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Abstract 

In wastewater monitoring, detecting extremely high pollutant concentrations is 14 

necessary to properly calibrate the treatment process. However, existing hardware 15 

sensors have a limited linear range which may fail to measure extremely high levels 16 

of pollutants; and likewise, the conventional “soft” model sensors are not suitable for 17 

the highly-skewed data distributions either. This study developed a new soft sensor by 18 

using eXtreme Gradient Boosting (XGBoost) machine learning to ‘measure’ the 19 

wastewater organics (in terms of 5-day biochemical oxygen demand (BOD5)). The 20 

soft sensor was tested on influent and effluent BOD5 of two different wastewater 21 

treatment plants to validate the results.  The model results showed that XGBoost can 22 

detect these extreme values better than conventional soft sensors. This new soft sensor 23 

can function using a sparse input matrix via XGBoost’s sparsity awareness algorithm 24 

- which can address the limitation of the conventional soft sensor with the fallibility of 25 

supporting hardware sensors even.  26 
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1. Introduction  

Online monitoring is an important prerequisite for advancements in wastewater 29 

treatment. Real-time information allows the plant to implement more cost-efficiently 30 

and gives evidence that the quality regulations are consistently being met. A 31 

conventional online monitoring system for relevant wastewater parameters (e.g. 32 

chemical oxygen demand (COD), ammonia concentration) would be composed of 33 

hardware sensors. However, the existing hardware sensors for these parameters have a 34 

limited useful lifespan due to the harsh conditions of wastewater. The accumulation of 35 

sludge and precipitates on the sensor lowers its accuracy over time, and necessitates 36 

frequent maintenance (Haimi et al., 2013). The sensor itself loses its functionality 37 

over time, such as the dissolution of Ag/AgCl layers observed in electrode-based 38 

sensors (Hill et al., 2020) or the degradation of the microorganism culture used in 39 

biosensors (Raud et al., 2012). Besides, there is no mature sensor product for 40 

measuring five-day biochemical oxygen demand (BOD5) to reflect the biodegradable 41 

organics content in the wastewater. To solve this problem, one good option is to use a 42 

machine learning-based soft sensor model, which estimates parameter values from 43 

other hardware sensors using machine learning. In this way, soft sensors can facilitate 44 

real-time monitoring by avoiding the delays or missing data resulting from frequent 45 

maintenance; manual measurement. However, the accuracy of the soft sensor is still 46 

dependent on the (1) choice of hardware sensors used as its basis for estimation; (2) 47 

the volume and range of data, and (3) the appropriateness of the machine learning 48 

model used in estimation. 49 

 In choosing the hardware basis for the machine learning-based soft sensor, the 50 

ideal choice is to choose simple and stable sensors (e.g. pH, conductivity). Yet, the 51 
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majority of soft-sensor studies add complex sensors (e.g. chemical oxygen demand 52 

(COD), NH4) to enhance accuracy. When there is a large quantity of potential soft 53 

sensors, parameter selection techniques can be employed to reduce the number of 54 

model inputs. These techniques aim to identify the input parameters sharing the 55 

strongest relationship with the output parameter(s) (Zhu et al., 2017). In addition, the 56 

performance of the soft sensor may be improved by the removal of some inputs, as 57 

collinearity between the input variables may promote overfitting (Asante-Okyere et 58 

al., 2020).  59 

It should note that datasets used in soft sensor development vary in size (Ye et 60 

al., 2020). While there is no defined minimum for the size of the dataset, a larger 61 

dataset is preferred for higher generalizability. The volume and range of wastewater 62 

datasets are limited by sensor degradation and infrequent sampling, resulting in 63 

missing sensor readings in the dataset. These missing values can be filled in using a 64 

statistic (e.g. mean, median), or using a statistical method to impute the missing 65 

values (Wu et al., 2008). While these methods can produce additional samples to the 66 

dataset, samples with missing parameters may increase the uncertainty in the model, 67 

and skew the estimations of the soft sensor (Li et al., 2020).  68 

 Although any mathematical model can be applied in soft sensor development, 69 

machine learning approaches are preferred in recent studies. One reason is that these 70 

