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Battiston et al. [1] provide a comprehensive overview of
how investigations of complex systems should take into
account interactions between more than two elements,
which can be modelled by hypergraphs and studied via
topological data analysis. Following a separate line of
enquiry, a broad literature has developed information-
theoretic tools to characterise high-order interdependen-
cies from observed data. While these could seem to be
competing approaches aiming to address the same ques-
tion, in this correspondence we clarify that this is not
the case, and that a complete account of higher-order
phenomena needs to embrace both.

The approaches reviewed by Battiston and colleagues
put a special focus on what could be described as high-
order mechanisms, which are usually modelled via Hamil-
tonians or dynamical laws involving beyond-pairwise in-
teractions. A distinct, but complementary perspective is
to focus on the resulting high-order behaviour, i.e. pat-
terns of activity that can be explained in terms of the
whole but not the parts. Put simply, high-order mecha-
nisms refer to the modelling of the data-generating pro-
cess, while high-order behaviours refer to emergent prop-
erties within the resulting multivariate statistics. For
example, in a spin glass system, high-order mechanisms
would correspond to high-order terms in the system’s
Hamiltonian, while high-order behaviours would refer to
the emergent patterns resulting from the corresponding
Boltzmann distribution (Figure 1A).

The investigation of high-order behaviour in data has
a long history, stemming from foundational work in in-
formation theory [2] and its early applications in bio-
physics [3, 4]. These early efforts led to the formalisa-
tion of high-order behaviour into the framework of par-
tial information decomposition (PID) and its subsequent
developments [5–7]. This literature has established for-

mal bases for the analysis of high-order interdependen-
cies exhibited by groups of three or more variables, and
a description of their (synergistic or redundant) nature.
While our primary focus here is on information-theoretic
techniques, a number of other frameworks exist for prob-
ing the dynamics of complex systems beyond pairwise
interactions — for a comprehensive review, see Ref. [8].
Mechanisms and behaviours address fundamentally

different questions: the former address how the system is
structured, while the latter focus on emergent properties
related to what the system “does.” Crucially, these ques-
tions are not interchangeable — intuition might suggest
that high-order behaviour necessarily rests upon high-
order mechanisms, but this is not the case (Figure 1B).
Therefore, neglecting high-order behaviour risks missing
important aspects of complex phenomena. Furthermore,
when the goal is to identify high-order behaviour, high-
order methods relying only on pairwise statistics (e.g.
simplicial complexes built from a correlation matrix) may
be in principle insufficient as significant information can
be present only in the joint probability distribution and
not the pairwise marginals (Figure 1B). There is a great
need for inferential tools that can connect these two
worlds — e.g. model selection methods to identify higher-
order mechanisms that best match observed high-order
behaviour, extending prior work on pairwise networks [9].
In summary, differentiating between high-order mech-

anisms and behaviours allows greater precision in artic-
ulating hypotheses, and in choosing the right tools to
probe them. This distinction will facilitate the collabora-
tion between different communities devoted to the study
of complex systems, as the complementarity of these per-
spectives will provide a more powerful and encompass-
ing avenue for deepening our understanding of high-order
phenomena.
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FIG. 1. A) The mechanism of a spin glass model is determined by a Hamiltonian H that accounts for pairwise and higher-
order interactions, forming a hypergraph. The behaviour of the system is instead given by the frequencies of observed patterns,
which can manifest as high-order interdependencies such as synergy or redundancy [5–7]. B) A small frustrated spin model,
wherein spins cannot satisfy their tendency to differ from their neighbours [10]. The total interdependency (measured by Total
Correlation [2]) significantly exceeds the sum of the three pairwise interdependencies, illustrating how low-order mechanisms
can give rise to higher-order behaviour that cannot be explained from pairwise statistics.
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