Structural color production in melanin‐based disordered colloidal nanoparticle assemblies in spherical confinement
- Author
- Anvay Patil, Christian M. Heil, Bram Vanthournout (UGent) , Markus Bleuel, Saranshu Singla, Ziying Hu, Nathan C. Gianneschi, Matthew Shawkey (UGent) , Sunil K. Sinha, Arthi Jayaraman and Ali Dhinojwala
- Organization
- Project
- Abstract
- Melanin is a ubiquitous natural pigment that exhibits broadband absorption and high refractive index. Despite its widespread use in structural color production, how the absorbing material, melanin, affects the generated color is unknown. Using a combined molecular dynamics and finite-difference time-domain computational approach, this paper investigates structural color generation in one-component melanin nanoparticle-based supraparticles (called supraballs) as well as binary mixtures of melanin and silica (nonabsorbing) nanoparticle-based supraballs. Experimentally produced one-component melanin and one-component silica supraballs, with thoroughly characterized primary particle characteristics using neutron scattering, produce reflectance profiles similar to the computational analogs, confirming that the computational approach correctly simulates both absorption and multiple scattering from the self-assembled nanoparticles. These combined approaches demonstrate that melanin's broadband absorption increases the primary reflectance peak wavelength, increases saturation, and decreases lightness factor. In addition, the dispersity of nanoparticle size more strongly influences the optical properties of supraballs than packing fraction, as evidenced by the production of a larger range of colors when size dispersity is varied versus packing fraction. For binary melanin and silica supraballs, the chemistry-based stratification allows for more diverse color generation and finer saturation tuning than does the degree of mixing/demixing between the two chemistries.
- Keywords
- Atomic and Molecular Physics, and Optics, Electronic, Optical and Magnetic Materials, biomimicry, broadband absorption, colloidal assembly, optical modeling, structural colors, structure-property relationship, synthetic melanin, LIGHT-SCATTERING, NANOSTRUCTURAL BASIS, POLYDOPAMINE
Downloads
-
(...).pdf
- full text (Published version)
- |
- UGent only
- |
- |
- 5.30 MB
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8746644
- MLA
- Patil, Anvay, et al. “Structural Color Production in Melanin‐based Disordered Colloidal Nanoparticle Assemblies in Spherical Confinement.” ADVANCED OPTICAL MATERIALS, vol. 10, no. 5, 2022, doi:10.1002/adom.202102162.
- APA
- Patil, A., Heil, C. M., Vanthournout, B., Bleuel, M., Singla, S., Hu, Z., … Dhinojwala, A. (2022). Structural color production in melanin‐based disordered colloidal nanoparticle assemblies in spherical confinement. ADVANCED OPTICAL MATERIALS, 10(5). https://doi.org/10.1002/adom.202102162
- Chicago author-date
- Patil, Anvay, Christian M. Heil, Bram Vanthournout, Markus Bleuel, Saranshu Singla, Ziying Hu, Nathan C. Gianneschi, et al. 2022. “Structural Color Production in Melanin‐based Disordered Colloidal Nanoparticle Assemblies in Spherical Confinement.” ADVANCED OPTICAL MATERIALS 10 (5). https://doi.org/10.1002/adom.202102162.
- Chicago author-date (all authors)
- Patil, Anvay, Christian M. Heil, Bram Vanthournout, Markus Bleuel, Saranshu Singla, Ziying Hu, Nathan C. Gianneschi, Matthew Shawkey, Sunil K. Sinha, Arthi Jayaraman, and Ali Dhinojwala. 2022. “Structural Color Production in Melanin‐based Disordered Colloidal Nanoparticle Assemblies in Spherical Confinement.” ADVANCED OPTICAL MATERIALS 10 (5). doi:10.1002/adom.202102162.
- Vancouver
- 1.Patil A, Heil CM, Vanthournout B, Bleuel M, Singla S, Hu Z, et al. Structural color production in melanin‐based disordered colloidal nanoparticle assemblies in spherical confinement. ADVANCED OPTICAL MATERIALS. 2022;10(5).
- IEEE
- [1]A. Patil et al., “Structural color production in melanin‐based disordered colloidal nanoparticle assemblies in spherical confinement,” ADVANCED OPTICAL MATERIALS, vol. 10, no. 5, 2022.
@article{8746644, abstract = {{Melanin is a ubiquitous natural pigment that exhibits broadband absorption and high refractive index. Despite its widespread use in structural color production, how the absorbing material, melanin, affects the generated color is unknown. Using a combined molecular dynamics and finite-difference time-domain computational approach, this paper investigates structural color generation in one-component melanin nanoparticle-based supraparticles (called supraballs) as well as binary mixtures of melanin and silica (nonabsorbing) nanoparticle-based supraballs. Experimentally produced one-component melanin and one-component silica supraballs, with thoroughly characterized primary particle characteristics using neutron scattering, produce reflectance profiles similar to the computational analogs, confirming that the computational approach correctly simulates both absorption and multiple scattering from the self-assembled nanoparticles. These combined approaches demonstrate that melanin's broadband absorption increases the primary reflectance peak wavelength, increases saturation, and decreases lightness factor. In addition, the dispersity of nanoparticle size more strongly influences the optical properties of supraballs than packing fraction, as evidenced by the production of a larger range of colors when size dispersity is varied versus packing fraction. For binary melanin and silica supraballs, the chemistry-based stratification allows for more diverse color generation and finer saturation tuning than does the degree of mixing/demixing between the two chemistries.}}, articleno = {{2102162}}, author = {{Patil, Anvay and Heil, Christian M. and Vanthournout, Bram and Bleuel, Markus and Singla, Saranshu and Hu, Ziying and Gianneschi, Nathan C. and Shawkey, Matthew and Sinha, Sunil K. and Jayaraman, Arthi and Dhinojwala, Ali}}, issn = {{2195-1071}}, journal = {{ADVANCED OPTICAL MATERIALS}}, keywords = {{Atomic and Molecular Physics,and Optics,Electronic,Optical and Magnetic Materials,biomimicry,broadband absorption,colloidal assembly,optical modeling,structural colors,structure-property relationship,synthetic melanin,LIGHT-SCATTERING,NANOSTRUCTURAL BASIS,POLYDOPAMINE}}, language = {{eng}}, number = {{5}}, pages = {{14}}, title = {{Structural color production in melanin‐based disordered colloidal nanoparticle assemblies in spherical confinement}}, url = {{http://doi.org/10.1002/adom.202102162}}, volume = {{10}}, year = {{2022}}, }
- Altmetric
- View in Altmetric
- Web of Science
- Times cited: