic cases, they reached the similar conclusion that the VAE is able to build a prior distribution 
that encompasses all the patterns in the different TIs.

In this contribution, we provide an explicit comparison of VAEs performance, both quantitatively (by means 
of a connectivity metrics) and qualitatively, when trained using all TIs leading to a single VAE, or with indi-
vidual TIs leading to their corresponding VAEs. The considered TIs have diverse spatial patterns which are 
automatically generated through morphological operations which is another novel aspect of this work providing 
a geologically consistent and continuous prior. In addition, we provide a benchmark using synthetic modeling 
and a validation on a real field study, which is to the best of our knowledge one of the first attempts to validate 
gradient-based inversion using a VAE-based prior on a real-world data set. Finally, in contrast to previous studies 
using DGM-based inversion (Laloy et al., 2017, 2018; Lopez-Alvis et al., 2021; Mosser et al., 2018) the values of 
the geophysical parameter (wave velocity) are assumed unknown and included in inversion by means of a mixing 
model.

The remainder of this work is structured as follows. In Section 2, an outline of the proposed framework including 
the underlying theory of VAEs and their use within gradient-based inversion is presented. In this section, the 
field data used to test the framework are also described. Section 3 presents and discusses results of the proposed 
approach: first, a synthetic case that mimics the field case is introduced and then results of the field case are 
presented. The discussion in Section 3.4 explains the importance of the proposed framework in the context of 
solid Earth imaging, compares it with previous studies and gives some suggestions for future work. Finally, 
concluding remarks of this work are presented in Section 4.

2. Methods
The framework proposed in this study is depicted in Figure 1 and may be summarized as follows:

1.  Define a realistic generative model as prior distribution for the subsurface spatial patterns. The generative 
model may include operations that transform some base patterns such as erosion/dilation, local deformation 
and intrafacies variability (Figure 1a)

2.  Train the VAE with samples from the generative model. Once trained, the VAE works as an assembled prior, 
that is, it is able to generate patterns similar to the training patterns including those transformed by the defined 
operations (Figure 1b)

3.  Perform gradient-based inversion in the latent space of the VAE (Figure 1c)

All of the methods and concepts required in each of the previous steps are detailed in the following sections.

Figure 1. Probabilistic graphical models for: (a) generation of model samples 
using the original variables, (b) generation (continuous line) and encoding 
(dashed line) of model samples with the variational autoencoder (VAE) using 
the latent variables and (c) VAE-based inversion. m, v, w, m, d, and z refer to 
the model, velocity, mixing, data, and latent vectors, respectively, while θ and 
ϑ are the trained parameters of the VAE's decoder and encoder, respectively.
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When using methods that include geological uncertainty by means of examples of the spatial patterns, an impor-
tant practical limitation is the number of available examples. The number of latent dimensions controls the capac-
ity of the VAE to encode information regarding the spatial patterns, this means that for more diverse patterns 
one could try increasing the dimensionality of the latent space to improve the performance of the VAE. Ideally, 
the number of training examples must be also increased to cover the new space added with the extra dimensions. 
This means that a balance must be maintained between the number of added latent dimensions and the number 
of training examples available. To test this idea, we evaluate the impact of increasing the diversity of the patterns 
while keeping the same number of latent dimensions. This is done by considering VAEs trained on individual TIs 
and comparing their results with those of the VAE trained on all the TIs.

2.1. Variational Autoencoder: Approximating a Complex Probability Distribution

A VAE may be classified as a DGM. A DGM is a type of probabilistic model that relies on a relatively simple 
probability distribution p(z) to approximate a more complex one p(m) by passing the samples from the former 
through a (usually nonlinear) mapping, for example, a neural network (Dayan et al., 1995; Uria et al., 2014). This 
mapping is referred to as the generative mapping gθ(z) and may be represented more generally by a conditional 
distribution pθ(m|z) where θ denotes the parameters of the mapping, for example, the weights of the neural 
network. Here, m is defined in the original model space 𝐴𝐴 ℝ

𝑁𝑁 while z is defined in a space 𝐴𝐴 ℝ
𝑛𝑛 . The space 𝐴𝐴 ℝ

𝑛𝑛 is 
usually referred to as the latent space and z is called the code or latent vector. In general, samples m exhibit some 
order or structure which means they are confined to a subset 𝐴𝐴  ⊂ ℝ

𝑁𝑁 . This assumption is known as the “mani-
fold hypothesis” (Fefferman et al., 2016) and means that in general it should be possible to define 𝐴𝐴 ℝ

𝑛𝑛 with n < N, 
for which n is at minimum the dimension of the subset (or manifold) 𝐴𝐴  . This also means that the probability 
distribution p(m) only needs to be defined over 𝐴𝐴  .

Assuming a large data set 𝐴𝐴 𝐌𝐌 =
{

𝐦𝐦
(𝑖𝑖)
}𝑃𝑃

𝑖𝑖=1
 containing P samples from the complex probability distribution p(m) 

is available, DGMs are trained by estimating the parameters θ of the generative mapping given a fixed p(z). In 
this way, one is able to generate new samples similar to those of the training data set M by sampling from p(z) 
and passing through the generative mapping, that is, sampling according to p(z)pθ(m|z). However, when the 
training samples m (i) are high-dimensional, nonstandard inference methods are required to efficiently estimate the 
parameters θ of the generative mapping. VAEs use a neural network as generative mapping and rely on amortized 
variational inference to estimate its parameters (Kingma & Welling, 2014; Rezende et al., 2014). This inference 
technique requires another mapping to approximate a recognition (or variational) probability distribution qϑ(z|m). 
In this way the generative mapping may take the output of the recognition mapping as input and vice-versa, which 
resembles a neural network architecture known as autoencoder (Kramer, 1991), with the generative mapping 
as decoder and the recognition mapping as encoder. In this work the choices proposed by Kingma and Well-
ing (2014) regarding the probability distributions involved in a VAE are followed. The resulting framework for 
the VAE is detailed in Appendix A. In the rest of this work, we drop the subindex θ in g(z) to simplify notation 
and also because once the DGM is trained, the parameters θ do not change, that is, they are fixed for the subse-
quent inversion.

Note that the training data set M may contain different kinds of patterns which allow the VAE to effectively 
learn what is here termed an assembled prior, that is, a continuous prior distribution which generates not only 
patterns similar to those in the training set but also those corresponding to the transitions between the training 
patterns. Bergmann et al. (2017) propose a similar idea for GANs. One may also picture this process as changing 

Figure 2. (a) Digitized outcrop from Kessler et al. (2013) showing sand bodies in black, background till in white, the axes of 
fitted ellipses for the sand bodies in red and centers of the ellipses in green. (b) Two-dimensional histogram of the major and 
minor axes lengths of the ellipses fitted in the outcrop.
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or substituting the original (probabilistic) generative model by the VAE, that is, the latent variables now include 
jointly the effects of the original variables (Figure 1).

In this work we consider a VAE in which both encoder and decoder (see Figure A1) are based on CNNs. The 
size of the latent vector n = 40 was chosen by testing a set of increasing values (n = 20, 40, and 60) whose range 
was based on previous studies for similar patterns (Lopez-Alvis et al., 2021) and selecting the one that provides 
accurate reconstruction of the training samples without degrading the similarity of the generated patterns. This 
was assessed by visualizing a set of randomly generated models and by using the connectivity measure described 
in Section 2.5. We found for example, that n = 60 provides only a slight improvement in reconstruction of the 
training samples but causes a noticeable degradation of generated patterns.

2.2. Objective Function for Inversion With VAE

As mentioned above, a VAE using CNNs provides a powerful tool to represent complex probability distributions. 
Therefore, if one has a large data set containing examples of spatial patterns, the VAE allows to approximate 
complex prior probability distributions in the context of geophysical inversion. Following a Bayesian approach 
(to be consistent with the one used to derive the VAE), inversion may be considered as the conjunction of 
information regarding the model, the measured data and their relation given by a forward operator (Tarantola & 
Valette, 1982). The latter relation may be expressed as:

𝐝𝐝 = 𝐟𝐟 (𝐦𝐦) (1)

where d is a Q-dimensional vector representing the data and 𝐴𝐴 𝐟𝐟 ∶ ℝ
𝑁𝑁
→ ℝ

𝑄𝑄 is the geophysical forward operator. 
Since both the measurements and the forward operator typically have some error, the relation in Equation 1 may 
be represented with a conditional probability distribution p(d|m). Then, inversion is stated as:

𝑝𝑝(𝐦𝐦|𝐝𝐝) = 𝑘𝑘 𝑝𝑝(𝐝𝐝|𝐦𝐦) 𝑝𝑝(𝐦𝐦) (2)

where p(m|d) is the posterior distribution, p(m) is the model prior distribution, p(d|m) is termed the likelihood 
function and k is a constant.

When the prior distribution is approximated with a VAE, inversion may be restated in terms of the latent vector 
z as:

�(�, �|�) = � �(�|�) �(�) �(�|�)

�(�|�) = � �(�) ∫ �(�|�) �(�|�) ��
 (3)

where p(z) is the latent prior distribution and p(m|z) is the generative mapping (or decoder), as defined in 
Section 2.1. Further, as mentioned above when considering only the mean of the decoder then p(m|z) = δ(m − g(z)) 
and Equation 3 may be written as:

�(�|�) = � �(�) ∫ �(�|�) �(� − �(�)) ��

= � �(�) �( �|�(�) )
 (4)

Equation 4 may be used to solve an inverse problem in which a VAE (or some other DGM) is used to state the 
prior model distribution. For instance, one may apply Markov chain Monte Carlo to Equation 4 and get the 
posterior distribution of the latent variables (Laloy et al., 2017, 2018). When appropriate values to train the VAE 
are used, g is expected to be only mildly nonlinear (Lopez-Alvis et al., 2021). If we further assume that f is also 
mildly nonlinear and that errors in the data (with respect to forward predictions) are independent and Gaussian, 
the likelihood p(d|g(z)) will be approximately independent and Gaussian (Holm-Jensen & Hansen, 2019). Given 
these conditions, minimizing the following objective function ζ(z) should provide a good approximation for 
maximum likelihood model parameters:

𝜁𝜁 (𝐳𝐳) = ‖𝐟𝐟 (𝐠𝐠(𝐳𝐳)) − 𝐝𝐝‖
2
+ 𝜆𝜆‖𝐳𝐳‖

2 (5)

where f(g(z)) is the composition of the forward operator after the generative mapping, ‖z‖ 2 is a regularization 
term which enforces the search to be consistent with the multivariate Gaussian distribution 𝐴𝐴 𝐴𝐴(𝐳𝐳) =  (𝟎𝟎, 𝐼𝐼𝑛𝑛) and 
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λ is a regularization weight (Bora et al., 2017). To minimize ζ(z) we take advantage of the gradient, which is 
computed following the chain rule as:

∇�� (�) = ∇�‖� (�(�)) − �‖2 + �∇�‖�‖2

= �(�)�∇�‖� (�) − �‖2 + 2��
 (6)

with the Jacobian S(z) of size N × n obtained directly by the autodifferentiation used to trained the VAE (Paszke 
et al., 2017) and whose elements are:

[𝐒𝐒(𝐳𝐳)]𝑖𝑖𝑖𝑖𝑖 =
𝜕𝜕𝜕𝜕𝑖𝑖(𝐳𝐳)

𝜕𝜕𝜕𝜕𝑖𝑖
 (7)

The gradient with respect to the data misfit may be computed by linearization of the forward operator:

∇𝐦𝐦‖𝐟𝐟 (𝐦𝐦) − 𝐝𝐝‖
2
= −𝐉𝐉(𝐦𝐦)

𝑇𝑇
(𝐝𝐝 − 𝐟𝐟 (𝐦𝐦)) (8)

where is J(m) is the Q × N Jacobian (or sensitivity) matrix of the forward operator whose elements are:

[𝐉𝐉(𝐦𝐦)]𝑖𝑖𝑖𝑖𝑖 =
𝜕𝜕𝜕𝜕𝑖𝑖(𝐦𝐦)

𝜕𝜕𝜕𝜕𝑖𝑖

 (9)

Finally, inversion is done by minimizing the objective function in Equation 5 and whose gradient is computed 
according to Equations 6 and 8 as:

∇𝐳𝐳𝜁𝜁 (𝐳𝐳) = −𝐒𝐒(𝐳𝐳)
𝑇𝑇
(

𝐉𝐉(𝐦𝐦)
𝑇𝑇
(𝐝𝐝 − 𝐟𝐟 (𝐦𝐦))

)

+ 2𝜆𝜆𝐳𝐳 (10)

2.3. Inversion of Traveltime Data Using a VAE as Prior

In this work, we illustrate the proposed approach with a cross-borehole GPR traveltime field data set. In order to 
approximate the propagation of waves, a forward operator that relies on the eikonal equation:

|∇𝜏𝜏|
2
= 𝑣𝑣

−2 (11)

is used, where τ denotes the traveltime and v is the velocity of the subsurface materials. Note that Equation 11 is 
not limited to GPR but may also be applied to for example, seismic traveltime. A numerical solution is typically 
required, where after discretization one obtains the forward operator that relates the vector of traveltimes d = τ 
to the slowness (which is the reciprocal of velocity) vector m = v −1 in Equation 1. The Fast-Marching method 
and a factorized version of the eikonal equation are used herein (Treister & Haber, 2016). The factorized equa-
tion helps to reduce the error induced by spatial discretization in the proximity of the sources. It is important to 
note that this forward operator may still result in noticeable error when used for field data since effects related 
to the finite-frequency or scattering are not considered. When a proper discretization is chosen and a moderate 
velocity contrast is assumed, the magnitude of this error is comparable to the one of measurement error (Hansen 
et al., 2014) which should allow for data misfit error only a bit higher than with more realistic operators. Though, 
a nonnegligible bias remains which must be considered when analyzing inversion results. The same implementa-
tion allows one to efficiently compute the product J(m) T(d − f(m)) which is given by the solution of a triangular 
system exploiting the Fast-Marching sort order of the forward operator (Treister & Haber, 2016). The choice of 
such forward operator is motivated by the need to keep computational demand low, as inversions usually require 
a significant amount of both forward simulations and the above sensitivity product.

In contrast to previous studies where synthetic cases assumed that the mean velocity values in each facies were 
known (Canchumuni et  al.,  2019; Laloy et  al.,  2017,  2018; Mosser et  al.,  2018), here the inversion of these 
velocity (or slowness) values is done by assuming a linear mixing model that shifts and scales the spatial models 
obtained from the VAE according to v = w1 + w2 m. This is helpful for field cases since typically there is uncer-
tainty in these values. The inversion will then include two extra parameters (w1 and w2). If these parameters are 
assumed independent of the latent vector z, one may compute the gradient of the objective function with respect 
to them:
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𝜕𝜕𝜕𝜕 (𝐰𝐰)

𝜕𝜕𝜕𝜕𝑖𝑖

= ∇𝐯𝐯‖𝐟𝐟 (𝐯𝐯) − 𝐝𝐝‖
2
𝜕𝜕𝐯𝐯

𝜕𝜕𝜕𝜕𝑖𝑖

 (12)

and for the two wi parameters we have:

𝜕𝜕𝐯𝐯

𝜕𝜕𝜕𝜕1

= 𝟏𝟏,
𝜕𝜕𝐯𝐯

𝜕𝜕𝜕𝜕2

= 𝐦𝐦 (13)

Similarly, the first term on the right of Equation (6) should now be computed using v instead of m. This term 
also needs to be multiplied by the derivative with respect to m, which is equal to w2. Since these two parameters 
cause a stronger impact on traveltime values than the latent variables, their step is multiplied by a factor equal to 
10 −4 to make the inversion stable.

In this work, inversion is done by optimizing the objective function in Equation 5 using stochastic gradient descent 
(SGD) and Equation 10. SGD provides two main advantages: (1) it is less prone to get trapped in local minima, 
especially if the objective function has the shape of a global basin of attraction, and (2) the computational cost of 
each iteration is reduced by simulating only a subset of the data (also called a data batch). Decreasing of the step 
size (or learning rate) is also employed as it has been shown to further aid in reaching the neighborhood of the 
global minimum (Kleinberg et al., 2018). Such decreasing was done only every three iterations and using 0.99 
as decreasing factor.

2.4. Field Site and Data Description

The field site is located at the Kallerup gravel pit, Denmark. The local geology is composed by a glacial till 
with several elongated sand bodies (Kessler et al., 2012). Till is composed of particle sizes from clay to gravel, 
while sand bodies have a more narrow grain size distribution. Further, shapes of the sand bodies display varying 
degrees of deformation characteristic of basal till. This type of geology results in highly contrasting subsurface, 
as may be seen in Figure 2a. After the data was acquired, the field site was excavated which allows to compare 
with inversion results, at least qualitatively (Bording et al., 2019; Larsen et al., 2016).

The field data set is the cross-borehole traveltime data presented by Looms et al. (2018) and is available at Looms 
et al. (2021). Measurements were collected with 100 MHz borehole antennas and a PulseEKKO system (Sensors 
& Software, ON, Canada). The two boreholes are located 3.25 m apart and are 8 m deep. Data was acquired 
forming a multioffset gather (MOG) with all source positions in one borehole and receiver positions in the other. 
Spacing for both sources and receivers was 0.25 m and data was collected from 1.0 to 7.0 m deep, for a total of 
625 traces. First arrivals were picked with a semi-automatic procedure (Looms et al., 2018). Data for sources 
and receivers with depth less than 1.5 m were removed to avoid error from refraction at the air-ground interface. 
For similar reasons, since the boreholes are located in the unsaturated zone, data offsets with angles greater than 
30° were not considered to avoid error from borehole refraction. Estimated measurement error is 0.47 ns while 
average traveltime is 41.5 ns.

2.5. Training VAE With Realistic Patterns Based on an Outcrop

The size of the spatial domain to be modeled was selected according to the region sensed by the acquisition 
setup (see details on Section 2.4). A uniform cell discretization of 5 cm was chosen to model high-resolution 
details. Although CNNs may be set to the desired dimensions by selecting the correct size for the filters, stride 
and padding, one could also consider a slightly larger size and then crop the cells outside the domain since they 
do not affect the data misfit. In this work, some cells close to the surface are retained even if they are outside 
the sensed volume because they allow a qualitative assessment of the effect of the prior pattern information in 
the absence of data. Therefore, the spatial domain was discretized by 65 × 129 = 8,385 cells, corresponding to a 
3.25 × 6.45 m section.

The training patterns used to train the VAE are constructed by a hierarchical model that allows for the transforma-
tion of an initial set of TIs (Figure 1a). The sensed subsurface was assumed to be mainly composed by two differ-
ent materials: till and sand. Two initial object-based TIs (BTI1 and BTI2) were built according to information on 
local geology and a quantitative analysis of an outcrop close to the investigated cross-borehole section (Kessler 
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et al., 2013). These two TIs were mainly chosen because there is uncertainty in the presence of sand sheets (the 
most elongated sand bodies) in the sensed region: they were not present in the outcrop used in the analysis but 
they were present in other outcrops. All of the sand bodies were assumed to be approximated with ellipses of 
different sizes and eccentricity (Figure 2a). For this, the statistical distribution of the major and minor axes of 
the sand bodies was approximated from the outcrop by a two-dimensional histogram (Figure 2b). Then, BTI1 is 
directly constructed by sampling ellipses sizes according to the histogram, placing them randomly in the domain 
(overlapping is allowed to partially account for the more complex shapes) while maintaining a facies proportion 
similar to the one in the outcrop which is 0.17 (Figure 3a). BTI2 is built similarly but includes the sand sheets 

Figure 3. 1,500 × 1,000 pixel croppings of the nine modified TIs corresponding to both (a) BTI1 and (b) BTI2.
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(Figure 3b) whose size distribution was based on the one reported by Kessler et al. (2012). The size of these TIs 
was chosen in order to include many repetitions of the patterns for the target size to be simulated (65 × 129), 
therefore TIs with a size of 4,762 × 4,762 are used.

To account for more diverse and realistic shapes for the sand bodies (as those seen in the outcrop) two main trans-
formations were applied to the initial TIs: erosion/dilation and local deformation. Erosion/dilation here refers 
to the image morphological operation for which pixels are removed/added to the limits of objects by setting a 
pixel to the minimum/maximum over all pixels in a neighborhood centered at that pixel (Soille, 2004). Though 
erosion/dilation may refer to either of the two facies, here we will refer to that of the sand bodies to avoid confu-
sion. One step for dilation and one for erosion was done using a neighborhood with six pixels in the x direction 
and two pixels in the y direction. The local deformation was done by a piecewise affine transformation (van der 
Walt et al., 2014) which requires defining a uniform grid of nodes and a corresponding mesh by Delaunay trian-
gulation. Then, the positions of the nodes were perturbed according to two Gaussian random fields (one for the 
x coordinates and one for the y coordinates) and finally a local affine transformation is done to the pixels inside 
each triangle of the original mesh in order to fit the new deformed mesh. Deformation was applied with two 
different amplitudes in the perturbation of the grid, resulting in two different levels of deformation. Considering 
all the combinations of erosion-dilation and deformation (including the ones with no erosion-dilation and zero 
deformation) a total of nine different cases or modified TIs for each base TI are built. The patterns of each of all 
18 modified TIs obtained are shown in Figure 3. The size of each of these modified TIs is a bit smaller (4,722 × 
4,722) than for the base TIs since cropping was needed in the edges after deformation. Given this setting a signif-
icant overlapping between the different TIs is expected, so that there are no regions with very low probability 
between the different modes of the prior, that is, the prior distribution is approximately unimodal.

Finally, intrafacies variability was considered by means of using Gaussian field simulations with different means 
and anisotropy for each facies: both facies use a Gaussian covariance function with correlation length of 1.0 m but 
the channels facies uses an anisotropy factor of 0.2 and a mean of 0.35 (prior to transforming to velocity values) 
while the background facies uses a factor 0.25 and a mean of 0.7. This variability was added following a “cookie 
cutter” approach where each of the simulations is only set in pixels with the corresponding facies value. Values 
were log-transformed in order to prevent negative values. This step is done after the sample is cropped from the 
modified TI to train the VAE to allow more variability in the patterns. The overall hierarchical model from where 
training samples for the VAE are taken is shown in Figure 1a. Note that the transformations are coherent with the 
geological processes and one could also easily include others such as faulting.

To aid in assessing the accuracy of the VAE generated samples, a measure of connectivity is used. Connectivity 
is an important property of geological media (Renard & Allard, 2013) and its estimation at different scales has 
been proposed as a useful measure of similarity between different models of the subsurface (Laloy et al., 2017; 
Lemmens et al., 2019). We used the connectivity function (Torquato et al., 1988) that has been previously used to 
evaluate the generation performance of DGMs (Laloy et al., 2017, 2018). In brief, this connectivity function gives 
the probability of two points of a certain phase or material to be connected for a given lag distance. Considering 
a number of lag distances (in number of pixels) a connectivity curve is obtained, which characterizes connec-
tivity at different scales. The connectivity is dependent on the orientation and for our study we considered three 
different orientations: vertical (parallel to y axis), horizontal (parallel to x axis) and diagonal (45° between x axis 
and y axis).

To assess the performance of our proposed inversion approach, a synthetic case is first analyzed with the same 
acquisition settings as those of the field data. A synthetic model was built with the same statistical distribution of 
BTI2 but with a higher proportion of sand to till proportion (0.32) and different degree of deformation (an ampli-
tude just in the middle between 1 and two in Figure 3). The model was cropped from a TI of the same size as the 
ones used for training but its random spatial realization was different, that is, the ellipses and its positions were 
randomly set, therefore one should expect different patterns may be present than those in the TI used for training. 
Then, synthetic data were generated using the forward operator and Gaussian noise with the same magnitude as 
the error estimated for the field data was added (0.47 ns). Note that in this case, there is no error due to the forward 
operator. In this way, the synthetic case should provide an idea of how performant is the VAE-based inversion in 
obtaining patterns that deviate from the ones used for training.
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3. Results
3.1. Training the VAE

The VAE for the assembled prior is trained by randomly selecting from any of the 18 modified TIs, then randomly 
sampling a cropped piece (with the appropriate size of the spatial domain) and adding the intrafacies variability. 
Examples of the cropped samples are shown in Figure 5a. The VAE was implemented and trained using PyTorch 
(Paszke et al., 2017). The training used a total of P = 10 7 cropped samples and took around ∼4.5 hr on a Nvidia 
GPU RTX 2060 (∼3 hr without the intrafacies). Note that deformation and erosion-dilation may have been done 
directly while feeding the samples to train the VAE (similar to the intrafacies), however, this would have likely 
resulted in prohibiting computational time (while erosion-dilation is typically fast, the local deformation is gener-
ally much slower). Qualitative performance of the VAE capability is assessed by checking the reconstruction (i.e., 
encoding and then decoding) of some training samples. This is shown in Figure 5b where one can notice some 
degradation in terms of both the sharpness of the limits and some flattening of highly deformed bodies. Once 
trained, samples are generated according to the graphical model in Figure 1b (following the process defined by 
Figure A1). A few examples of random samples generated from the trained VAE are shown in Figure 5c, these 
are samples from the assembled prior distribution approximated by the VAE.

The connectivity function in three different orientations (Section 2.5) is also used to quantitatively evaluate the 
generative performance of the VAE. Figure 4a shows statistics of connectivity curves for 360 VAE generated model 
samples together with those of 360 training samples. The connectivity in the three orientations follows approxi-
mately the same trend: the 25th percentile curve from the generated samples matches that of the training samples 
across all lag distances while both 50th and 75th percentile curve from the generated samples underestimates that of 
the training samples. Notably, the 75th percentile curve is significantly lower which means that generated samples 
tends to under-represent high connectivities at all scales. This is consistent with what is observed when comparing 
generated model samples (Figure 5e) with training samples (Figure 5a): a higher proportion of shorter (horizon-
tally) and narrower (vertically) sand (black) bodies seems to be present in the generated samples. This indicates that 
while the assembled VAE is able to generate relatively accurate patterns, the diversity in the generated samples is 
slightly reduced when compared to that of the TIs. To check the impact of increasing the number of latent dimen-
sions, we also trained an assembled VAE using 60 latent dimensions. Surprisingly, the samples generated with this 
VAE cause a stronger reduction in diversity; a possible explanation is that there is a larger space between training 
samples in latent space and the VAE fills it with models of moderate connectivity.

