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Abstract

Hjelmslev-Moufang planes are point-line geometries related to the exceptional algebraic groups
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that the only such parapolar spaces are exactly given by the Hjelmslev-Moufang planes and their
close relatives (arising from taking certain restrictions). On the one hand, this work complements the
algebraic approach to these structures with Jordan algebras due to Faulkner in his book “The Role
of Nonassociative Algebra in Projective Geometry”, published by the AMS in 2014; on the other
hand, it provides a new tool for classification and characterisation problems in the general theory of
parapolar spaces.
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1 Introduction

1.1 Origin of the problem

The natural geometries of “groups of algebraic origin” (by which we mean semi-simple algebraic groups
and their classical and mixed type analogues) are the (Tits-)buildings, introduces by Jacques Tits in his
monumental work [15]. Special cases were considered before, especially to get a grip on the algebraic
groups of exceptional type. One of these concerned the (split) groups of type E6. The associated geom-
etry is the so-called Hjelmslev-Moufang plane P (defined over a field k), as was formally introduced
by Springer and Veldkamp [13] for the case char(k) 6= 2,3; and studied avant-la-lettre by Tits [14] in
the general case. This geometry has some remarkable and interesting properties. One is that the lines
of P , which carry the structure of a hyperbolic quadric in a projective space of dimension 9, pairwise
intersect non-trivially. This is one of the defining properties of projective remoteness planes, which were
introduced by Faulkner in [7]. He constructs such geometries using the Jordan algebras of 3× 3 Her-
mitian matrices over composition algebras, which yields the Hjelmslev-Moufang plane and its relatives
(essentially given by subplanes). Our results in particular give evidence that no other algebraic structures
are likely to produce projective remoteness planes (certainly not when the lines have the structure of a
polar space).

After Springer and Veldkamp introduced the Hjelmslev-Moufang planes (henceforth: HM-planes),
and after Tits developed his theory of buildings, people started to define other, more general, point-line
geometries to get an even better grip on the algebraic groups and the corresponding buildings. One of
the central ideas was that of a parapolar space, introduced by Bruce Cooperstein [4] in the late 1970s.
Roughly speaking, a parapolar space is a connected point-line geometry in which every quadrangle with
at least one non-collinear diagonal pair of points is contained in a convex subgeometry isomorphic to a
polar space (for the precise definition we refer to Definition 2.6). These subgeometries are usually called
symplecta or, briefly, symps. Cooperstein’s approach was very successful and ever since, parapolar spaces
have been studied in depth, in particular by Cohen and Shult. This evolved in a rich theory, discussed at
length in [1] and [11]. Although almost all known examples of parapolar spaces are related to buildings,
a full classification result is not within reach.

So, in modern terminology, and referring to the definitions in Section 2.2, an HM-plane is a parapo-
lar space of symplectic rank 5 (meaning that all its symps have rank 5), in which every two symps share
at least a point (in fact, either a single point, or a maximal singular subspace, see Proposition 3.9 of [13])
and in which every pair of points is contained in a symp.

1.2 The main result

The question that we put forward in this paper can now be informally stated as: Which parapolar spaces
behave like HM-planes when the point-symp structure is considered? In other words, can we classify
all parapolar spaces with the properties that every pair of points is contained in at least one symp, and
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every pair of symps intersect nontrivially? We obtain the following theorem (referring to Section 2.2 for
undefined notions).

Theorem 1.1. Let Ω = (X ,L ) be a parapolar space in which every pair of points is contained in at
least one symplecton, and every pair of symplecta intersects in at least one point. Then Ω is one of the
following point-line geometries.
− The Cartesian product of a projective line and an arbitrary projective plane;
− The Cartesian product of two arbitrary not necessarily isomorphic projective planes;
− The line Grassmannian A4,2(k) for any skew field k;
− The line Grassmannian A5,2(k) for any skew field k;
− The Lie incidence geometry E6,1(k) for any field k.

Theorem 1.1 is a special case of our main result (Theorem 3.1), as we can relax the assumptions
strongly. Indeed, we can also carry out a classification of the above-mentioned parapolar spaces when
replacing the requirement “all pairs of points are contained in a symp” by “if there is a symp of rank
2, then pairs points which can be joined by a shortest path of length 2, are contained in a symp”. In
technical terms, this means that we put no restriction on the diameter, but we do require that, in case
there is a symp of rank 2, then the parapolar space should be strong. This classification yields the same
geometries as does Theorem 1.1, except for a class of parapolar spaces with the property that all symps
intersect each other in exactly a point, a situation we deal with in Theorem 3.2.

In some sense, the case in which the symps of the parapolar spaces all have rank at least 3 is the
generic one (giving rise to A4,2(k), A5,2(k) and E6,1(k)). Nonetheless, the proof of the case of where
there are symps of rank 2 (in which case we will prove that actually all symps have rank 2) is by far
the most intricate (as is also reflected by the fact that strongness is required here). In that connection we
quote Shult [10]: It is not easy to live in a world with no symplecton of rank at least three in sight.

Finally, let us explain why we could have expected the geometries, other than the E6,1(k)-geometry,
occurring in Theorem 1.1–the fact that no others do is the main achievement of this paper. The line
Grassmannian A5,2(k) and the Cartesian product of two projective planes over k (also know as the Segre
variety S2,2(k)) are close relatives of the E6,1(k)-geometry. Indeed, by restricting the coordinatizing
algebra of the HM-plane over k (the split octonions over k) to the split quaternions over k or to k× k, we
exactly obtain A5,2(k) and S2,2(k), respectively. The latter geometries have similar incidence properties
as the Hjelmslev-Moufang planes, as was also noted by Springer and Veldkamp (cf. [13], page 254).
This holds true even when k is no longer commutative for A5,2(k), or when considering the Cartesian
product of any two (not necessarily isomorphic) axiomatic projective planes. The geometries A4,2(k) and
the Cartesian product of a projective line and an arbitrary projective plane are natural subgeometries of
the latter, respectively.
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1.3 Future perspectives

Our main theorem characterises the E6,1(K)-geometry and its relatives as parapolar spaces in which two
symps can never have an empty intersection. It turns out that many other (exceptional) Lie incidence ge-
ometries are parapolar spaces in which there are other gaps in the spectrum of dimensions of intersections
of pairs of symps. For instance, in E8,8(K), whose symps have rank 7, two symps can never intersect in
a k-space where k ∈ {1,3,4}. This then implies that in the latter’s point-residue, E7,7(K), two symps can
never intersect in a k-space where k ∈ {0,2,3}. In general, letting k be any integer with k ≥−1, we call
a parapolar space k-lacunary if k /∈ {dim(ξ1∩ξ2) | ξ1,ξ2 symps of Ω}.

The current paper can be used to classify the k-lacunary parapolar spaces Ω for k≥ 0, provided that
each symp of Ω has rank at least k+3. Indeed, one can then deduce that Ω has a residue which is (−1)-
lacunary, and these are listed in our current main result. Although it is not hard to predict the possibilities
for Ω, it requires non-trivial arguments to actually prove this—this will be pursued in another paper, see
[6]. The locally connected parapolar spaces we obtain are E6,2(K),E7,1(K),E8,8(K) (which are long-
root geometries) and their relatives (more precisely: residues). Surprisingly, these three Lie incidence
geometries, their point-residues (namely, A5,3(K), E6,1(K), E7,7(K), respectively) and the latter’s point-
residues (namely, A2,1(K)×A2,1(K), D5,5(K), E6,1(K), respectively), produce precisely the 3×3 lower
south-east corner of the Freudenthal-Tits magic square.

The result mentioned above provides an additional strong tool in (classification) work related to
parapolar spaces, in particular for work aiming at exceptional Lie incidence geometries. For instance,
if one proves that a gap in the spectrum of intersection dimensions of symps occurs, then the problem
reduces to a neat list of parapolar spaces, or, if one assumes the parapolar space does not occur in
the given list, one may rely on the fact that each (sensible) dimension occurs as the dimension of the
intersection of two symps.

Before stating the precise version of our main results (Theorems 3.1 and 3.2), we introduce in the
next section the necessary terminology concerning parapolar spaces, including the examples relevant for
this paper.

2 Parapolar spaces

We provide a gentle introduction into the theory of parapolar spaces to keep the paper self-contained. We
refer to [1] and [11] for more information.

2.1 Generalities on point-line geometries

Definition 2.1. A pair Ω = (X ,L ) is a point-line geometry if X is a set and L is a family of subsets of
X of size at least 2 covering X; the elements of X are called points and those of L lines.
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Some terminology. • Let Ω = (X ,L ) be a point-line geometry. Two distinct points x,y of X that
are contained in a common line are called collinear, denoted x ⊥ y. The set of points equal or collinear
to a given point x is denoted x⊥, and for a set S⊆ X , we denote S⊥ =

⋂
s∈S s⊥.

• A subset Y ⊆ X is called a subspace of Ω if for every pair of collinear points x,y ∈ Y , all lines
joining x and y are entirely contained in Y ; it is called proper if Y 6=X . A geometric hyperplane is a proper
subspace which intersects every line nontrivially. A subspace Y ⊆ X is called singular if every pair of
distinct points of Y is collinear. The generation of a subset A ⊆ X is the intersection of all subspaces of
Ω containing A and is a subspace again, we denote it by 〈A〉.

•The collinearity graph Γ(X ,L ) of Ω is the graph with vertex set X where adjacency is collinearity.
A subspace Y is called convex if for every pair of points x,y ∈ Y , all points on any shortest path from x
to y (in the collinearity graph) belong to Y . The intersection of all convex subspaces of Ω containing a
given subset A⊆ X is called the convex closure of A and denoted cl(A). A point-line geometry is called
connected if its collinearity graph is connected. The diameter of a connected point-line geometry is the
diameter of its collinearity graph.

Definition 2.2. If a point-line geometry (X ,L ) is such that every pair of distinct points is contained in
(at most) exactly one line, then it is a (partial) linear space; if it is such that every pair of lines intersect
in exactly one point, then it is a dual linear space. The latter it is called nontrivial if there are at least two
lines.

Note that in the above definition, since L covers X , a dual linear space is automatically connected.

Definition 2.3. A projective plane is a point-line geometry (X ,L ) which is both a linear space and a
dual linear space and which does not contain lines of size 2; a projective space is a point-line geometry
containing at least two lines and such that every triple of points not contained in a common line generates
a projective plane.

Every projective space is either a projective plane or obtained from a vector space of dimension at
least 4 by taking the 1-spaces as points and the 2-spaces as lines (with containment as incidence relation).
The dimension of a projective space is 2 if it is a projective plane, and it is n is it is constructed from a
vector space of dimension n+1 as above. In all cases the dimension is one less than the minimum size
of a generating set. For convenience we will call the more or less trivial singular point-line geometry
(X ,{X}) a projective space of dimension 1 provided |X | ≥ 3. These will also be referred to as projective
lines. A single point will sometimes be called a projective space of dimension 0 and the empty set a
projective space of dimension −1.

For each point-line geometry Ω = (X ,L ) we can study the local structure in any of its points x ∈ X
as follows. Let Lx be the set of lines of Ω containing x and let Πx be the set of singular subspaces of
Ω generated by two members of Lx (there is no guarantee that this set is nonempty), where we identify
each member of Πx with the set of lines through x it contains.
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Definition 2.4. Let Ω = (X ,L ) be a point-line geometry and let x ∈ X be arbitrary. The point-line
geometry Ωx = (Lx,Πx) is called the local geometry (at x), or the point residual (at x). If every point
residual is connected, then we say that Ω is locally connected.

2.2 The definitions of polar and parapolar spaces

Before giving the definition of a parapolar space, we need to know that of a polar space:

Definition 2.5. A point-line geometry ∆ = (X ,L ) is a polar space if the following axioms hold.
(PS1) Every line has at least three points.
(PS2) No point is collinear to all other points.
(PS3) Every nested sequence of singular subspaces is finite.
(PS4) For each pair (x,L) ∈ X×L either exactly one, or all points of L are collinear to x.

Polar spaces turn out to be partial linear spaces but not linear spaces. Note that the joint axioms
(PS2) and (PS4) are equivalent to “x⊥ is a geometric hyperplane, for all x ∈ X”. Every singular subspace
of a polar space is a finite-dimensional projective space, and for each given polar space ∆ = (X ,L ) there
exists a natural number r > 1, called the rank of ∆, such that some singular subspace of ∆ has dimension
r− 1, but no singular subspace of dimension r exists in ∆. The singular subspaces of ∆ of dimension
r−1 will—rightfully—be referred to as maximal singular subspaces, whereas singular subspaces of di-
mension r−2 will be referred to as submaximal singular subspaces. The number t of maximal singular
subspaces containing a given submaximal singular subspace only depends on ∆, and not on the submax-
imal singular subspace. If t > 2, then we call ∆ thick; otherwise t = 2 and ∆ is hyperbolic. The set of
maximal singular subspaces of a hyperbolic polar space can be partitioned in two subsets such that two
maximal singular subspaces belong to the same subset if and only if the dimension of their intersection
has the same parity as their own dimension. We often call a maximal singular subspace of a hyperbolic
polar space a generator.

In a polar space ∆ = (X ,L ) of rank r ≥ 3, it is easy to see that the point-residual ∆x, x ∈ X , is a
polar space of rank r−1, which is canonically isomorphic to the subspace x⊥∩ y⊥, for every y ∈ X not
collinear to x. Also, ∆ is hyperbolic if and only if ∆x is hyperbolic.

Definition 2.6. A point-line geometry Ω = (X ,L ) is called a parapolar space if the following axioms
hold:
(PPS1) Ω is connected and, for each pair (x,L) ∈ X ×L either none, one or all of the points of L are

collinear to p, and there exists a pair (p,L) ∈ X×L such that p is collinear to no point of L.
(PPS2) For every pair of non-collinear points p and q in X , one of the following holds:

(a) cl({p,q}) is a polar space, called a symplecton, or symp for short;
(b) p⊥∩q⊥ is a single point;
(c) p⊥∩q⊥ = /0.

(PPS3) Every line is contained in at least one symplecton.
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A parapolar space Ω is called strong if p⊥ ∩ q⊥ is never a single point for p not collinear to q. We say
that Ω has minimum symplectic rank r if there is a symp of rank r but not less. We say that Ω has at least
symplectic rank r if there is no symp of rank smaller than r. We say that Ω has uniform symplectic rank
r if each symplecton has rank r.

Note that, contrary to what happens in polar spaces, the singular subspaces of a parapolar space need
not (all) be projective spaces. However, we will prove a sufficient condition for that (see Lemma 4.1),
which implies that all subspaces are projective in case the symplectic rank is at least 3; and if there are
symps of rank 2, this fact will follow by our assumptions (see Lemma 5.2).

2.3 Examples of polar and parapolar spaces

Many interesting examples of parapolar spaces emerge from buildings as follows. Since a building is
a numbered simplicial complex, one can take all simplices of a certain type T as point set, and then
there is a well-defined mechanism that deduces a set of lines. The resulting point-line geometry is the
so-called T -Grassmannian of the building. Now, for a certain choice of T , projective spaces and polar
spaces emerge from buildings of types An and Bn, respectively. Other choices of T for these and for other
types of buildings in general lead to parapolar spaces, and these are the ones we refer to as Lie incidence
geometries. We call them exceptional if the corresponding building is of exceptional type.

Below, we provide specific examples of polar and parapolar spaces, whilst giving the notation used
in our main theorem below. We leave the proofs that these are actual polar and parapolar spaces to the
interested reader as illuminating exercises.

Example 2.7 (Hyperbolic Polar Spaces). Every hyperbolic polar space of rank r at least 4 is the point-
line geometry naturally arising from a hyperbolic quadric in projective (2n− 1)-space over some field
(such a hyperbolic quadric has standard equation X0X1 +X2X3 + · · ·+Xn−1Xn = 0).

Every hyperbolic polar space (X ,L ) of rank 3 arises from a 4-dimensional vector space V over
some skew field k by taking for point set X the set of 2-spaces of V , and as set of lines L the set of pencils
of 2-spaces. A pencil of 2-spaces is the set of 2-spaces containing a fixed 1-space V1 and contained in a
fixed 3-space V3, with V1 ⊆ V3. In the projective language, X is the set of lines of a projective space of
dimension 3 and L is the set of planar line pencils.

Finally every hyperbolic polar space of rank 2 is an (`1×`2)-grid, i.e., the Cartesian product of two
projective lines, see the next example.

Example 2.8 (Product spaces). Probably the easiest examples of parapolar spaces are the Cartesian
products of two linear spaces. Let Λi = (Xi,Li), i = 1,2, be a nonempty linear space with the property
that every line has size at least 3. Assume that both Λ1 and Λ2 contain at least one line. Define the
Cartesian product Λ1×Λ2 as the point-line geometry with point set X1×X2 and line set {L1×{p2} |
L1 ∈ L1, p2 ∈ X2}∪ {{p1}× L2 | p1 ∈ X1,L2 ∈ L2}. The symps here are the rank 2 hyperbolic polar
spaces L1×L2, Li ∈Li, i = 1,2. The diameter of Λ1×Λ2 is 2 and the parapolar space is strong.
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Note that in case Λ1 and Λ2 are two projective lines. we obtain the aforementioned hyperbolic polar
spaces of rank 2.

Example 2.9 (Line Grassmannians). Line Grassmannians are defined in exactly the same way as hy-
perbolic polar spaces of rank 3, using a vector space V of dimension at least 4, or a projective space of
dimension at least 3. If the projective space has dimension at least 4, then we obtain strong parapolar
spaces of diameter 2 with uniform symplectic rank 3, and all symps are isomorphic to a fixed hyperbolic
polar space of rank 3. We denote the line Grassmannian of a projective n-space over k by An,2(k), using
standard notation.

Example 2.10 (Hjelmslev-Moufang Planes—Parapolar spaces of type E6,1). The line Grassmannians
are examples of Lie incidence geometries, for each projective space can be given the structure of a spher-
ical Tits-building (which are the natural geometries of Lie groups and groups of Lie type). The buildings
related to the groups of exceptional type have no short elementary description and we shall therefore
not define these. We just content ourselves with mentioning that to every building of exceptional type
E6 (say over the field k) corresponds a Lie incidence geometry denoted E6,1(k) which can be obtained
by a standard procedure applied to the building. The point-line geometry E6,1(k) can be defined via a
trilinear form in a 27-dimensional vector space over k, or via the Zariski closure of the image of an affine
Veronesean map involving a split Cayley algebra over k, or using the algebraic group of exceptional type
E6 over k. We shall not do this here since this does not yield interesting insight in the objects we defined,
and it does not provide useful information for our proofs. If we denote by Ξ the family of symps of
the Lie incidence geometry E6,1(k) = (X ,L ), then the point-line geometry (X ,Ξ) is the aforementioned
Hjelmslev-Moufang plane over k.

3 Main results

3.1 The statements

We can now formulate our main results precisely. The description of the geometries occurring here can
be found in Subsection 2.3 preceding this section.

Theorem 3.1. Let Ω = (X ,L ) be a parapolar space, assumed to be strong if the minimum symplectic
rank is 2, containing no pair of disjoint symplecta and such that there is a line contained in at least two
symplecta. Then Ω is one of the following point-line geometries.
− The Cartesian product of a projective line and an arbitrary projective plane;
− The Cartesian product of two arbitrary not necessarily isomorphic projective planes;
− The line Grassmannian A4,2(k) for any skew field k;
− The line Grassmannian A5,2(k) for any skew field k;
− The Lie incidence geometry E6,1(k) for any field k.
In particular, Ω is strong and, if the symplectic rank is at least 3, it is also locally connected.
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Our result below describes what happens if each line is contained in a unique symplecton, i.e., if
each pair of symplecta intersects each other in exactly a point, showing that the classification in this case
is hopeless.

Theorem 3.2. Let Ω = (X ,L ) be a parapolar space, assumed to be strong if the minimum symplectic
rank is 2, in which every two symplecta intersect in exactly a point. Then, all members of the family Ξ

of symps have rank at least 3, and the point-line geometry (X ,Ξ) is a non-trivial dual linear space with
the following property: If p0 ∈ X belongs to two distinct members ξ1,ξ2 of Ξ, and pi ∈ ξi, i = 1,2, and
p3 ∈ X is contained in a common member ξi3 of Ξ together with pi, i = 1,2, where p0 /∈ {p1, p2, p3},
then

δξ1(p0, p1)+δξ13(p1, p3)+δξ23(p2, p3)+δξ2(p0, p2)≥ 5,

where δξ is the distance in the collinearity graph of ξ ∈ Ξ, i.e., 0 if the arguments are equal, 1 if they are
collinear in ξ , and 2 otherwise.

Conversely, let ϒ = (X ,Ξ) be a given a nontrivial dual linear space such that every line (i.e., every
member of Ξ) has the structure of a polar space of rank at least 3, and satisfying the above inequality for
the given restrictions on the points and symps. Let L be the set of lines of all these polar spaces. Then
the geometry Ω = (X ,L ) is a parapolar space of symplectic rank at least 3 in which all symps intersect
each other in exactly a point.

Remark: Theorem 1.1 follows immediately from Theorems 3.1 and 3.2: A parapolar space satisfy-
ing the conditions of Theorem 1.1 by definition has diameter 2, and as such the inequality of Theorem 3.2
cannot be satisfied.