utilize the existing wastewater treatment databases, and produce new insights without 71 

additional experimentation (Asami et al., 2021; Qiu et al., 2021). Using machine 72 

learning, mathematical relationships are automatically ‘learned’ instead of manually 73 

developed based on theoretical knowledge, and this may be more efficient in some 74 

cases. Some examples include applications in predicting the concentration of novel 75 

pollutants and pathogens of interest (Abdeldayem et al., 2022). It can also capture a 76 
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broad range of operating conditions, whereas traditional mechanistic modelling is 77 

typically limited to steady state analysis (Wang et al., 2021).  78 

Currently, the most popular machine learning models applied in wastewater 79 

treatment are artificial neural networks (ANN) and support vector machines (SVM) 80 

(Ye et al., 2020). The ANN model is composed of several layers of node equations, 81 

which form a highly nonlinear relationship. Its primary advantage is its ability to 82 

present complex underlying relationships between variables, and has improved the 83 

accuracy of predicting several key wastewater parameters (Matheri et al., 2021). 84 

However, the disadvantage of this complex nonlinear structure is that ANN models 85 

have a tendency to overfit to the dataset used for training, and thus require a large 86 

number of samples in order for the trained model to be generalizable (Ye et al., 2020). 87 

Some modifications of the classical neural network have been proposed: Zhu et al. 88 

(2017) integrated the radial basis function in an ANN model for predicting total 89 

phosphorus (TP), as this function is associated with enhanced generalizability even 90 

with smaller datasets. Cong and Yu (2018) used wavelet tranforms in an ANN model, 91 

to prevent it from overfitting to noise in the training set. 92 

On the other hand, the advantage of SVM is its generalizability. Specifically, 93 

the objective function used in determining the optimal parameters of an SVM model 94 

seeks to maximize generalizability (Liu & Xie, 2020; Jiang et al., 2020). Because of 95 

this, SVM can be used even with relatively small datasets, which can be important 96 

when analysing novel processes and technologies (Hosseinzadeh et al., 2022; Moufid 97 

et al., 2021). The disadvantage of SVM is that its generalizability objective may lead 98 

the model to overfit to the dominant condition in the dataset (Jaramillo et al., 2018). A 99 

soft sensor based on SVM may thus fail in accurately measuring extreme values in the 100 

statistical distribution of a parameter, or in differentiating between normal and 101 

abnormal operating conditions.    102 
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  It should also be noted that, aside from the recurring problems in terms of 103 

missing sensor readings and noise, data on water treatment is characterized by skewed 104 

and non-normal distributions. This may render approaches that emphasize 105 

generalizability unsuitable for modeling. Ensemble models are a non-parametric 106 

modeling approach that makes estimations using the average of a large number of 107 

simple models (Sharafati et al., 2020). Each model within the ensemble may represent 108 

a characteristic of the distribution of the predicted parameter. This enhances the 109 

robustness of the model while allowing it to model non-normal variables.    110 

 In this study, extreme gradient boosting (XGBoost), a new ensemble method, 111 

is proposed in soft sensor development for BOD5 analysis. This method was selected 112 

because of its robustness and ability to model non-normal variables. In addition, 113 

XGBoost includes a sparsity-awareness algorithm that allows it to train using samples 114 

with missing sensor readings. Operating as a soft sensor, XGBoost can also make 115 

inferences from inputs with missing parameters, which is faster compared to using a 116 

separate model to estimate the missing values. This study used two case studies of 117 

wastewater treatment plants to identify the dataset characteristics. Finally, the 118 

comparisons with other popular machine learning techniques were drew to verify the 119 

merits of XGBoost machine learning.  120 

 121 

2. Materials and Methods 

The framework of developing a new machine learning-based soft sensor is illustrated 122 

in Figure 1. The details were described as 1) the data source (two case studies for 123 

BOD5 soft sensor development);  2) the general steps involved in the development of 124 

the soft sensor; 3) the method of developing Modified Partial Least Squares used in 125 

selecting supporting sensors for the soft sensor; 4) the methods for missing sensor 126 
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reading in the dataset; 5) the development approach for the proposed XGBoost soft 127 

sensor and other potential soft sensor development methods for comparison. 128 

2.1. Data Source 

The proposed soft sensor development approach was demonstrated through two case 129 

studies: Case 1, the public wastewater treatment dataset published by the UCI 130 

Machine Learning Repository (Dua & Graff, 2019); and Case 2, a dataset collected 131 

from a wastewater treatment plant in Hong Kong (see supplementary information 132 

Figure S1). The data used in this study came from manual measurements to allow 133 

easier comparatability of results, avoid variance resulting from the choice of sensor 134 

and sensor performance.  Thus, we can assume that all model input data is accurate. 135 

Although in the context of real operation, input data collected from sensors would 136 

suffer from noise and interference, there is already existing work on mathematical 137 

models that address these problems (see Ba-Alawi et al., 2021; Fan et al., 2020; Wang 138 

et al., 2020).  139 

The case study based on the dataset of the UCI Machine Learning Repository 140 

(Case 1) describes the treatment of urban wastewater in an unnamed plant. It contains 141 

527 daily readings, with missing data found in 84 samples in the influent and 72 142 

samples in the effluent.  The Hong Kong dataset (Case-2) was collected from January 143 

2013 to December 2018. It contains 2,189 daily samples, with missing data in 1,576 144 

samples in the influent and 1,575 samples in the effluent. The supplementary 145 

information for this study contains more details on the statistical properties of this 146 

dataset, namely its range, skewness, and the number of missing readings for each 147 

parameter in the dataset (Table S1 and Table S2). Generally speaking, both datasets 148 

are highly skewed, with a higher level of skewness among effluent parameters.  149 

Skewness measures the tendency of samples in the dataset to cluster towards lower 150 

(positive skew) or higher values (negative skew). High levels of skewness indicate 151 
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that the dataset is not normally distributed, which is a key assumption in most data-152 

driven models. It is also notable that the distribution of effluent BOD (BODeff) is more 153 

skewed compared to influent BOD (BODinf), while BODinf has a higher variance 154 

compared to BODeff.  155 

2.2. General Soft Sensor Development 

This study developed soft sensors for BODinf and effluent BODeff for the two cases 156 

described in the previous section. For Case 1 (using data from the UCI repository), 157 

BODinf was modeled using other influent parameters as supporting sensors; and 158 

likewise, BODeff was modeled only using other effluent parameters as supporting 159 

sensors. Case 2 differs slightly as it includes ambient temperature (represented by 160 

temperature measured at the reactor, TempReac) as a potential supporting sensor. This 161 

was included as a supporting sensor for BODinf, representing the potential for organic 162 

degradability before the treatment process.  163 

 There are multiple potential supporting sensors, and some information is 164 

redundant across the different hardware sensors (e.g., NH3-N and NO2-N). To identify 165 

the best-supporting sensors to use as the basis for the soft sensor, the study 166 

incrementally added supporting sensors as inputs to the soft sensor model and 167 

evaluated the change in performance as the output. The order of adding supporting 168 

sensors to the model was based on a modified Partial Least Squares approach (the 169 

details see next section). Limiting the number of input variables also limits the 170 

potential for the soft sensor to fail; its inputs are other supporting sensors, therefore its 171 

performance is dependent on its supporting sensors. 172 

 Given that a significant portion of the samples in both cases include missing 173 

parameters, the study considered three methods of handling the missing values: (i) 174 

removing the samples with missing values; (ii) using k-nearest neighbors (kNN) to fill 175 

in the missing values; and (iii) using the sparsity-awareness algorithm of XGBoost to 176 
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train a model using samples with missing parameters. The disadvantage of removing 177 

the samples with missing values is that it significantly reduces the size of the dataset. 178 

Depending on the distribution and noisiness of the data, a smaller dataset could 179 

prevent the machine learning models from representing the complete and general 180 

behavior of BOD5. Conversely, using a model to impute the missing values could also 181 

worsen soft sensor performance through the errors in the imputed values.  For most 182 

estimation models (e.g. ANN and SVM), it is necessary to have a separate method 183 

such as k-nearest neighbors for handling the missing values. But XGBoost differs 184 

from these methods as it has a built-in algorithm to incorporate the samples with 185 

missing values in the training process. This is one of the key advantages of XGBoost 186 

and will be described further in the following section. It will be compared with the 187 

aforementioned methods (i) and (ii) of handling missing values. 188 

Performance analysis was based on root mean square error (RMSE, see Eq. 1) 189 

in units of mg/L. This reflects the actual deviation of the soft sensor reading from the 190 

‘real’ value, based on laboratory tests. It also reflects the effect of differences in 191 

dataset characteristics such as the minimum, maximum and kurtosis on the magnitude 192 

of error. 193 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑦�̂�)2𝑁

𝑖=1

𝑁
 Eq. 1 

The model results were validated using 10-fold cross-validation. This 194 

approach divides the training set into 10 sets with no overlap. Each of the ten sets 195 

represents a test set for the model, where it will be trained using all the other samples 196 

not included in the test set (as shown in Figure 1b). The purpose of this method is to 197 

determine the general performance of each method using different datasets. This also 198 

allows for a comparison of the consistency of model performance.   199 
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2.3. Modified Partial Least Squares for Supporting Sensor Selection 

PLS is a form of linear regression that maximizes the covariance between model 200 

inputs and the predicted output. It has been used in related studies for soft sensor 201 

development because it simultaneously maximizes the variance in the inputs, and the 202 

correlation between the model’s inputs and outputs (Zhu et al., 2017; Qin et al., 203 

2012). This means that the strongest supporting sensors with the least redundancy will 204 

be selected as inputs. Although there are various ways of interpreting the results of 205 

PLS for input variable selection, one of the most reliable and straightforward ways is 206 

by measuring the absolute value of the PLS regression coefficients (Mehmood et al., 207 

2020). The greater the value of the regression coefficient, the more significant its 208 

corresponding input variable is based on PLS regression. 209 

However, in the context of wastewater treatment, the effectiveness of the 210 

supporting sensor has to be weighed with respect to the practicality of selecting this 211 

particular soft sensor. Simpler sensors (i.e., pH, conductivity, temperature, flow rate) 212 

may be easier to maintain or replace. Using these sensors as supporting sensors would 213 

make the proposed soft sensor more reliable, although these variables may not have 214 

the strongest correlation with BOD5. This study applied a modified PLS approach in 215 

selecting the supporting sensors. Several versions of the soft sensor were built using 216 

different sets of supporting sensors as inputs to the model. There lessen the number of 217 

combinations that would have to be tested, the study used the modified PLS approach 218 

to guide the selection process. This approach prioritizes the simpler sensors as inputs 219 

for the initial model. Then, sensors are added incrementally in the order of their PLS 220 

regression coefficients. The optimal soft sensor design was selected based on the 221 

model which resulted in the lowest and most consistent RMSE. 222 
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2.4. Methods for Missing Sensor Readings in the Dataset 

In general, having a larger dataset is preferred as it should help enhance the 223 

generalizability of the model. Several studies have attempted to fill in missing values 224 

in a dataset to enhance model performance. Among these studies, k-Nearest neighbors 225 

(kNN) has emerged as a standard for determining the missing values. To fill in the 226 

missing parameters of a sample, kNN uses the weighted average of samples with the 227 

highest similarity based on the available parameters for that sample (Qi et al., 2021). 228 

In this case, the similarity is based on a distance measure such as Euclidean distance 229 

(Alfeilat et al., 2019).   230 

XGBoost has its algorithm for addressing the missing values. This algorithm 231 

is known as a sparsity awareness split-finding algorithm, referring to the dataset 232 

splitting involved in determining the optimal structure for the XGBoost model. The 233 

sparsity-awareness algorithm applies for any commonly recurring value (e.g., NaN, 234 

0). In the context of wastewater treatment, this can apply to missing values and very 235 

low levels of effluent pollutants below the threshold for recording.  236 

The sparsity awareness algorithm differs from kNN, as the former is a method 237 

that is integrated in model training, while the latter is completely independent of soft 238 

sensor development. This study sought to identify the best method for handling the 239 

missing sensor readings in Cases 1 and 2, according to the characteristics of these 240 

respective datasets. The study compared three methods of handling the missing values 241 

by developing models using (1) a dataset containing no samples with missing 242 

readings; (2) a dataset where the missing sensor readings were filled in using kNN; 243 

and (3) the sparsity-awareness split-finding algorithm to train using a dataset with 244 

missing values. 245 
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2.5. XGBoost and Comparison with other Soft Sensor Models 

XGBoost is an ensemble method, meaning that it is a collection of weaker models, as 246 

opposed to being a single, highly complex model (i.e., ANN, SVM) (Chen & 247 

Guestrin, 2016). Specifically, it is composed of regression trees (fk) (Eq. 2). The 248 

structure of the regression tree is represented by its leaves, which correspond to a 249 

numerical weight (w). Each sample is assigned to a set of leaves based on the values 250 

of its input variables. The model’s estimated output for that sample is obtained by 251 

adding the sum of the leaves assigned to that sample for each regression tree 252 

(visualized in Figure 2-b). 253 

𝑦�̂� = ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

 Eq. 2 

These regression trees are introduced additively to the ensemble (as ft for 254 

iteration t), such that each new regression tree minimizes the learning objective (eq. 255 

3). This is different from singular models, which tend to have a pre-defined structure 256 

and are optimized in a Euclidean space.  257 

ℒ𝑡 =  ∑ 𝑙(𝑦𝑖, 𝑦�̂�
𝑡−1

𝑛

𝑖=1

) + 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) Eq. 3 

  258 

 For benchmarking, XGBoost was compared with an ANN model and an SVM 259 

model. The ANN model was based on Zhu et al. (2017), which is composed of one 260 

hidden layer with 10 neurons, using the radial basis function as its activation function. 261 

The SVM model was based on Zaghloul et al. (2020), which used a Gaussian kernel 262 

function. 263 

 264 
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3. Results 

3.1. Selection of Supporting Sensors 

A modified PLS approach was used to identify the best-supporting sensors for the 265 

proposed BOD5 soft sensors. In typical implementations of PLS for parameter 266 

selection, the PLS regression coefficients are used as the basis for selection. The 267 

regression coefficients obtained from building models for BOD5 using data from 268 

Cases 1 and 2 are presented in Figure 2. In all cases, the supporting sensor with the 269 

highest PLS regression coefficient was a complex sensor, i.e. COD and total 270 

suspended solids (TSS). On the other hand, simpler sensors, i.e. TempReac, flow rate 271 

(Q), conductivity (Cond), and pH, ranked lower in the order of recommended 272 

supporting sensors.  273 

Through the modified PLS approach, the potential of using these simpler 274 

sensors to build the soft sensor was explored. The study compared the difference in 275 

RMSE resulting from using different sets of supporting sensors (see Figure 3). The 276 

initial soft sensor model for each case was built using only simple sensors. 277 

Specifically, for Case 1, these simple sensors were pHinf, flowrate (Qinf) and 278 

conductivity (Condinf) for BODinf; and pHeff and Condeff for BODeff. For Case 2, simple 279 

sensors refer to Qinf, TempReac and pHinf for BODinf, and Qeff and pHeff for BODeff.  280 

Supporting sensors were incrementally added based on the order of their PLS 281 

regression coefficients until all potential supporting sensors were exhausted. The 282 

sensitivity analysis showed that using a large number of complex supporting sensors 283 

did not improve accuracy. Based on these results, we found that: A soft sensor for 284 

BOD5 could be built using simple sensors and one complex sensor.  285 

 The results for Case 1 showed that a soft sensor for BODinf could be developed 286 

based on simple sensors and CODinf. There was a significant decrease in RMSE from 287 

the model using only simple sensors, to the model using simple sensors and CODinf. 288 
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However, the improvement in RMSE became minimal for additional supporting 289 

sensors. As such, the proposed soft sensor for BODinf in Case 1 is based on the simple 290 

sensors and CODinf. The soft sensor for BODeff was the only case where COD did not 291 

have the highest PLS regression coefficient. In this specific case, the coefficient for 292 

CODeff is lower than TSSeff and Sedimentseff, although it is notable that there was a 293 

slight decrease in RMSE when CODeff is added as a soft sensor along with TSS, 294 

sediments and the simple sensors. It is also notable that soft sensor performance 295 

worsens both in terms of average performance and consistency between the soft 296 

sensor with 3 supporting sensors (i.e., simple sensors and TSSeff), and that with 4 297 

supporting sensors (i.e., simple sensors, TSSeff and Sedimentseff). This suggests that 298 

having more supporting sensors may generally even worsen performance, potentially 299 

due to noise or multicollinearity. Thus, the proposed BODeff sensor for Case 1 takes 300 

the version of the model using 3 supporting sensors.  Based on the same reasoning, 301 

the proposed supporting sensors for BODinf are the simple sensors and CODinf. For 302 

BODeff, the proposed supporting sensors are the simple sensors, CODeff, and 303 

othophosphates (OP-Peff). This is the only case where further improvement was 304 

observed from adding more than one complex sensor as an input. This shows that a 305 

soft sensor can be developed with relatively few and accessible supporting sensors. 306 

3.2. Comparing Methods for Missing Sensor Readings 

The wastewater datasets contain a significant number of samples with missing 307 

readings, owing to sensor failure or manual measurement of the parameters. This is a 308 

common problem in data-driven modeling, particularly in water treatment (Ma et al., 309 

2020). This study compared different approaches for the missing sensor readings in 310 

the dataset. Specifically, the study compared (i) the case where only samples without 311 

missing readings were used in training, (ii) the case where kNN was used to fill in the 312 

missing readings, and (iii) the case where a dataset with missing values was used to 313 
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train the XGBoost model, to be processed by its sparsity awareness split-finding 314 

algorithm. For Case 1, including the missing sensor readings in training generally 315 

improved performance (see Table 1). The sparsity awareness split-finding algorithm 316 

of XGBoost resulted in the highest accuracy (i.e., lowest RMSE) for both BODinf and 317 

BODeff, although the XGBoost model using missing values was obtained from kNN 318 

had the highest consistency. Meanwhile, for Case 2, the results of the models were in 319 

favor of removing the samples with missing readings from the dataset, for both 320 

BODinf and BODeff.  321 

The difference between the performance of the methods in Cases 1 and 2 was 322 

attributed to the volume of missing values in each case. Specifically, only 15.9% of 323 

influent samples and 13.7% of effluent samples contained missing sensor readings. 324 

This is small compared to Case 2, with 72.0% of influent samples and 71.9% of 325 

effluent samples containing missing values. In addition, it was notable that data in 326 

Case 1 tended to contain fewer parameters with missing readings in each sample. In 327 

comparison, there samples in Case 2 with missing readings tended to contain several 328 

missing sensor readings (see supplementary information Table S3). Because of this, 329 

kNN and the sparsity awareness algorithm had less inputs for handling the missing 330 

values, resulting in poorer estimations.  331 

These characteristics of Case 1 make it more viable to include the samples 332 

with missing readings in training. This illustrates that there is a threshold for 333 

uncertainty in the samples included in the training set. While including some of these 334 

samples with missing readings can improve performance, adding a large number of 335 

the samples, or using samples with too many missing parameter values, worsen 336 

performance. Related studies concerning unlabelled datasets have also encountered 337 

this problem, necessitating the selective inclusion of samples for model development 338 

(Li et al., 2020). 339 
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 As a method for handling missing values, the results demonstrated that the 340 

sparsity awareness algorithm of XGBoost was at least equal to kNN. This makes the 341 

estimation process of the soft sensor model more efficient, as the algorithm can 342 

directly process the samples with missing readings, whereas kNN results in a two-step 343 

approach of imputation and estimation. The significance of the sparsity awareness 344 

algorithm method is that it assigns a direction for any sparsely occurring value, 345 

whereas other regression tree ensembles would either not be able to use a missing 346 

value as an input, or would treat the recurring value as any continuous value. This 347 

method is helpful both in training and operating the soft sensor, as the algorithm may 348 

allow the soft sensor to continue functioning even if some of the supporting sensors 349 

fail. 350 

3.3. Comparison of Soft Sensor Models 

XGBoost differs from other implementations of regression tree ensembles as its 351 

learning objective is penalized with the term Ω(fk). This limits the complexity of the 352 

regression trees, preventing overfitting. The learning objective is used to determine 353 

the optimal structure of regression trees, the assignment of leaves for each sample, 354 

and the weighted value of the leaves. The performance of XGBoost was compared 355 

with more popular methods in soft sensor development, i.e. ANN and SVM. First, a 356 

comparison of observed (laboratory-tested) and estimated (soft sensor) values was 357 

conducted to identify the source of error in the models in relation to RMSE. Results to 358 

demonstrate this analysis in Case 1 is shown in Figure 4. For BODinf, the RMSE of 359 

XGBoost was inferior to both ANN and SVM; and for BODeff, the RMSE of XGBoost 360 

was superior to both models. The stark difference in performance indicates the dataset 361 

characteristics where each model would be more appropriate. Specifically, a 362 

continuous regression approach seems to be more effective for the high-variance case 363 

Jo
urn

al 
Pre-

pro
of



 

16 

 

of BODinf, while the ensemble learning approach is compatible with the high 364 

skewness BODeff. 365 

 Figure 5 shows the results for Case 2. In this case, XGBoost ranks second to 366 

ANN in terms of performance for BODinf. This supports the notion that continuous 367 

regression is more appropriate for BODinf. However, more cases would be needed to 368 

identify the difference between Cases 1 and 2 that allowed XGBoost to have an 369 

advantage over SVM. On the other hand, the results for BODeff show that XGBoost 370 

had the lowest RMSE in this case, which supports the conclusions drawn from Case 1 371 

on the effectiveness of XGBoost on skewed and non-normal distributions. In spite of 372 

this, it was found that all three models were challenged when it came to estimating 373 

extremely high and extremely low values. In particular, given the high skewness of 374 

BODeff, there were significantly fewer samples to represent extremely high values of 375 

BODeff in the dataset, which can account for poor performance. The visual comparison 376 

of observed and estimated values shows that XGBoost is superior in estimating some 377 

of these low-frequency cases. 378 

 The findings based on Cases 1 and 2 analysis were validated with 10-fold 379 

cross-validation. This means that each model was tested using 10 different test sets, in 380 

cases where these samples were not included in training the model. The results of 381 

cross-validation for Case 1 are presented in Table 2a. For BODinf, the results 382 

confirmed that continuous regression was superior for this case; and likewise, the 383 

results for BODeff confirmed that XGBoost was advantageous for skewed 384 

distributions. In addition, it can also be observed that while XGBoost did not always 385 

have the lowest RMSE, it consistently had the lowest standard deviation, which 386 

supports the notion that the residual errors were not higher for extreme values.  387 

 The results of cross-validation for Case 2 (shown in Table 2b) confirm that 388 

both ANN and SVM are superior to XGBoost for BODinf. Previously, the results of a 389 
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single test set presented in Figure 5 showed that XGBoost was more accurate than 390 

SVM for at least one case. Although the average RMSE from cross validation seemed 391 

to converge (between 67.49 – 67.79 mg/L), some variation on a case-to-case basis can 392 

be expected given that the SVM model had the highest standard deviation based on 393 

cross validation. A model can achieve the highest accuracy for a certain fold if it is 394 

the most suitable model for the characteristics of the data in that fold. This was 395 

demonstrated by the results of BODeff , which supported the appropriateness of 396 

XGBoost for skewed datasets. Specifically, XGBoost had the highest accuracy and 397 

consistency among the three models. 398 

 In general, XGBoost has some advantages over singular models in terms of 399 

robustness and scalability. The characteristic of being an ensemble of models is 400 

intended to allow each model to capture some aspect of the data structure. Being 401 

composed of several weaker (less complex) models prevents the likelihood of 402 

overfitting, even for smaller datasets. Together, the ensemble characteristic and the 403 

additive model development process prevent convergence to local minima, a tendency 404 

of singular models. These characteristics can also help XGBoost to cover a larger 405 

space of potential solutions, resulting in a higher potential for good potential. 406 