To assess the performance of the VAE in reconstructing samples out of the training set, a validation set was 
cropped from a new set of 18 modified TIs obtained from two different base TIs. These two base TIs are built 
following the same process as that for BTI1 and BTI2 but with different samples for the sizes and positions of the 
ellipses. Some examples of these validation samples are shown in Figure 5d and their reconstructions using the 
VAE are shown in Figure 5e. A visual assessment of the validation samples and their reconstructions shows that 
the VAE has a similar reconstruction accuracy than that of the training samples which indicates the ability of the 
VAE to generalize, that is, work correctly beyond training samples.

As mentioned in Section 2, we also train VAEs on each of the 18 individual TIs to test the impact of increasing 
diversity in the training patterns without increasing the number of latent dimensions. In this way, one can picture 
the case of the multi-TI VAE as using the same volume (in latent space) as the single-TI VAE to encode a more 
diverse set of patterns. This causes the training samples to be represented closer together in latent space for the 
multi-TI VAE that is, we have to encode 18 times more samples in the same volume of latent space. The statistics 
of the connectivity curves for this case are shown in Figure 4b. It can be seen that the accuracy and diversity of 
the generated patterns for this case is very similar to that of the assembled VAE and there is only a slight improve-
ment in the match of the 75th percentile curve which means a slightly higher proportion of wider and thicker 
sand bodies. Also, as a comparison the statistics of the connectivity curves for the VAE trained using only TI1 are 
shown in Figure 4c where a significantly lower diversity is evidenced by tighter percentile curves.

The VAE-based generated patterns may fail to adequately represent the patterns of heterogeneity encountered in 
the field for three main reasons: (1) sufficiently similar patterns are not included during training, (2) patterns are 
filtered or simplified by the VAE, and (3) the diversity of the patterns was not sufficient to simulate new consistent 
patterns. In general, these three reasons play a role to different degrees. The first is unavoidably present in any 
study that aims to use information from nearby outcrops or local geology to constrain the subsurface patterns in 
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the sensed domain. However, this may be partially accounted for by considering different base patterns and their 
perturbed versions (obtained by morphological operations and local transformations) which may all be attrib-
uted to a similar environment. Note, however, that this strategy will not add new materials (lithologies). A prior 
consistency check before training may indicate if the VAE fails due to the first reason. In this work, this check was 
done using a methodology based on a low-dimensional representation of the data (Hermans et al., 2015; Lopez-
Alvis et al., 2019; Park et al., 2013; Scheidt et al., 2018) according to which none of the TIs is falsified, that is, all 
the proposed patterns are likely to have generated the data. The details are shown in Supporting Information S1. 
The effect arising from the second reason is directly related to generative accuracy and is captured for example, 
in Figures 5b, 5c, and 5e where the generated and reconstructed samples seem to have filtered out patterns with 
very high curvature. Finally, the third reason, which is somewhat tied to the first, is related to how the VAE is 
able to interpolate between training patterns. As noted above, the statistics of the connectivity curves of generated 
models (4a) give a first indication that diversity is being slightly reduced. This may also be checked by visualiz-
ing a set of training images as in Figure 5c and also making a latent traversal as shown in Figure 6, which makes 
steps along two of the dimensions of the latent space and fixes the rest. This should also be supplemented by an 
assessment of how much the generated patterns depart from the training samples while retaining consistent patterns.  

Figure 4. Statistical performance of the variational autoencoders (VAEs) in terms of connectivity: Percentiles 50 (continuous line), 25 and 75 (dashed line) of the 
connectivity curves computed from 360 model samples. The red lines denote curves from VAE generated model samples and the blue lines curves from the training 
samples. Generated samples come from (a) assembled VAE, (b) all 18 individual VAEs, (c) individual VAE for TI1, and (d) assembled VAE with 60 latent dimensions.
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In recent work, Lopez-Alvis et al. (2021) show that VAEs are able to deviate from training patterns while still 
preserving realistic patterns through breaking continuous channels from the original training image. There have 
been some recent efforts to quantitatively measure diversity in DGMs (Lucic et al., 2018; Sajjadi et al., 2018) 
however, it remains an open question whether useful departures (such as breaking channels) would be adequately 
captured by these measures. A possible solution to this issue would be to directly include such departures in the 
training set. In summary, the proposed approach is not intended to generate perfectly accurate patterns but to allow 
the generated patterns to deviate from training patterns in order to both improve diversity and fit the data without 
compromising the patterns' realism.

3.2. SGD-Based Inversion of Synthetic Data With VAE as Prior

Once the VAE is trained, the assembled prior may be used directly in inversion to impose the diverse patterns. It 
is worth noticing that the latent parameters z of the VAE have effectively substituted the parameters related to the 
original hierarchical model (the new generative model is shown in Figure 1b). We assume that the latent parame-
ter distribution now includes most of the discrete and intractable operations (i.e., different base TIs, erosion-dila-
tion, deformation, and intrafacies variability) in a continuous and searchable space. This allows for optimization 
to be performed by continuously stepping in the latent space. Moreover, such steps can take advantage of the 

Figure 5. Examples of training samples (a), reconstruction of these training samples (b), samples generated from the trained variational autoencoder (VAE) (c), 
examples of validation samples (d), and reconstruction of these validation samples (e). The gray scale is with respect to the model variable m prior to its transformation 
to velocity values.
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gradient (as detailed in Section 2.3) which generally would not be the case if one sought to directly estimate the 
original parameters.

The results of our proposed inversion approach are first assessed using the synthetic data presented above. 
Figures 7a–7c shows the real synthetic model, the reconstruction (encode-decode operation) of this model with the 
trained VAE and an inverted model with a regularized least squares solution, respectively. The regularized inver-
sion is done with a regularization factor of 10 4 which represents the use of generic prior information; the effect of 
smoothing is noticeable and the model misses some spatial features when compared against VAE-based inversion 
(Seo et al., 2019 report a similar comparison). In the case of VAE-based inversion, since we are using SGD which 
is a stochastic optimization method, inversion is done for 10 different starting models. Inversion results for four 
different starting models are shown in Figures 7e–7h. For the model in Figure 7e, the initial model (decoding of the 
initial z) is shown in Figure 7d. For the same inverted model, the behavior of the data misfit (RMSE), the Euclidian 
distance between the current model and the real model, the norm of z and the velocity parameters as the inversion 
progresses are shown in Figures 7l–7o. The norm of z is useful to check that the algorithm does not diverge from 
the prior. This is because the prior p(z) is multivariate Gaussian 𝐴𝐴  (𝟎𝟎, 𝐼𝐼𝑛𝑛) , then models consistent with the prior 
should not be far from the origin and also models with the most common patterns should be centered according to 
a χ-distribution with d degrees of freedom. To assess the impact of the assembled prior compared to VAEs trained 
on individual TIs, inversion is done also for each of the individual cases. Considering 10 different starting models 
for each case, the mean and standard deviation of data RMSE, norm of z, and velocity parameters are computed. 
These values are shown in Table 1 for the best, median and worst individual TIs in terms of mean RMSE together 