3.2 Structure of the proof

In Section 4 we start by collecting some auxiliary results which we will need in our proofs. Most of these
are very minor generalizations of existing results, introducing local hypotheses instead of global, but we
provide proofs for completeness’ sake.

From then on, we assume that every pair of symps meets nontrivially. In Section 5, we show that if
some symp has rank 2, then all symps have rank 2. We then classify the strong parapolar space with only
symplecta of rank 2 in Section 6. In Section 7, we treat the most generic case, being the one in which
the parapolar spaces have symplectic rank at least 3, under the additional assumption that there is a line
contained in at least two symps.

Finally, in Section 8, we consider the case in which every pair of symps has exactly one point in
common, and prove Theorem 3.2. Note that this situation does not occur when there are symps of rank
2, for then we assume that Ω is strong, if Ξ1 and Ξ2 intersect in a unique point p, then taking lines L1 and
L2 through p in Ξ1,Ξ2, respectively, yields a symp through L1 and L2 meeting Ξ1 and Ξ2 in more than
one point.

We want to emphasise that our proof is elementary in the sense that it only uses projective and
incidence geometry. The identification of the line Grassmannians and the Hjelmslev-Moufang plane is

9



done using a theorem of Cohen and Cooperstein [3] after having deduced the necessary conditions for
using this theorem. However, we can avoid this and instead continue in an elementary way until the very
end, only using the characterization of Veblen and Young of projective spaces (for the cases of the line
Grassmannians) and the local characterization of buildings of type E6 by Tits [17] for the Hjelmslev-
Moufang plane. This will be explained at the end of Section 7, see Remark 7.15.

4 Some auxiliary results

Compare the next lemma with Theorem 13.4.1(2) of [11].

Lemma 4.1. Let Ω be a parapolar space. If all points of a line L contained in a symp ξ of rank at least 3
are collinear to a point p, then p and L are contained in a symp and hence generate a projective singular
plane. Consequently, if the symplectic rank is at least 3, each singular subspace is projective.

Proof. If p∈ ξ , we are done. If not, take a point q∈ ξ collinear to all points of L and not contained in the
subspace p⊥∩ξ . Then p and q are at distance 2 and L⊆ p⊥∩q⊥, so there is a symp ξ ′ through p and q,
which clearly contains L and p. Since ξ ′ is a polar space, it follows that the singular subspace generated
by L and p is a projective plane.

Lemma 4.2. Let Ω be a parapolar space of minimum symplectic rank d. Then every singular subspace
of dimension at most d−1 is contained in some symp.

Proof. By Axiom (PPS3) each line is contained in a symp and by connectivity each point is contained
in a line. Hence if d = 2 we are done. So suppose d ≥ 3. Then Lemma 4.1 confirms that the (projective)
dimension is well-defined. So let W be a singular subspace of Ω of dimension d∗ with 2 ≤ d∗ ≤ d− 1.
Let d′ ≤ d∗ be the maximum number such that there exists a symp ξ with dim(ξ ∩W ) = d′ (well defined
by the first line of this proof, which also shows that d′ ≥ 1). Suppose for a contradiction that d′ < d∗.
Then we can pick p ∈W \ ξ and q ∈ ξ \ p⊥ with q collinear to all points of W ∩ ξ . However, the symp
ξ ′ containing p and q (well defined by the fact d′ ≥ 1) intersects W in a subspace of dimension d′+ 1,
contradicting the maximality of d′. We conclude that W is contained in some symp.

We have the following corollary.

Corollary 4.3. Let Ω = (X ,L ) be a parapolar space of symplectic rank at least 3. Let x ∈ X be ar-
bitrary. Then the point residual Ωx is connected if and only if the graph Γ with vertex set Lx and two
vertices adjacent if they are contained in a common symp, is connected. Consequently, a locally con-
nected parapolar space of symplectic rank at least 3 contains at least one line which is contained in at
least two symps.

Proof. Since all symps contain planes and since every plane belongs to a symp by Lemma 4.2, we only
need to show the last assertion. So suppose Ω is locally connected. Since it is not a polar space, there are
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at least two symps, and by connectivity some point x ∈ X is contained in at least two symps. Hence Ωx

contains two symps and by connectivity of Ωx and the first assertion, there is a line through x contained
in at least two symps.

Finally we need the following two elementary results for polar spaces.

Lemma 4.4. Let ∆ be a hyperbolic polar space. Given two generators, we can find a submaximal singu-
lar subspace disjoint from both generators.

Proof. Let U and V be two generators. We proceed by induction on the rank r of ∆. If r = 2, it is clear that
we can find a point disjoint from the lines U and V . For r ≥ 3, consider non-collinear points pU and pV

in U and V , respectively. In p⊥U ∩ p⊥V , U ∩ p⊥V and V ∩ p⊥U correspond to maximal singular subspaces, so
by induction there is a singular subspace Z in p⊥U ∩ p⊥V of dimension n−3 disjoint from U and V . As the
residual at Z (recursively defined as the point residual at the point corresponding to Z of the residual at a
hyperplane of Z) is a rank 2 hyperbolic polar space, in which U and V correspond to lines, it contains a
point disjoint from them, yielding a submaximal singular subspace of ∆ disjoint from both U and V .

We already noted that in a polar space, the points equal or collinear to a certain point form a geo-
metric hyperplane, but we can be more precise.

Lemma 4.5. Let ∆ = (X ,L ) be a polar space and let p ∈ X be arbitrary. Then p⊥ is a geometric
hyperplane of ∆ which is not properly contained in another geometric hyperplane.

Proof. Let q∈X not be collinear to p and consider the subspace H = 〈p⊥,q〉. Note that by (PS4) q⊥⊆H.
Now let x ∈ X be arbitrary. If x ⊥ x′ ∈ q⊥ \ p⊥, then we can interchange the roles of x′ and q and obtain
x ∈ x′⊥ ⊆ H. If no such x′ exists, then we consider y ∈ x⊥ \ ({x}∪ q⊥) and observe that the previous
argument now does lead to y ∈ H. Hence, if y′ = 〈x,y〉∩q⊥, then x ∈ 〈y,y′〉 ⊆ H.

Standing Hypotheses. We now embark on the proof of the Main Result. In the next three sections,
we let Ω = (X ,L ) be a parapolar space of minimum symplectic rank d such that every two symplecta
have at least one point in common. We distinguish between the cases d = 2 and d ≥ 3. In the former
case, we also assume that Ω is strong; in the latter case we assume that at least one line of Ω is contained
in at least two symps. Such a line will be called sympthick.

We will also use the following notation. The family of symps of Ω is denoted by Ξ, and if two
noncollinear points x,y ∈ X are contained in a symp ξ ∈ Ξ, then we write ξ = ξ (x,y) := cl({x,y}).

The case d = 2 is also divided into two parts: we first show in the next section that Ω has uniform
symplectic rank 2.
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5 Minimum symplectic rank 2 implies uniform symplectic rank 2

In this section we assume that (X ,L ) has minimum symplectic rank 2. The Standing Hypotheses imply
that Ω is strong. The aim of this subsection is to show that all symps have rank 2.

We begin with the only two lemmas that will also be useful for the case of uniform symplectic rank
2. For convenience, we will call a symp of rank 2 a quad (from “quadrangle”).

Lemma 5.1. Let (X ,L ) have minimum symplectic rank 2. If L1 and L2 are disjoint lines of any quad
ξ , then either at least one of L1,L2 is properly contained in a singular subspace, or some line of ξ

intersecting both L1,L2 is properly contained in a singular subspace.

Proof. Let ξ be a quad and let L1,L2 be two nonintersecting lines in ξ . We claim that there exist lines
M1,M2 not contained in ξ and meeting L1,L2 in points q1,q2, respectively. Indeed, let i ∈ {1,2}. By
Axiom (PPS1), X does not consist of only the points of ξ , so there is a point p ∈ X \ξ . Connectivity of
(X ,L ) yields a shortest path (p, p1, ..., pn,qi) from p to Li (so qi ∈ Li). Now if pnqi does not belong to
ξ , then we can put Mi = pnqi. If pn ∈ ξ , then pn−1 /∈ ξ (as otherwise we could shorten the path) and so,
by strongness, pn−1 and qi determine a symp ξi and then there is a line Mi in ξi through qi not contained
in ξ . The claim is proved.

Again, let i ∈ {1,2}. We may assume that Li is not properly contained in a singular subspace.
Consequently, since (X ,L ) is strong, Li and Mi are contained in a unique symp ξi and the singular
subspace ξ ∩ξi equals Li. Hence ξ1∩ξ2, nonempty by assumption, is not contained in ξ . For any point
q ∈ ξ1∩ ξ2, q is collinear to a point r1 ∈ L1 and to a point r2 ∈ L2. Necessarily, r1 ⊥ r2 since q /∈ ξ . So
r1,r2,q are contained in a singular subspace properly containing the line r1r2.

If there are quads we cannot invoke Lemma 4.1 to conclude that all singular subspaces are projective
spaces. However, under our assumptions, we nevertheless can.

Lemma 5.2. Let (X ,L ) have minimum symplectic rank 2 and S any of its singular subspaces. Then S is
projective and contains no pair of skew lines that are both contained in a quad.

Proof. Let S be a singular subspace properly containing a line. If S does not contain two nonintersecting
lines then S is a projective plane. So we may assume that two lines L1,L2 in S are disjoint. Suppose for
a contradiction that both are contained in a quad; say Li ⊆ ξi ∈ Ξ, i = 1,2. Then ξi∩S = Li and ξ1∩ ξ2
contains a point q /∈ S. Now q is collinear to unique points p1, p2 on L1,L2, respectively. Let r ∈ L1\{p1}.
Then ξ1 is determined by r and q, but since p2 ∈ {r,q}⊥, we see that p2 ∈ ξ1, a contradiction. This already
shows the second part of the assertion.

Now we show Veblen’s axiom. Suppose L1 and L2 both intersect two intersecting lines K1,K2 in
two distinct points, and let p be the intersection of K1 and K2. Assume for a contradiction that L1 and L2
are disjoint. Then the previous paragraph implies that some symp ζ of rank at least 3 contains, say, L1.
Since p is collinear to all points of L1, Lemma 4.1 implies that p and L1 are contained in a projective
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plane, which then also contains K1,K2 and hence L2. Consequently L1 and L2 intersect after all. Hence,
by [16], S is projective.

The lemma is completely proved.

Lemma 5.3. Let (X ,L ) have minimum symplectic rank 2. Let ξ be a quad and let L ⊆ ξ be a line
contained in a singular plane π . Let ζ be any symp such that ζ ∩L = /0. Then ζ has rank 2.