Figure 6. Examples of variational autoencoder (VAE) latent traversals (stepping in two latent dimensions while keeping the rest fixed) for: latent dimensions z1 and z2 
(left) and latent dimensions z9 and z3 (right). The gray scale is with respect to the model variable m prior to its transformation to velocity values.
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Figure 7. Inversion results for the synthetic case: (a) True model, (b) reconstructed true model, (c) regularized inverted 
model, (d) initial model, (e–h) variational autoencoder-stochastic gradient descent (VAE-SGD) inverted models for four 
different starting models using the assembled prior. VAE-SGD inverted models for prior with individual TIs using one 
random starting model: best (i), median (j), and worst (k) in terms of RMSE (see Figure 8a). For all inverted models, model 
RMSE and data RMSE are shown at the top. For the model in (e), the values in each iteration for: data RMSE (l), model 
RMSE (m), norm of z (n), and linear mixing parameters (o).

TI a Data RMSE (ns) ‖z‖ v1 v2

Synthetic case

 All 0.655 ± 0.050 8.004 ± 0.309 0.017 ± 0.005 0.17 ± 0.007

 Best 0.632 ± 0.017 7.767 ± 0.124 0.019 ± 0.001 0.166 ± 0.002

 Median 0.728 ± 0.011 8.325 ± 0.072 0.017 ± 0.001 0.171 ± 0.001

 Worst 1.058 ± 0.018 10.097 ± 0.326 0.015 ± 0.001 0.175 ± 0.003

Field case

 All 0.634 ± 0.008 5.342 ± 0.244 0.031 ± 0.001 0.157 ± 0.004

 Best 0.623 ± 0.013 5.194 ± 0.124 0.029 ± 0.001 0.157 ± 0.004

 Median 0.674 ± 0.041 5.155 ± 0.294 0.033 ± 0.003 0.148 ± 0.010

 Worst 0.732 ± 0.035 5.371 ± 0.214 0.031 ± 0.001 0.150 ± 0.004

 aThe labels indicate best, median and worst in terms of data RMSE from all 18 TIs.

Table 1 
Mean and Standard Deviation Values of Inversions Using 10 Different Initial Models
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with those of the assembled prior. Boxplots of the data RMSE for all individual TIs and the assembled prior are 
shown in Figure 8a. Notice that the mean data RMSE for the assembled prior (0.655 ns) is only slightly higher than 
the magnitude of the added noise.

To test our VAE-based inversion with different synthetic models, 10 true models are taken from the training 
samples (Figure 9a) and 10 true models are taken from the validation samples (Figure 9d). For this case, only one 
initial model was used for each inversion. Inversion results models are shown in Figures 9b and 9e. Similarly, to 
allow for a comparison, inverted models using all the single-TI VAEs are shown Figures 9c and 9f. The inverted 
models match the true models in most large-scale features (although these sometimes have differing width and 
thickness) but seem to miss some small-scale features. Overall there are no significant changes in inversion 
results due to the presence of true models in the training samples nor due to the use of the assembled VAE versus 
the individual VAEs.

To analyze the impact of prior information (as represented by the VAE) on inversion results, one must also 
consider how much information content is provided by the data, that is, how much the data constrains the poste-
rior distribution. In this work, the cross-hole traveltime data set is considered informative enough to produce rela-
tively similar inverted models, however, since a high-resolution model is desired, the choice of prior information 
(and the way it is imposed) still causes noticeable variations in inverted models (Day-Lewis et al., 2005). The 
inversion results for the synthetic case in Figure 7e show that although reconstruction is not perfect, the method 
is able to identify most of the structural characteristics of the real model. The inverted model is noticeably better 
than traditional regularized inversion (Figure  7c), which shows higher data RMSE and from which it is not 
possible to identify small features (at 5 m depth in the right and close to 7 m depth on the left in Figure 7a). On 
the other hand, both inversion methods miss a low velocity structure (at 3 m depth on the left of Figure 7a) and 
most of the intrafacies variability. The VAE-SGD inversion even locally biases the model in order to account for 
the lack of intrafacies variability (note a more pronounced bend of the lower part of the sand body at ∼4 m depth 
to make up for a low velocity intrafacies zone). Most likely this comes from the fact that the synthetic model is 
not exactly within the prior. Since no error in the forward operator model is introduced for the synthetic case, the 
RMSE value higher than the noise level indicates that deviations in the inverted model are mainly due to the prior, 
whose accuracy slightly degrades due to a joint effect of the three reasons mentioned in Section 3.1. The synthetic 
case shows that our proposed inversion still provides useful results even when the patterns of the real model differ 
slightly from those of the TIs used to train the VAE.

Figure 8. RMSE boxplots for synthetic (a) and field case (b) for individual priors (variational autoencoders (VAEs) trained 
on each of the 18 TIs) and the assembled prior (labeled “All”). Shaded areas indicate best, median and worst performing 
individual prior in terms of mean data RMSE.
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The impact of noise on inversion results was also tested by considering two different noise levels: one half 
(0.235 ns) and the other twice (0.94 ns) the original noise level. Five inverted models with each of these two 
noise levels are shown in Supporting Information S1. Inverted models with lower noise show very similar results 
to those with the original noise level and the data RMSE only improves marginally, which is consistent with our 
conclusion above that the misfit is mainly due to prior approximation error. Inversion results for the higher noise 

Figure 9. Variational autoencoder (VAE)-based inversion with true models in the training samples (a) and true models in the validation samples (d). Inverted models 
using the assembled VAE (b, e) and inverted models using the VAEs trained on individual TIs (c, f). Data RMSE are shown at the top of each inverted model. The gray 
scale is with respect to the model variable m prior to its transformation to velocity values.
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level show data RMSEs much closer to the noise level of 0.94 ns and still a good estimation of the true model, 
however, there seems to be a higher variability between models inverted with different initial models which indi-
cates SGD is converging to a wider area around the global minimum.