Proof. We divide the proof into two parts, based on whether or not there is a point in ζ collinear to a
point x ∈ π \L. Before heading off, note that ζ ∩π is empty. Indeed, suppose ζ ∩π is a point p (off L, by
assumption). By the Standing Hypotheses, ζ ∩ξ contains a point p′ (also off L). Then p′ is not collinear
to p, as otherwise p ∈ ξ (r, p′) = ξ for some point r ∈ L not collinear to p′, a contradiction. However, if
p and p′ are not collinear, ζ = ξ (p, p′) contains a point on L after all, violating our assumption.

Case I: There is a point q of ζ collinear to some point x of π \L.
Claim. Each point of ζ is collinear to at least one point of π .

Denote by Z the subset of points of ζ which are collinear to at least one point of π . We (subsequently)
show that Z is a subspace containing q⊥∩ζ and at least one point of ζ not belonging to q⊥∩ζ , as then
Lemma 4.5 implies that Z = ζ , proving the claim.

• Z is a subspace of ζ :
Let q1,q2 be collinear points of Z. Then either they are collinear to a common point of π , in which
case every point of q1q2 is collinear to that point, or else they are collinear to distinct points x1,x2,
respectively, with δ (q1,x2) = δ (q2,x1) = 2. But then, in the symp ξ (q1,x2) = ξ (q2,x1), every
point of q1q2 is collinear to a unique point of the line x1x2 ⊆ π .

• Z contains q⊥∩ζ :
Let r ∈ ζ be a point collinear to q. We show that r ∈ Z. If r ⊥ x, then there is nothing to prove, so
suppose x /∈ r⊥. Then the symp ξ (r,x) intersects ξ in at least one point p∗. If p∗ /∈ L, its distance
to x is 2 (like above this follows from x /∈ ξ ) and hence by convexity, L∩ξ (r,x) contains a point.
Either way, ξ (r,x)∩π contains a line, at least one of which points is collinear to r.

• At least one point r of ζ not belonging to q⊥ belongs to Z:
If some point p of ξ ∩ζ is not collinear to q, then we can take r = p. Hence suppose p⊥ q for all
points p ∈ ξ ∩ζ . It suffices to find a point r ⊥ q, q 6= r ∈ ζ , collinear to a point of π \L (because
interchanging the roles of q and r will then imply r⊥ ⊆ Z). Assume for a contradiction that every
point of ζ ∩ q⊥ is collinear to some point of L. Then also q is; say p∗ ∈ q⊥ ∩L. By assumption,
p∗ /∈ ζ . If some point p of ξ ∩ζ is not collinear to p∗, then ξ = ξ (p, p∗) contains q (recall p⊥ q)
a contradiction. This arguments shows that ξ ∩ ζ is just a point, say p, which is collinear to p∗.
It also shows q⊥∩L is exactly p∗. Consider r ∈ ζ with r ∈ q⊥ \ p⊥. Then, since ζ = ξ (p,r) does
not contain p∗, r is collinear to a unique point p′ ∈ L with p′ 6= p∗. Whence ξ (r,x) contains p′ and
q, and hence also p∗ ∈ p′⊥∩q⊥, implying π ⊆ ξ (r,x). But then, inside ξ (r,x), r is collinear to the
points of a line M 6= L of π as p∗ /∈ r⊥. This shows that r is collinear to some point of π \L.
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As mentioned above, this shows the claim. We now show that ζ is a quad indeed.
Suppose for a contradiction that ζ has rank at least 3. Let p be a point of ξ ∩ ζ and let p′ be

the unique point on L collinear to p. Then consider a plane α in ζ intersecting both ξ ∩ ζ and p′⊥ in
exactly the point p. If a point z ∈ α,z 6= p were collinear with a point p∗ of L, then our choice of α

implies p′ 6= p∗, but then z ∈ p⊥ ∩ p∗⊥ ⊆ ξ (p, p∗) = ξ , a contradiction. The above claim implies that
each point of α \ {p} is collinear to a unique point of π \L. A standard argument now shows that the
perp correspondence restricted from α to π preserves collinearity and hence is an isomorphism of planes.
Consequently some points of α different from p are collinear to points of L after all, a contradiction. This
proves the lemma in Case I.

Case II: No point of ζ is collinear to a point of π \L.
Claim. No line of π is contained in a symp of rank at least 3.

Suppose for a contradiction that some line of π were contained in a symp of rank at least 3. Lemma 4.1
then yields a symp ξ ∗ containing π . Let q ∈ ξ ∗ ∩ ζ . By assumption, no point of π \L is collinear to q.
Hence all points of L are collinear to q. Let p ∈ ξ ∩ζ be arbitrary and set p′ = p⊥∩L. Then p′ ⊥ q and,
consequently, q ⊥ p (as otherwise p′ would belong to ζ = ξ (p,q), a contradiction). Hence ξ , which is
defined by L and p, also contains q, a contradiction. The claim follows.

We now show that ζ is a quad, distinguishing between the following two cases.

• Case IIa: ζ ∩ξ is a single point p.
Let p′ be the unique point on L collinear with p. Pick an arbitrary point y ∈ π \L and an arbitrary
point z ∈ ξ \ L such that z is collinear to a point z′ ∈ L \ {p′}. Then y and z are not collinear
as otherwise ξ = ξ (p′,z) contains y. Set ξ ∗ = ξ (y,z). Then ξ ∗ contains a line M of π , namely
M = yz′. By the above claim, ξ ∗ is a quad and hence ξ ∗ ∩π = M. Noting that p ∈ ζ is collinear
to p′ ∈ π \M, we can interchange the roles of (ξ ,L) and (ξ ∗,M) and then Assumption I applies
again, showing that ζ is a quad.

• Case IIb: ζ ∩ξ is a line K.
Select p ∈ K arbitrarily and set p′ = p⊥∩L. Select a line M 6= K of ζ through p not contained in
p′⊥ and consider the symp ξ1 defined by p′ and M. Suppose that ξ1 has a line M′ in common with
π . Then arguing in ξ1 (which is a polar space), each point of M \{p} is collinear to a unique point
of M′ \{p′}, and hence of π \L, contradicting our hypothesis. Hence there is a line N 6= pp′ of ξ1
through p′ not contained in π .

Now either N and L are contained in a singular plane π ′ or they determine a symp ξ ′, which is in
fact a quad by the above claim, since it shares the line L with π . In the first case, we replace π by
π ′ and observe that the points of M \ {p} are collinear to points of π ′ \L; in the second case we
replace ξ by ξ ′ and observe that the points of K \{p} are collinear to the points of π \L. In both
cases, these replacements imply that Case I applies again, yielding that ζ has rank 2.

This completes the proof of the lemma.
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Lemma 5.4. Let (X ,L ) have minimum symplectic rank 2. Then every symp that intersects a quad in a
line is itself a quad.

Proof. Suppose for a contradiction that a quad ξ and a symp ζ of rank at least 3 intersect in a line L. Pick
x ∈ ξ arbitrarily but not on L. As in the proof of Lemma 5.1, there is a line M through x not contained
in ξ . Let M′ be a line of ξ through x disjoint from L. Then Lemma 5.3 implies that M and M′ are not
contained in a plane. Hence there is a symp ξ ′ containing M and M′. Since L is contained in some plane
of ζ , Lemma 5.3 again implies that ξ ′ is a quad.

Claim 1: The intersection ζ ∩ξ ′ is a point q.
Note that our main assumption yields ζ ∩ξ ′ 6= /0. Assume for a contradiction that ζ ∩ξ ′ is a line K. Since
ξ ∩ξ ′ = M′, the lines K and L are disjoint. For every point z ∈ K, the unique point in z⊥∩M′ and every
point in z⊥∩L (recall L∪K ⊆ ζ ) are collinear as z /∈ ξ (implying that also z⊥∩L is unique). It follows
that each point z ∈ K is contained in a unique plane αz intersecting M′ and L in collinear points. Since αz

contains a line of ζ , and ζ has rank at least 3, Lemma 4.1 implies the existence of a symp of rank at least
3 containing αz and hence intersecting ξ ′ in the line αz∩ξ ′. Now, for z 6= z′ ∈ K, the plane αz′ intersects
ξ ′ in a line disjoint from αz∩ξ ′. This contradicts once again Lemma 5.3. The claim is proved.

Similarly as in the previous paragraph, q⊥ ∩ L = p and q⊥ ∩M = q′. Let π be any plane of ζ

containing L. Then there is a point x ∈ π \L collinear to q and a point r ∈ ξ ′∩q⊥ such that rq does not
intersect M′.

Claim 2: r is collinear to some point of π \L.
If r ⊥ x, then this is trivial. If not there is a symp ξ (r,x), which intersects ξ and hence, by convexity (as
in the previous proof), it has a line R in common with π . Let x′ ∈ R∩ r⊥ and suppose for a contradiction
that x′ ∈ L. Then the unique point x′′ on M′ collinear with x′ is collinear to r too (since x′ /∈ ξ ′) and hence
x′′ 6= q′. This also implies that p 6= x′ and hence x′ /∈ q⊥. But then ξ (r,x) = ξ (q,x′) = ζ , a contradiction.
Claim 2 is proved.

Now we replace π by another plane π∗ of ζ containing L and such that π and π∗ are not contained
in a common 4-space. Then r is also collinear to a point x∗ of π∗ \ L. This implies that x′ and x∗ are
collinear, contradicting our choice of π∗.

The lemma is proved.

The main goal of this section is now within reach.

Proposition 5.5. Let (X ,L ) have minimum symplectic rank 2. Then (X ,L ) has uniform symplectic
rank 2.

Proof. Assume for a contradiction that there is a symp ζ of rank at least 3. Since the minimum rank is
2, there is also a quad ξ and by the Standing Hypotheses, ξ ∩ ζ 6= /0. Moreover, by Lemma 5.4, ξ ∩ ζ

is a point p. Pick lines L ⊆ ξ and M ⊆ ζ both through p. If L and M are contained in a plane, then by
Lemma 4.1, this plane is contained in a symp of rank at least 3 intersecting ξ in the line L, contradicting
Lemma 5.4. Hence, by strongness, L and M define a symp, which has a line in common with both ξ
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and ζ and hence, again by Lemma 5.4, it can neither have rank at least 3 nor rank 2. This impossibility
completes the proof.

6 The case of uniform symplectic rank 2

We continue with our assumption that Ω contains at least one quad. By Proposition 5.5, Ω has uniform
symplectic rank 2.

Lemma 5.2 implies that all singular subspaces are projective. We can now easily even say more.

Lemma 6.1. Let (X ,L ) have uniform symplectic rank 2. Then every singular subspace properly con-
taining a line is a projective plane. Moreover any two projective planes intersect in at most one point.

Proof. By Lemma 5.2, a singular subspace does not contain disjoint lines (as there are no symps of rank
at least 3). Hence as soon as it contains two lines, it is a projective plane. The second part of the lemma
follows from the first part and uniform symplectic rank 2.

The previous lemma allows us to speak about (singular) planes instead of “singular subspaces
properly containing a line”. Note also that Lemma 5.1 implies the existence of many singular planes.

Lemma 6.2. Let (X ,L ) have uniform symplectic rank 2. Then every symp and every singular plane that
share a point, share a line.

Proof. Let ξ be a symp and π a singular plane an suppose for a contradiction that ξ ∩π = p, with p ∈ X .
Let L be a line in π not containing p (and hence disjoint from ξ ) and let ξL be a symp containing L.
Since ξL does not contain planes, p /∈ ξ ∩ξL. Let q be a point of ξ ∩ξL and denote by r the unique point
of L collinear to q. Then p ⊥ r ⊥ q. If p and q are not collinear, then r ∈ ξ , contradicting L∩ξ = /0. So
suppose p and q are collinear. Then p,q,r are contained in a singular plane π ′ which intersects π in the
line pr. This contradicts Lemma 6.1.

Lemma 6.3. Let (X ,L ) have uniform symplectic rank 2. Then every point p not contained in a singular
plane π is collinear to a unique point of π .

Proof. Let ` be the distance of p to π (connectivity implies that ` is finite). If `= 1, then it follows by an
argument similar to the one used at the end of the proof of Lemma 6.2 that the point in π collinear to p is
unique. Next, if `= 2, strongness implies that p is contained in a symp, which, by Lemma 6.2, shares a
line L with π . But then L contains a point collinear to p, contradicting `= 2. Since by (PPS1) parapolar
spaces are connected, it follows that ` always equals 1. Uniqueness of the point collinear with p follows
from Lemma 6.1.

In case there is a singular plane intersecting every symp non-trivially, we can show that the para-
polar space is a product geometry of a projective line and a projective plane. We first show, under this
assumption, that each symp is non-thick.

16



Lemma 6.4. Let (X ,L ) have uniform symplectic rank 2. If there is a singular plane π intersecting every
symp non-trivially, then each symp of (X ,L ) is non-thick.

Proof. By Lemma 6.2, π intersects each symp in a line. Let ξ be an arbitrary symp. Set L = π ∩ ξ and
let q be a point in ξ \L. Let p be the unique point on L collinear to q and take a line K in π intersecting L
in p. Let L′ be a line in ξ through q disjoint from L. By Lemma 6.3, p is the unique point of K collinear
to q and hence, as (X ,L ) is strong, there is a unique symp ξK,q through K and q. Let K′ be a line in ξK,q

through q disjoint from K (hence K′ * ξ ). We claim that L′ and K′ are contained in a singular plane π ′.
If not, then by strongness, L′ and K′ are contained in a unique symp ξ ′. Since π shares a line with ξ ′, the
latter contains a point of L. Hence ξ ′, containing L′ and a point of L, coincides with ξ , violating K′ * ξ .
This shows the claim. If there would be another line qr in ξ disjoint from L, then repeating the above
argument implies r ⊥ K′, contradicting the fact that r is collinear to a unique point (namely q) of π ′. We
conclude that ξ is non-thick.

Proposition 6.5. Let (X ,L ) have uniform symplectic rank 2. If there is a singular plane π intersecting
every symp non-trivially, then (X ,L ) is isomorphic to the Cartesian product of a projective line with a
projective plane.

Proof. Again, Lemma 6.2 implies that π intersects each symp in a line, and by Lemma 6.4, each symp is
non-thick. Let L be an arbitrary line intersecting π in a point t (which exists since there is a symp through
t).

Claim. The line L is the unique line through t not contained in π .
Indeed, suppose for a contradiction that there is a point x /∈ π ∪L with x ⊥ t. If x and L would belong
to a singular plane π ′, we take a symp ξ ′ through a line L′ of π ′ not containing t. Then ξ ′ ∩π is a line
L′′ by assumption, and since t, if not already on L′′, is collinear to two non-collinear points of L′ and L′′,
respectively, we obtain t ∈ ξ ′. This however means that π ′ ⊆ ξ ′, a contradiction. So x is not collinear to
L, and then strongness implies a symp containing x and L. By assumption this symp intersects π in a line,
which contains t, implying that the symp has three lines through t, contradicting that it is non-thick. The
claim is proved.

We now complete the lemma by showing that (X ,L ) is isomorphic to the direct product space
π×L. Let x ∈ X be arbitrary. If x ∈ π∪L, then x can be uniquely written in L×{t}∪{t}×π . So suppose
x /∈ L∪π . By Lemma 6.3, x is collinear to a unique point xπ of π , which does not coincide with t by the
above claim. Hence, by strongness, there is a unique symp ξ through x and t and, again by the above
claim, ξ contains L as one of its two lines through t. So there is a unique point xL ∈ L collinear to x, and
xL 6= t. Just like L was the unique line through t not in π , the line xxπ is the unique line through xπ not
contained in π . Therefore, since xL is collinear with a unique point of xxπ (as xL and xπ are not collinear),
xL and xπ determine x uniquely. Lastly, it follows from the argument in the previous proof that the lines
distinct from L through any point x′ ∈ L\{x} belong to a singular plane.

The proposition is proved.
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If no plane intersects every symp, then we need to show that Ω is the Cartesian product of two
projective planes. The following lemma is the crux of that proof.

Lemma 6.6. Let (X ,L ) have uniform symplectic rank 2. If some plane π is disjoint from some symp
ξ , then ξ is non-thick and there exists a bijection from the point set of some line in π to one system
of generators of ξ such that elements corresponding under this bijection are contained in a common
singular plane.

Proof. Let L be a line in ξ . Pick p1, p2 ∈ L distinct. Let qi be the unique respective points in π collinear
to pi, i = 1,2. If q1 = q2, then L is contained in a singular plane intersecting π in a point; if q1 6= q2, then
ξ (p1,q2) contains L and q1q2 and hence collinearity is a bijection between L and q1q2. In the first case
we say that L is π-triangular (with centre q1 = q2), in the second case π-quadrangular (with axis q1q2).
We show three properties.

(1) Each pencil of lines in ξ contains at most one π-triangular line.
Let L1,L2 be two intersecting lines of ξ . If both are π-triangular, the planes meet in a line, contra-
diction Lemma 6.3 and showing the claim.

Now let M1 and M2 be two disjoint π-quadrangular lines of ξ .

(2) One or all lines meeting both M1 and M2 are π-triangular, according to whether the axes of M1,M2
are distinct or not.
Indeed, the axes of M1 and M2, being contained in a projective plane, have at least one point r in
common. Then r is collinear to some points s1,s2 on M1,M2, respectively. If s1 were not collinear
to s2, then r ∈ ξ , a contradiction. Hence r,s1,s2 are contained in a singular plane and the line s1s2 of
ξ is π-triangular with centre r. If the axes intersect in a unique point, there is a unique π-triangular
line meeting both M1 and M2; if they coincide, each line meeting both M1 and M2 is π-triangular.
The claim is proved.

It is now easy to see that the previous claim yields at least two (necessarily disjoint, by the first claim)
π-triangular lines (even if ξ is non-thick), say T1,T2, with respective centres t1, t2. Let U1,U2,U3 be three
lines each intersecting both T1 and T2 non-trivially.

(3) The lines T1 and T2 define a (full) grid G in ξ , one of which reguli consisting of π-triangular lines
and the other of π-quadrangular lines.
For j ∈ {1,2,3}, the axis B j of U j is a line containing t1 and t2 and it follows that t1 6= t2, so
B j = t1t2. Let t be an arbitrary point on t1t2. Then the points on U1,U2,U3 collinear to t are pairwise
collinear, as above. This implies that, varying t ∈ t1t2, each line intersecting U1 and U2 non-trivially
also intersects U3 non-trivially, and, on top, is π-triangular. This shows the cliam.

By (3), it suffices to show that ξ is hyperbolic to finish the proof.
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Suppose for a contradiction that ξ is thick. Let i ∈ {1,2}. Put pi =U1∩Ti and take a line Li through
pi distinct from U1 and Ti. By (1), Li is π-quadrangular with axis Ai 3 ti. By (2) and the fact that U1
is π-quadrangular, exactly one line intersecting both L1 and L2 is π-triangular. Consequently, there is
π-quadrangular line U ′1 distinct from U1 intersecting both L1 and L2. Again, (2) implies a π-triangular
line T ′ intersecting both U1 and U ′1. However, the grid G determined by T1 and T2 already possessed a
π-triangular line through the point T ′∩U1, contradicting (1).

We can now show in general that every symp is hyperbolic.

Lemma 6.7. Let (X ,L ) have uniform symplectic rank 2. Then every symp is hyperbolic.

Proof. Suppose for a contradiction that there is thick symp ξ . By Lemmas 5.1 and 6.1, there exists some
singular plane π . By Lemmas 6.6 and 6.2, π ∩ξ is a line L. Let M be a line in ξ disjoint from L and pick
a point p ∈M. Considering a symp through a point x of π \ξ and p (which exists since the unique point
of π collinear to p is contained in L and (X ,L ) is strong) we see that there exists some line K 3 p not
contained in ξ (and some point of K is collinear to x). Replacing M by another line through p disjoint
from L (which is possible by the thickness of ξ ) if necessary, we may assume that M and K are contained
in a unique symp ξ ′. If ξ ′∩π contained a point q, then q, being collinear to all points of L and a unique
point of M, would belong to ξ , and hence to L, a contradiction, as that point and M define ξ 6= ξ ′. So
ξ ′∩π is empty and Lemma 6.6 implies that ξ ′ is non-thick.

We use the terminology of the proof of Lemma 6.6, applied to the pair (π,ξ ′). Clearly, M is π-
quadrangular with axis L, hence by Lemma 6.6, the line K, belonging to the other regulus, is contained
in a singular plane with a unique point on L. But some point on K was collinear to x, contradicting the
uniqueness assertion in Lemma 6.3. This absurdity proves the lemma.

Theorem 6.8. Let (X ,L ) have uniform symplectic rank 2. Then (X ,L ) is isomorphic to the Cartesian
product of a projective plane with either another projective plane, or a projective line.

Proof. By Proposition 6.5, we may assume that there is a singular plane disjoint from some symp. The
existence of two singular planes π1 and π2 intersecting each other in a point p then is an easy consequence
of Lemma 6.6.