3.3. SGD-Based Inversion of Field Data With VAE as Prior

Inversion for field data is done similarly to the synthetic case. The smooth regularization inverted model and 
the VAE inverted model are shown in Figures 10a and 10b, respectively. The behavior of RMSE, norm of z, and 
velocity parameters during optimization is shown in Figures 10c–10e. The RMSE follows a behavior consistent 
with the chosen SGD scheme: an initial phase with very large oscillations followed by a more stable decreasing 
behavior. The behavior of the norm of z indicates that during the initial phase the search covers very large range 
of radial distances from the origin while for the end it is constrained to small radial changes. VAE inverted models 
with different initial starting models are shown in Figures 10f–10h. Again, to check if assembling the prior from 
many different TIs is advantageous, we compare it with the results of using the individual TIs. Boxplots of the 
data RMSE for 10 inversions (each with a different initial model) for all VAEs trained with each of the TIs and 
the assembled prior are shown in Figure 8b. From the inversions with individual TIs we choose the best, median 
and worst in terms of average data RMSE and together with the assembled VAE, compute the mean and standard 
deviation values of their final data RMSE, norm of z, and the velocity parameters from their corresponding 10 
inverted models (Table 1). The models inverted for one starting model with the TIs corresponding to the best, 
median, and worst average data RMSE are shown in Figures 10i–10k.

Figure 10. Inversion results for the field case: (a) regularized inverted model, (b) variational autoencoder-stochastic gradient 
descent (VAE-SGD) inverted model for one random starting model using the assembled prior. For the model in (b), the values 
in each iteration for: data RMSE (c), norm of z (d) and linear mixing parameters (e). VAE-SGD inverted modes for three 
different starting models using the assembled prior (f–h). VAE-SGD inverted models for prior with individual TIs using one 
random starting model: best (i), median (j), and worst (k) in terms of RMSE (see Figure 8b). For all inverted models, data 
RMSE is shown at the top.
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Inversion results for the field data (Figure  10) show a behavior very similar to the synthetic case. However, 
the inverted model indicates a simpler structure when compared to the synthetic case. This is consistent with 
evidence from the excavation and even inclination trends of both the upper sand and lower sand bodies seem 
to match those observed in excavated profiles close to the GPR sensed domain (Larsen et al., 2016; Bording 
et al., 2019). Regarding the performance of the assembled prior for inversion, Table 1 shows that training the VAE 
with all the TIs at the same time performs better than the median individual TI and results in approximately equal 
values of average RMSE compared to inversion with the best individual TI. This indicates that it may be better 
to build an assembled wide prior than to consider many TIs individually for inversion (Hermans et al., 2015). 
Note that results of the best individual TI have only slightly lower values of RMSE. The assembled prior also has 
the advantage of a lower computational demand: one does not have to train a VAE and do the inversion for each 
individual TI. In the presented field case, for instance, the computational demand is 18 times higher if the TIs 
are considered individually. Moreover, prior uncertainty tends to be larger in field cases therefore a wider prior 
distribution, such as the one modeled by the VAE with all the TIs, is preferable. This wider prior distribution may 
indeed help in reducing bias arising when highly informative prior information is used.

3.4. Discussion

Solid Earth research strongly relies on our ability to observe it. Unfortunately, this is impeded by the sparse direct 
observations and the indirect measurements that help us inform it.

Starting from the description of spatial patterns of the subsurface (e.g., statistics of clay lenses embedded in a 
matrix) that are only sparsely visible, we combine them with geophysical data (e.g., traveltimes) which provide 
a greater coverage at the cost of being indirect information in a novel imaging framework which honors both 
the geophysical data and the prior knowledge of the subsurface. In addition, our method allows to enlarge the 
observed prior through morphological operators, which are geologically consistent and provide a continuous 
prior trained by the DGM. The implications of this work go beyond the scale of observation or the measurements 
that are used. This is supported by the similar conclusions that Jiang and Jafarpour (2021) obtained considering 
a larger scale and different kind of data (i.e., flow data versus traveltime data).

Compared with other methods used to integrate geological information and geophysical data, our approach aims 
to create a low-dimensional representation of a diverse set of patterns (represented e.g., by different TIs) that is 
(1) continuous and (2) easily handled by gradient-based inversion. Other methods fail in at least one of these two 
points, for example, MPS is not able to create a continuous low-dimensional representation neither is directly 
explored by means of gradient-based inversion and GANs can create a continuous low-dimensional representa-
tion but gradient-based inversion may not behave properly with such representation (Laloy et al., 2019). While 
not all inversion problems are based on a continuous prior distribution, an important subset actually do. This will 
be the case, for example, when the uncertainty regarding the geological scenario involves similar environments 
for which one may expect a continuous transition due to overlapping of spatial patterns.

Improving diversity performance of VAE while generating geologically realistic models is an important issue 
when comparing with other methods. Consider for example, the mechanism by which the VAE generates new 
samples of the patterns to equivalent mechanisms in MPS. While the departure of new patterns from training 
patterns in a VAE depends mainly in training parameters such as regularization weights α and β (see Appen-
dix A) which in turn impact the approximation of the continuous prior in model space, MPS may control the 
diversity of patterns by relaxing the conditioning, for example, by changing the number of conditioning pixels 
or by defining distances to the conditioning event. Further study of these differences should enlighten under 
which circumstances it is better to use either of these strategies to produce more diverse patterns or even if it is 
possible to combine them to better represent prior uncertainty in the most realistic way possible (see e.g., Bai 
& Tahmasebi, 2020). It is worth mentioning that the problem of using multiple TIs with MPS seems to have 
received little attention (Scheidt et  al.,  2016; Silva & Deutsch, 2012) perhaps because most studies focus on 
discrete aspects (e.g., different depositional environments) rather than continuous aspects as in this study (i.e., 
deformation, erosion-dilation, and intrafacies variability). In several cases, however, one should be able to frame 
inversion problems for subsurface models in terms of continuous variables (e.g., two depositional environments 
may have transitional environments between them).
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In this work we considered a normal multivariate Gaussian distribution to model the prior in latent space (i.e., as 
input to the generative function of the VAE), however, other types of distributions may also be used, for exam-
ple, a Gaussian mixture model (Makhzani et al., 2015). A Gaussian mixture model may be used as latent prior 
distribution, for instance, when we have clearly separated modes, such as two training images that most likely do 
not have overlapping patterns. These other types of distributions may provide two main advantages: (1) they may 
provide a better approximation of the prior since they get rid of some pathologies of traditional VAEs (Yacoby 
et al., 2021), and (2) they are more directly related to the prior distribution in model space and therefore cause 
less nonlinearity and/or topological changes which is favorable for the performance of gradient-based inversion 
(Lopez-Alvis et al., 2021). However, sampling from these distributions in latent space is not as straightforward 
as for a multivariate Gaussian. This means that one would have to rely on either different regularization terms 
in latent space or more advanced (but potentially more computationally demanding) ways of sampling, such as 
Markov chain Monte Carlo.

4. Conclusions
When prior information is expressed by a set of TIs, a VAE may be used to approximate a prior distribution that 
effectively assembles all the possible spatial patterns. Variability of the spatial patterns included in the TIs may 
be further increased by using geologically consistent transformations such as erosion/dilation, local deformation 
and intrafacies variability which result in a set of patterns that represent similar geological environments. The 
VAE is capable of producing patterns that deviate from training patterns but remain realistic, therefore increasing 
pattern diversity. The cross-borehole GPR traveltime synthetic case demonstrates that inversion with SGD in the 
latent space of the VAE is able to obtain a realistic model while remaining computationally efficient. Even though 
the final misfit is higher than the noise level, most structural features are correctly inverted. By assuming a linear 
mixing model (two additional parameters), the absolute values of velocity may be also estimated in the inversion. 
This allows for inversion using a VAE as prior to be more readily applied to a field data set. Results from the field 
case validate VAE-based inversion since they show a realistic inverted model with misfit only slightly higher 
than the estimated noise and therefore provide one of the first successful applications of DGM-based inversion. 
A comparison of VAEs trained on individual TIs and the VAE trained with all the TIs at the same time shows 
that the latter performs as good as the best individual TIs. Moreover, it has the advantage of lower computational 
demand and a more adequate (wider) prior uncertainty, which in turn may reduce bias from highly informative 
prior information. Finally, future work may include extending the proposed method to handle more than two 
subsurface materials, testing new geologically consistent transformations, considering more general distributions 
in the latent space and using it in combination with MPS to improve the accuracy and diversity of patterns.

Appendix A: Variational Autoencoder
The starting point is to pose the VAE's training as maximizing the sum of the evidence (or marginal likelihood) 
lower bound of each individual sample m (i). The evidence lower bound for each sample can be written as:


(

𝜃𝜃𝜃 𝜃𝜃;𝐦𝐦(𝑖𝑖)
)

= 
𝑚𝑚 + 

𝑧𝑧 (A1)

with


𝑚𝑚
= 𝔼𝔼

𝑞𝑞𝜗𝜗(𝐳𝐳|𝐦𝐦
(𝑖𝑖)
)

[

log

(

𝑝𝑝𝜃𝜃

(

𝐦𝐦
(𝑖𝑖)
|𝐳𝐳
))]

 (A2)

and


𝑧𝑧
= −𝐷𝐷𝐾𝐾𝐾𝐾

(

𝑞𝑞𝜗𝜗

(

𝐳𝐳|𝐦𝐦
(𝑖𝑖)
)

‖𝑝𝑝(𝐳𝐳)
)

 (A3)

where pθ(m|z) is the (probabilistic) decoder, qϑ(z|m) is the (probabilistic) encoder, 𝐴𝐴 𝔼𝔼 denotes the expectation 
operator, DKL denotes the Kullback-Leibler divergence and, θ and ϑ are the parameters (weights and biases) of the 
neural networks for the decoder and encoder, respectively.

In order to maximize the evidence lower bound in Equation A1, an estimator for 𝐴𝐴  is used. This estimator is based 
on a so called reparameterization trick of the random variable 𝐴𝐴 �̃�𝐳 ∼ 𝑞𝑞𝜗𝜗(𝐳𝐳|𝐦𝐦) which uses an auxiliary noise ϵ. In the 
case of a VAE, the encoder is defined as a multivariate Gaussian with diagonal covariance:



Journal of Geophysical Research: Solid Earth

LOPEZ-ALVIS ET AL.

10.1029/2021JB022581

20 of 23

𝑞𝑞𝜗𝜗(𝐳𝐳|𝐦𝐦) =  (𝐡𝐡𝜗𝜗(𝐦𝐦),𝐮𝐮𝜗𝜗(𝐦𝐦) ⋅ 𝐼𝐼𝑛𝑛) (A4)

where hϑ(m) and log  uϑ(m) are modeled with neural networks and In is a n × n diagonal matrix. Then, the encoder 
and the auxiliary noise ϵ are used in the following way during training:

�̃�𝐳 = 𝐡𝐡𝜗𝜗(𝐦𝐦) + 𝐮𝐮𝜗𝜗(𝐦𝐦)⊙ 𝝐𝝐, 𝝐𝝐 ∼  (𝟎𝟎, 𝛼𝛼 ⋅ 𝐼𝐼𝑛𝑛) (A5)

where ⊙ denotes an element-wise product and α defines the magnitude of the variance of ϵ. Often Equation A3 
has an analytical solution, then only Equation A2 is approximated with the estimator as:
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(𝑖𝑖) and L is the number of samples used for the estimator. Further, if we set 

the decoder pθ(m|z) as a multivariate Gaussian with diagonal covariance structure, then

𝑝𝑝𝜃𝜃(𝐦𝐦|𝐳𝐳) =  (𝐠𝐠𝜃𝜃(𝐳𝐳), 𝐯𝐯𝜃𝜃(𝐳𝐳) ⋅ 𝐼𝐼𝑁𝑁 ) (A7)

where gθ(z) and log  vθ(z) are modeled with neural networks and IN is a N × N diagonal matrix. In this work, we 
consider only the mean of the decoder pθ(m|z) which is just the (deterministic) generator gθ(z). Then, the corre-
sponding (mean-squared error) loss function may be written as
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The described setting allows for the gradient to be computed with respect to both θ and ϑ and then stochastic 
gradient descent is used to maximize the lower bound in Equation A1.

As previously mentioned, it is often possible to analytically integrate the Kullback-Leibler divergence in Equa-
tion A3. In this work, we consider that p(z) and qϑ(z|m) are both Gaussian therefore Equation A3 may be rewritten 
as (Kingma & Welling, 2014):
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where the sum is done for the n output dimensions of the encoder.

Note that the term in Equations A2, A6, and A8 may be interpreted as a reconstruction term that causes the 
outputs of the encode-decode operation to look similar to the training samples, while the term in Equations A3 
and A9 may be considered a regularization term that enforces the encoder qϑ(z|m) to be close to a prescribed 
distribution p(z). In practice, one may add a weight to the second term (Higgins et al., 2017) of the lower bound 
as:

̃
(
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= ̃
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𝑧𝑧 (A10)

to prevent samples to be encoded far from each other in the latent space, which may cause overfitting of the recon-
struction term and degrade the VAE's generative performance. The overall process of training and generation for 
a VAE is depicted in Figure A1.

Figure A1. A diagram for a VAE: (a) steps needed for training and (b) steps needed for generation.
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Data Availability Statement
The cross-borehole GPR data set data used for the field case in this work is available at Pangaea via https://doi.
org/10.1594/PANGAEA.934056 with a Creative Commons Attribution 4.0 International (CC-BY-4.0) license. 
Version 1.0 of the VAE_SGD_field code used for VAE training and VAE-based inversion is preserved at https://
doi.org/10.5281/zenodo.4915277 and available via MIT License.
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