Let x ∈ X \ (π1 ∪ π2) be arbitrary. Then x is not collinear to p as otherwise a symp through xp
has a line through x in common with both π1 and π2 by Lemma 6.2, contradicting hyperbolicity (cf.
Lemma 6.7). Hence, using Lemma 6.3, x is collinear to unique distinct points x1 ∈ π1 \{p} and x2 ∈ π2 \
{p}. Conversely, given points x1 ∈ π1 and x2 ∈ π2 distinct from p, there is a unique symp through x1,x2
(again using strongness and the fact that x1,x2 are not collinear), which is non-thick by Lemma 6.7 and
therefore contains a unique point collinear to both x1 and x2 and not contained in π1∪π2. Consequently
we already have that X can be written as π1×π2 in a set-theoretic way. It remains to show that two points
x,x′ ∈ X collinear to the same point x1 ∈ π1 are collinear themselves. But if x and x′ were not collinear,
then the symp through them (note that x ⊥ x1 ⊥ x′) contains, by Lemma 6.2, a line in π1, hence a third
line through x′, a contradiction. Similarly for x2 ∈ π2.
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The theorem is proved.

7 The case of symplectic rank at least 3

From now on we may assume that Ω = (X ,L ) is a parapolar space of minimum symplectic rank d with
d ≥ 3. The Standing Hypotheses imply that we have at least one sympthick line (recall that this is a line
contained in at least two symps). A symp not containing a sympthick line will be called isolated; in the
other case non-isolated. Recall that every pair of symps meets non-trivially.

We aim to prove the assumptions needed in the Cooperstein-Cohen theory from [3] as updated by
Shult in [11]. Hence we need to show that
(LC) Ω is locally connected,
(BD) the singular subspaces have bounded dimension,
(BR) the symps have bounded rank, and
(H) Ω satisfies the so-called Haircut Axiom (see Lemma 7.12).

Lemma 7.1. Let Ω = (X ,L ) have minimum symplectic rank d ≥ 3. Let ξ be a non-isolated symp with
rank d1. Then, for every singular subspace S of ξ of dimension d−2, there is a symp ξ ∗ 6= ξ such that
S⊆ ξ ∩ξ ∗. Furthermore, one of the following holds.

(i) The symp ξ ∗ is hyperbolic, has rank d and dim(ξ ∩ξ ∗) = d−1.

(ii) For each singular subspace M of ξ of dimension d− 1 through S, there is a symp ξM with M ⊆
ξ ∩ξM (equality if d1 = d).

Proof. By assumption, ξ contains a line L which is contained in a second symp. We first deal with
singular subspaces through L; afterwards we show that this is not a restriction, by showing that each line
of ξ is sympthick. So consider a singular subspace S of dimension d−2 with L⊆ S⊆ ξ .

Claim 1: There is a symp ξ ∗ 6= ξ such that S⊆ ξ ∩ξ ∗.
Let U be a subspace of S through L, maximal with respect to the property that there exists a symp ξ ∗ ∈ Ξ

with U ⊆ ξ ∩ ξ ∗ (U is well defined since L satisfies this requirement). Suppose for a contradiction that
U ( S, so there is a point p ∈ S \U . The set p⊥ ∩ ξ ∗ is a singular subspace of ξ ∗, clearly containing
U . Also ξ ∩ ξ ∗ is a singular subspace of ξ ∗ containing U . Since ξ ∗ is a symp of rank at least d and
dim(U) < d− 2, there is a point q ∈ ξ ∗ \ ξ collinear to U with q /∈ p⊥. Then q and p are non-collinear
and U ⊆ p⊥∩ q⊥. Hence there is a symp ξ ′ through p and q, which is distinct from ξ since q /∈ ξ . But
now ξ ∩ξ ′ contains 〈p,U〉, contradicting the maximality of U . We conclude that there is a symp ξ ∗ 6= ξ

with S⊆ ξ ∩ξ ∗, showing the claim.
Now suppose that the above found symp ξ ∗ is either thick, or has rank at least d +1 or is such that

ξ ∩ξ ∗ = S. Let M be any singular subspace of ξ through S of dimension d−1.
Claim 2: Under the above assumptions on ξ ∗, there is a symp ξM with M ⊆ ξ ∩ξM.

Take a point p ∈ M \ S. We may assume that M * ξ ∩ ξ ∗. Our assumptions on ξ ∗ imply the existence
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of a subspace M′ of dimension d− 1 through S in ξ ∗ which is not contained in p⊥ ∩ ξ ∗ (which is a
singular subspace of ξ ∗ through S) nor in ξ ∩ ξ ∗ (the latter coincides with S if ξ ∗ is non-thick and has
rank d). Similarly as above, we take a point q ∈M′ \S, which is then symplectic to p. The unique symp
ξM through p and q contains M. This shows the claim.

If ξ ∗ does not satisfy those assumptions, then ξ ∗ is non-thick, has rank d and S ( ξ ∩ξ ∗. Since ξ ∗

has rank d and dim(S) = d−2, the latter implies that dim(ξ ∩ξ ∗) = d−1. We now complete the lemma
by showing that each line in ξ is sympthick.

Claim 3: Each line in ξ is sympthick.
Without loss of generality, we may consider a line K in ξ generating a plane π together with L. If d1 > 3,
π is contained in a (d− 2)-space of ξ , so by Claim 1 we may assume that d1 = 3. Likewise, by Claim
2, we may assume that a symp ξ ∗ 6= ξ through L is non-thick, has rank 3 (since 3 = d1 ≥ d ≥ 3) and
is such that ξ ∩ ξ ∗ is a plane π∗ through L distinct from π . Let π ′ be the unique plane through L in ξ ∗

distinct from π∗. If π ∪ π ′ contains a pair of non-collinear points, these determine a symp containing
π ∪ π ′, proving that K is sympthick. So suppose π and π ′ are collinear. Let q be a point of π ′ \L and
note that q⊥∩ξ = π since d1 = 3. Hence a point p ∈ ξ ∩K⊥ \π is not collinear to q. The points p and q
determine a unique symp, containing K, proving again that K is sympthick, as required.

Remark 7.2. The proof of the previous lemma did not use the assumption that every pair of symps meets
nontrivially. Hence the statements are true without that assumption.

We can show that no symp is isolated, and hence the previous lemma holds for all symps of Ω.

Lemma 7.3. Let Ω = (X ,L ) have minimum symplectic rank d ≥ 3. Then no symp is isolated.

Proof. Suppose for a contradiction that some symp ξ is isolated, i.e., none of its lines is sympthick.
Since Ω contains at least one sympthick line, there is a non-isolated symp ξ ′. Then, since every two
symps always intersect nontrivially, ξ ∩ξ ′ is just a point p. Take a subspace S in ξ ′ of dimension d−2
which is not contained in p⊥. By one of the two cases occurring in Lemma 7.1, there is a symp ξ ′′ 6= ξ ′

through S such that dim(ξ ′∩ξ ′′)≥ d−1. Again, our assumption on ξ implies that ξ ∩ξ ′′ is just a point
p′′. Then p′′ 6= p, as ξ ′∩ξ ′′ is a singular subspace of ξ ′ and p is not collinear with S. Since the rank of
ξ ′ is at least 3, the intersection ξ ′∩ξ ′′ contains at least a point q collinear to both p and p′′. The point q
does not belong to ξ but is collinear to the distinct points p, p′′, implying p and p′′ are collinear. Hence,
since p′′ is collinear to all points of the line pq in ξ ′, Lemma 4.1 says p′′ and pq are contained in a symp,
in particular, there is a second symp containing pp′′ after all, a contradiction.

Lemma 7.4. Let Ω = (X ,L ) have minimum symplectic rank d ≥ 3. Let ξ be any symp of rank d. Then
we have

(i) for each symp ξ ′ with dim(ξ ∩ξ ′)≥ d−2, the rank of ξ ′ is d and dim(ξ ∩ξ ′) = d−1,

(ii) ξ is hyperbolic of odd rank.
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Proof. (i) Consider opposite subspaces S1 and S2 of ξ of dimension d− 2 (note that d− 2 ≥ 1). By
Lemmas 7.1 and 7.3, there are symps ξ ∗1 and ξ ∗2 intersecting ξ in maximal singular subspaces M1 and
M2 of ξ through S1 and S2, respectively. If M1∩M2 = /0, then ξ ∗1 ∩ξ ∗2 , which contains at least a point p
by the Standing Hypotheses, is disjoint from ξ . But then p is collinear to the non-collinear subspaces S1
and S2 of ξ , a contradiction. Hence M1∩M2 is a point (it cannot be more since S1 and S2 are opposite).

Observe that this implies that Possibility (ii) of Lemma 7.1 cannot occur, so any symp ξ ∗ with
dim(ξ ∩ ξ ∗) ≥ d− 2 is hyperbolic, has rank d and dim(ξ ∩ ξ ∗) = d− 1. This shows the first assertion,
so we continue with the second one.

(ii) Firstly, suppose for a contradiction that ξ is thick. Let M∗2 be a (d−1)-space in ξ ∗2 through S2
distinct from M2. Then M∗2 is collinear to at most one of the maximal singular subspaces of ξ through
S2 and, as there are at least three such subspaces, M∗2 is contained in a symp with a maximal singular
subspace M′2 of ξ through S2 which is disjoint from M1, contradicting the first paragraph. We conclude
that ξ is hyperbolic. Secondly, suppose ξ is hyperbolic of even rank d. Then M1 and M2, intersecting each
other in a point, belong to different natural types of generators. By Lemma 4.4, there exists a subspace
S3 of ξ of dimension d − 2 disjoint from M1 and M2. By Lemma 7.1, there is a symp ξ ∗3 6= ξ with
S3 ⊆ ξ ∩ξ ∗3 . By the above observation, ξ ∩ξ ∗3 is a maximal singular subspace M3 of ξ through S3. The
first paragraph implies that both M1 ∩M3 and M2 ∩M3 is a point, but then the types of M1, M2 and M3
should all be distinct, which is clearly impossible.

For convenience we record a consequence of the proof of the previous lemma.

Corollary 7.5. Let Ω=(X ,L ) have minimum symplectic rank d≥ 3. If M1 and M2 are opposite maximal
singular subspaces in a symp ξ of rank d, then at most one of them is contained in a second symp.

Proof. This follows directly from the first paragraph of the proof of Lemma 7.4.

Lemma 7.6. Let Ω = (X ,L ) have minimum symplectic rank d ≥ 3. Let ξ be any symp of rank d. Then
the set Φ of maximal singular subspaces of ξ that are the intersection of ξ with another symp is precisely
the set of generators belonging to one natural type.

Proof. Suppose two generators M1 and M2 of ξ belong to Φ, and assume for a contradiction that they
have distinct natural type. By Lemma 4.4, we can find a submaximal subspace S in ξ disjoint from M1
and M2. By Lemma 7.1 and 7.3, there is a symp ξ ∗ through S. In view of Lemma 7.4, ξ ∗∩ξ is a maximal
singular subspace M. By Corollary 7.5 and our choice of S, M intersects both M1 and M2 in exactly a
point. Since M1 and M2 have distinct natural type, this is impossible.

We deduced that all members of Φ belong to the same natural type of generators. Conversely, to
see that each generator of this type belongs to Φ, we consider any submaximal singular subspace S of ξ .
As above, there is a symp ξ ∗ such that ξ ∩ξ ∗ is a maximal singular subspace M of ξ containing S. The
lemma follows.

The following two lemmas are the basis to prove local connectivity and uniform rank.
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Lemma 7.7. Let (X ,L ) have minimum symplectic rank d ≥ 3. Then a generator of some symp of rank
d which is not contained in a second symp is contained in a singular d-space.

Proof. Let ξ be an arbitrary symp of rank d and M an arbitrary generator of ξ not contained in another
symp (cf. Lemma 7.6). Let M′ be any generator of ξ intersecting M in a (d− 2)-space W . Then M′ =
ξ ∩ξ ′, for some ξ ′ ∈ Ξ. By Lemma 7.4(i), ξ ′ is (just as ξ ) hyperbolic of odd rank d. In ξ ′, we consider
the generator M′′ containing W and distinct from M′, and some point p∈M′′ \M′. If p were not collinear
to all points of M, then {p,q} is contained in a symp, for every q ∈M \M′′, and that symp contains M
and is different from ξ , contradicting our assumption on M. Hence p and M generate a singular subspace
of dimension d.

Lemma 7.8. Let Ω = (X ,L ) have minimum symplectic rank d ≥ 3. Let ξ1 be a symp of rank d and let
ξ2 be any symp intersecting ξ1 in exactly a point p. Then there is a singular plane through p intersecting
both symps in a line.

Proof. Consider a generator M1 in ξ1 through p not contained in a second symp of Ω (cf. Lemma 7.6).
Then, by Lemma 7.7, there is a singular d-space W containing M1. If W would intersect ξ2 in more
than p, the lemma follows immediately, so assume W ∩ ξ2 = p. We select a hyperplane H of W not
containing p. Then, by Lemma 4.2, H is contained in a symp ξ . By our main hypothesis, we obtain
a point x2 contained in ξ2 ∩ ξ . Then x2 6= p since otherwise ξ would contain the d-space W , whereas
dim(ξ ∩ξ1)≥ d−2 implies, by Lemma 7.4(i), that ξ has rank d. Let x1 ∈ H ∩M1 be collinear to x2 (x1
exists since dim(H ∩M1)≥ 1). Since x2 ⊥ x1 ⊥ p and both x2 and p belong to ξ2 we deduce that x2 ⊥ p,
and by Lemma 4.1, 〈p,x1,x2〉 is a singular plane intersecting both ξ1 and ξ2 in the lines px1 and px2,
respectively.

Finally we can show that the symplectic rank is uniform.

Lemma 7.9. Let Ω = (X ,L ) have minimum symplectic rank d ≥ 3. Then it has uniform symplectic rank
d and therefore each symp is hyperbolic of odd rank d.

Proof. Let ξ be any symp of rank d. By Lemma 7.4, any symp ξ ′ with dim(ξ ∩ξ ′)≥ d−2 has rank d as
well. Now let ξ ∗ be an arbitrary symp. We claim that we can find a (finite) sequence of symps between ξ ∗

and ξ such that successive symps in the sequence intersect each other in a subspace of dimension at least
d−2, from which then follows that each symp in this sequence has rank d. By the Standing Hypotheses,
ξ ∩ ξ ∗ is non-empty. If ξ ∩ ξ ∗ is a point, Lemma 7.8 implies the existence of a plane π intersecting
both ξ and ξ ∗ in a line, and since d ≥ 3, Fact 4.2 guarantees a symp through π which then shares at
least a line with both ξ and ξ ∗. Hence, if d = 3, we are done. If d > 3, we may already assume that
1≤ dim(ξ ∩ξ ∗)≤ d−3. Under this assumption we can take points p and p∗ in ξ and ξ ∗, respectively,
collinear to ξ ∩ ξ ∗ and not collinear to each other. The symp determined by p and p∗ intersects both ξ

and ξ ∗ in a subspace strictly bigger than ξ ∩ξ ∗. Recursively, the claim follows and hence each symp has
rank d. Lemma 7.4 now implies that each symp is hyperbolic of odd rank d.
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Henceforth we could therefore drop the word “minimum” from our assumptions on Ω, but we
prefer to keep it in order to remind the reader of the full context. Local connectivity now follows as a
consequence of Lemma 7.8.

Lemma 7.10. Let Ω = (X ,L ) have minimum symplectic rank d ≥ 3. Then Ω is locally connected.

Proof. Consider two lines L1 and L2 through p. Let ξ1 and ξ2 be symps through L1 and L2, respectively.
If dim(ξ1∩ξ2)≥ 1, it is clear that L1 and L2 are connected via a sequence of singular planes intersecting
each other in lines. If dim(ξ1∩ξ2) = 0, then, as all symps have rank d now by Lemma 7.9, a link between
ξ1 and ξ2 is provided by Lemma 7.8 (and inside the symps we are fine, as just mentioned before).

We proceed by showing boundedness of the singular rank.

Lemma 7.11. Let Ω = (X ,L ) have minimum symplectic rank d ≥ 3. Then the dimension of a singular
subspace is at most 2(d−1).

Proof. Suppose there is a singular (2d − 1)-space W in Ω. Let M1 and M2 be two disjoint (d − 1)-
subspaces in W . By Fact 4.2, there are symps ξ1 and ξ2 containing M1 and M2, respectively. This yields
a point p ∈ ξ1∩ξ2. Since Mi is a maximal singular subspace in ξi, i = 1,2, we know p /∈W . In particular
p /∈ M1 ∪M2 and so we can find points q1 ∈ M1 and q2 ∈ M2 with q1 /∈ p⊥ and q2 ∈ p⊥. Then q2 ∈
p⊥∩q⊥1 ⊆ ξ1, a contradiction.

Finally we prove the Haircut Axiom (H) [12].

Lemma 7.12. Let Ω = (X ,L ) have minimum symplectic rank d ≥ 3. Then
(H) for any symp ξ and any point p /∈ ξ , the set p⊥∩ξ can never be a submaximal singular subspace

of ξ .

Proof. Assume for a contradiction that p⊥∩ξ = H, with H a submaximal singular subspace of ξ . Since
ξ is hyperbolic, there are exactly two generators M1,M2 containing H. Pick pi ∈ Mi \H, i = 1,2. By
assumption, pi /∈ p⊥, i = 1,2. Then the symps ξ (p, p1) and ξ (p, p2) contain M1 and M2, respectively,
contradicting Lemma 7.6 and the fact that M1 and M2 have distinct natural type.

In order to show that the uniform symplectic rank of Ω is either 3 or 5, we first show that two symps
which intersect in a plane, intersect in a generator.

Lemma 7.13. Let (X ,L ) have minimum symplectic rank d ≥ 3. Then two symps that have no generator
in common intersect in either a point or a line.

Proof. Recall that we know from Lemma 7.9 that each symp has rank d. The result is trivial if d = 3, so
let d ≥ 4. Suppose two generators ξ and ξ ′ intersect in a singular subspace U of dimension j, 0 ≤ j ≤
d−2. Select a generator M in ξ disjoint from U such that M = ξ ∩ξ ∗, for some ξ ∗ ∈Ξ, which is possible
by Lemma 7.6. The Standing Hypotheses yield a point p∈ ξ ′∩ξ ∗. Then p /∈ ξ since M is disjoint from ξ ′.
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However, p is collinear to all points of a (d−2)-space in M (since p∈ ξ ∗) and dim(p⊥∩U)≥ j−1 (since
p ∈ ξ ′). Since p⊥∩ξ is a singular subspace, its dimension ` satisfies (d−2)+( j−1)+1≤ `≤ d−1,
implying j ≤ 1. The lemma is proved.

Lemma 7.14. Let Ω = (X ,L ) have minimum symplectic rank d ≥ 3. Then Ω has uniform symplectic
rank d ∈ {3,5}. So the symps are either hyperbolic polar spaces of rank 3, or hyperbolic polar spaces of
rank 5.

Proof. Suppose d ≥ 5, we show that d = 5. Let ξ be a symp and choose two generators M,M′ of ξ

not contained in second symps and intersecting in a plane π . Let W and W ′ be d-spaces through M,M′,
respectively (these exist by Lemma 7.7). If all points of W \M were collinear to all points of W ′ \M′,
then all points of M would be collinear to all points of M′, a contradiction. So there are points p ∈W \M
and p′ ∈W ′ \M′ which are not collinear. Since π belongs to p⊥ ∩ p′⊥, p and p′ determine a symp ξ ∗

intersecting ξ in at least the plane π , so by Lemma 7.13, ξ ∩ ξ ∗ is a generator M∗. Since p⊥ ∩ ξ = M,
we have p⊥∩M∗ ⊆M, likewise p′⊥∩M∗ ⊆M′. Both subspaces have dimension d−2 and are contained
in M∗, and hence intersect in a d− 3-space. On the other hand, they intersect in π only, so d− 3 ≤ 2,
implying d ≤ 5.

End of the proof of the Main Result—Case of the existence of at least one sympthick line.
Lemmas 7.10, 7.11, 7.14 and 7.12 show that conditions (LC), (BD), (BR) and (H) are satisfied. Therefore
we may invoke Theorems 15.3.7 and 15.4.3 from [11], which are updates of the Main Theorem of [2]
and Theorem 1 of [3]. Knowing that d ∈ {3,5} (cf. Lemma 7.14), we conclude that the parapolar spaces
with minimum symplectic rank d ≥ 3, containing at least one sympthick line, and such that every two
symps intersect nontrivially are precisely A4,2(k), A5,2(k) (and in these cases d = 3; k is an arbitrary skew
field) and E6,1(k) (and then d = 5; k is an arbitrary field).

Remark 7.15 (Avoiding Cohen-Cooperstein theory). With some limited additional effort, one can
strengthen Lemmas 7.11 and 7.13 using direct arguments as follows. Two symps either intersect in a
point, or in a generator. Also, the maximum dimension of a singular subspace is either 3 or 4 (in the
case d = 3), or 5 (in the case of d = 5). This leaves us with three cases. The first two cases are dealt
with in a completely elementary way identifying the elements of the projective spaces of dimension 4
and 5, respectively, from which Ω arises as line Grassmannian, as certain subspaces of Ω. A similar
technique can be used for the remaining case, d = 5, now using a characterization of buildings of type
E6 by Jacques Tits [17]. This approach is carried out in detail in the first author’s thesis [5].

8 The case of symplectic rank at least 3 where no line is sympthick

We finish the proof of the Main Result.
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Let Ω = (X ,L ) be a parapolar space of symplectic rank at least 3 such that every two symps
intersect nontrivally, and such that every line is contained in a unique symp. Then clearly symps intersect
each other in points and the point-line geometry ϒ = (X ,Ξ) is a dual linear space.

Lemma 8.1. Suppose p0 ∈ X belongs to two distinct members ξ1,ξ2 of Ξ. Let p1 ∈ ξ1 \{p0} and p2 ∈
ξ2 \{p0} be arbitrary and take any ξi3 ∈ Ξ through pi, i = 1,2, and let p3 ∈ ξ13∩ξ23. Then, if p0 6= p3,
we have

δ1(p0, p1)+δ13(p1, p3)+δ23(p2, p3)+δ2(p0, p2) ≥ 5, (1)

where δ• is the distance in the collinearity graph of ξ• ∈ Ξ, i.e., 0 if the arguments are equal, 1 if they
are collinear in ξ , and 2 otherwise.

Proof. We distinguish three cases.
(i) Suppose ξ13 = ξ1. Then ξ23 6= ξ2, for otherwise p0 = p3. Hence ξ1,ξ23,ξ2 are three distinct mem-

bers of Ξ, i.e., {p0, p2, p3} is a triangle in ϒ. If p0 ⊥ p2 ⊥ p3 ⊥ p0 in Ω, then Lemma 4.1 im-
plies that p0, p2, p3 are contained in a common singular plane, which is, by Lemma 4.2, con-
tained in some symp ξ . Since ξ shares a line with both ξ1 and ξ2, our assumption implies that
ξ1 = ξ = ξ2, a contradiction. Without loss of generality, we may assume p2 /∈ p⊥3 , in particular,
δ23(p2, p3) = 2. Since symps are convex, we then have p⊥2 ∩ p⊥3 ⊆ ξ23, and so p0 /∈ p⊥2 ∩ p⊥3 , imply-
ing δ13(p0, p3)+δ2(p0, p2)≥ 3. Inside the (discrete) metric space ξ13 = ξ1, the triangle inequality
now yields δ1(p0, p1)+δ13(p1, p3)≥ δ1(p0, p3), from which (1) follows.

By symmetry we may now suppose that ξ13 6= ξ1 and ξ23 6= ξ2.
(ii) In this case, we assume that ξ13 = ξ23 /∈ {ξ1,ξ2}. Then we can interchange the roles of p1 and p3

in Case (i) and conclude that (1) holds again.
(iii) Finally we assume that ξ1,ξ2,ξ13 and ξ23 are four distinct symps. The only way in which (1)

can be violated is when p0 ⊥ p1 ⊥ p3 ⊥ p2 ⊥ p0 (in Ω). But then, according to (PPS2), all four
points are contained in common symp, which shares lines with the distinct symps ξ1,ξ2,ξ13,ξ23,
contradicting the fact that lines are contained in unique symps.

We now show the converse. Suppose we have a nontrivial dual linear space ϒ = (X ,Ξ) such that
every line (i.e., every member of Ξ) has the structure of a polar space of rank at least 3, and satisfying
the inequality (1) for the given restrictions on the points and symps (we shall refer to this inequality as
Condition (1)). Let L be the set of all lines of all these polar spaces (to avoid confusion with the lines of
L and the symps of parapolar spaces, we now refer to them as blocks).

Lemma 8.2. The geometry Ω = (X ,L ) is a parapolar space of symplectic rank at least 3, whose set of
symps coincides with Ξ and in which every line is contained in a unique symp, and such that every two
symps intersect each other in a unique point.

26



Proof. Recall that in a dual linear space, each point is contained in a block and each two blocks intersect
each other in a unique point. We now verify the axioms of a parapolar space and show that the symps
of Ω are the blocks of ϒ. Note that the two last assertions are satisfied if we replace “symp” by “block”
(and we will show in (PPS2) that we may do so).
(PPS1) The connectivity of Ω follows from the connectivity of ϒ as a geometry of points and symps,

and the fact that every block is connected (being a polar space).
Now let p0, p1, p2 ∈ X be three mutually collinear points (collinearity with respect to Ω) with p0
not on the line L joining p1, p2. If p0, p1, p2 are contained in a common block of ϒ, then p0 is
collinear to all points of L. Suppose now that the blocks ξi j of ϒ containing pi and p j, 0 ≤ i <
j ≤ 2, are mutually distinct. Then Condition (1) implies (δi j is the distance in the collinearity
graph of ξi j)

3 = δ01(p0, p1)+δ12(p1, p2)+δ12(p2, p2)+δ02(p0, p2)≥ 5,

a contradiction. Note that |Ξ|> 1 by assumption, so we can find a point p ∈ X and a line L ∈L
such that no line of L contains p and meets L.

(PPS2) We claim that each block of ϒ is the convex closure of any pair of noncollinear points it contains
(clearly, the convex closure of two such points contains the block). So suppose for a contradiction
that p1, p2 are noncollinear points of a block ξ12 such that ξ12 \cl({p1, p2}) contains a point p0.
By definition of closure and by the fact that lines between two points of ξ12 are contained in ξ12
(since two blocks intersect in a unique point and each line belongs to a block), we have that p0 is
collinear to two non-collinear points of cl({p1, p2}), so without loss, p1 ⊥ p0 ⊥ p2. Hence, the
symps ξ01 and ξ02 containing p0 p1, and p0 p2, respectively, are well defined and distinct. Then
Condition (1) implies

4 = δ01(p0, p1)+δ12(p1, p2)+δ12(p2, p2)+δ02(p0, p2)≥ 5,

a contradiction. This shows the claim.
Suppose now that p1, p2 are points of X not contained in any block and suppose for a contradic-
tion that p0, p3 ∈ p⊥1 ∩ p⊥2 , with p0 6= p3. Then there are distinct blocks ξ01 and ξ02 containing
p0, p1 and p0, p2, respectively, and likewise ξ13 and ξ23 containing p1, p3 and p2, p3, respectively.
With similar notation as before, Condition (1) yields

4 = δ01(p0, p1)+δ13(p1, p3)+δ23(p2, p3)+δ02(p0, p2)≥ 5,

the sought contradiction.
In particular, we showed that the blocks of ϒ are precisely the symps of Ω

(PPS3) Since each line is contained in a block by definition, this follows from the above.

This completes the proof of the Main Result. Some remarks to conclude:
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Remark 8.3 (The existence of locally disconnected parapolar spaces.). We start with a very general
class of examples. Let ϒ = (Y,B) be any dual linear space having at least two lines. For each B ∈B, we
can select a polar space ξB of rank at least 3 and an injective mapping B→ ξB such that any two elements
in the image of B are non-collinear in ξB (this can always be achieved by choosing ξB “large enough”).
We then identify B with its image and set Ξ = {ξB | B ∈B}. We also define X as the union of Y with the
disjoint union of all ξB \B, were B ranges over B. Finally, let L be the set of all lines in all the polar
spaces ξB, B∈B. Then Ω = (X ,L ) is a locally disconnected parapolar space of symplectic rank at least
3 such that every two symps meet in exactly one point (it is an easy exercise to verify that Condition (1)
holds).

In the previous example there are many points x ∈ X which are contained in a unique symp. We
were not able to find examples such that every point is contained in at least two symps. Particularly in
the finite case this seems rather hard. In fact we conjecture that such a finite parapolar space does not
exist.

Remark 8.4 (On the requirement that Ω is strong when there are symps of rank 2). One can con-
struct several examples of non-strong parapolar spaces Ω in which each pair of symps has a non-trivial
intersection, which are not accounted for in our main theorem (so necessarily, Ω contains symps of rank
2). Indeed, consider for instance the Cartesian product of a projective plane and a pencil of projective
lines {Li | i ∈ I }, for some index set I , such that no other relations between the lines Li exist apart
from the fact that they share a certain fixed point p. This gives us an example of a non-strong parapolar
space in which every pair of symps intersects non-trivially (as they all have a line in common with π),
demonstrating that one should not expect a “nice” classification of such parapolar spaces.

Nonetheless, it is hard to come up with such examples having diameter 2, or in which all lines are
sympthick. We conjecture that one could obtain a neat classification of diameter 2 parapolar spaces in
which all symps intersect each other non-trivially (in need adding that each line is sympthick), and we
would not be surprised if all these parapolar spaces turn out to be strong.

Acknowledgement All four authors are very grateful to The University of Auckland Foundation
which awarded the third author a Hood Fellowship Grant nr 3714543. The majority of this paper was
written during his stay as Hood Fellow, when also authors 1 and 4 visited the University of Auckland. The
latter two authors would also like to thank the FWO and the fund Professor Frans Wuytack, respectively,
for being granted travel support.

The authors also thank an anonymous referee for a very careful reading of the paper.

References

[1] F. Buekenhout and A. M. Cohen, Diagram Geometries Related to Classical Groups and Buildings,
EA Series of Modern Surveys in Mathematics 57. Springer, Heidelberg, (2013), xiv+592 pp.

[2] A. M. Cohen, On a theorem of Cooperstein, Europ. J. Combinatorics, 4 (1983), 107–126.

28



[3] A. M. Cohen and B. Cooperstein, A characterization of some geometries of Lie type, Geom. Dedi-
cata 15 (1983), 73–105.

[4] B. Cooperstein, A characterization of some Lie incidence structures, Geom. Dedicata 6 (1977),
205–258.

[5] A. De Schepper, Characterisations and Classifications in the Theory of Parapolar Spaces, PhD the-
sis, Ghent University, 2019.

[6] A. De Schepper, J. Schillewaert, H. Van Maldeghem and M. Victoor, On exceptional Lie geome-
tries, Forum Math Sigma 9 (2021), paper No e2, 27pp.

[7] J.R. Faulkner, The role of Nonassociative algebras in Projective Geometry, Graduate Studies in
Mathematics 159 (2014), xiv+229pp.

[8] J. Hjelmslev, Die Geometrie der Wirklichkeit, Acta Math. 40 (1916), 35–66.
[9] J. Schillewaert and H. Van Maldeghem, On the varieties of the second row of the Freudenthal-Tits

magic square, Ann. Inst. Fourier 67 (2017), 2265–2305.
[10] E. E. Shult, On characterizing the long-root geometries, Adv. Geom. 10 (2010), 353–370.
[11] E. E. Shult, Points and Lines, Characterizing the Classical Geometries, Universitext, Springer-

Verlag, Berlin Heidelberg (2011), xxii+676 pp.
[12] E. E. Shult, Parapolar spaces with the “Haircut” axiom, Innov. Incid. Geom. 15 (2017), 265–286.
[13] T. A. Springer and F. Veldkamp, On Hjelmslev-Moufang planes, Math. Z. 107 (1968), 249–263.
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