 407 

4. Discussion 

This study developed soft sensors for BOD5 for two different wastewater treatment 408 

plants. In both cases, the supporting sensors used were a combination of relatively 409 

simple sensors (e.g., pH, temperature, flow rate) and minimal complex sensors (i.e., 410 

COD and/or nutrients). This is a common approach in most soft sensor development 411 

studies, as simpler sensors may be more stable or easily replaced, while the complex 412 

sensors may share stronger correlations with BOD5. In a literature study, Xiao et al. 413 

(2019) predicted effluent BOD5 from sensors for pH, effluent ammonia, influent TSS, 414 
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and influent COD using multivariate regression models. The soft sensor designed by 415 

Ebrahimi et al. (2017) predicted effluent BOD5 from influent TSS, influent total 416 

phosphorus (TP) and influent total nitrogen (TN), specifically using the interactions 417 

between these parameters in the soft sensor model. Similarly, the supporting sensors 418 

for the soft sensor developed by Liu (2017) include influent TSS, effluent ammonia, 419 

and simpler sensors such as dissolved oxygen, oxidation-reduction potential, and flow 420 

rate.  421 

 Notably, most studies used sensors for nutrients (e.g., TN, TP, ammonia), 422 

COD and TSS as supporting sensors. In this study, both cases showed significant 423 

accuracy improvement when COD was included as a supporting sensor. Case 2 also 424 

demonstrated the potential improvement from using sensors for nutrients (i.e., OP-P) 425 

in predicting effluent BOD5. However, this study was able to keep the complex 426 

sensors to a minimum by using the modified PLS approach for prioritization and 427 

performing a sensitivity analysis of soft sensor performance using different supporting 428 

sensors.   429 

 The two cases used in this study varied in terms of statistical properties (see 430 

supplementary information Table S4). This affected the model’s performance based 431 

on RMSE, where data with a higher range (Case 1) also resulted in higher RMSE. 432 

Because of this, it is difficult to compare the reported performance of soft sensors 433 

developed using different datasets. It should note that most studies use a private 434 

dataset, which further limits the potential for comparison. These datasets may have 435 

unique characteristics which will influence the conclusions of the study. The size of 436 

the dataset alone is an influential factor, affecting the generalizability of the soft 437 

sensor. Mjalli et al. (2007) used a relatively small dataset of 73 samples from Doha 438 

West Wastewater Treatment Plant. In comparison, the dataset used by Ebrahimi et al. 439 
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(2017) was composed of 9,180 samples from Floyds Forks Water Quality Treatment 440 

Center.  441 

 This study aimed to make a comprehensive summary of the characteristics of 442 

the two datasets used in its analysis. This was intended to allow for comparison 443 

between the results of this study on XGBoost, as well as past and future efforts in soft 444 

sensor development for wastewater parameters. Aside from summarizing the 445 

characteristics of the datasets used, the study used a public dataset in Case 1 (Dua & 446 

Graff, 2019), allowing future studies to have the opportunity to make a direct 447 

comparison using the same dataset.  448 

 It was also observed that the majority of studies tended to focus on effluent 449 

prediction. In most cases, effluent parameters were predicted using influent 450 

parameters. The availability of influent parameters as supporting sensors may be one 451 

reason for the majority of soft sensor studies being concerned with the effluent. 452 

Previously, some studies were cited which used measures such as influent TSS and 453 

influent COD to predict BOD5. Aside from this, influent parameters such as ammonia 454 

and flow rate have been used to predict effluent COD (Cong & Yu, 2018; Grieu et al., 455 

2005). Effluent TP has been predicted using TP and TSS in the influent (Wang et al., 456 

2021; Bagheri et al., 2015). Conversely, it makes no logical reason to predict the 457 

influent parameters using effluent data, which may be one reason that there are 458 

significantly more soft sensors that have been developed for the effluent, compared to 459 

the influent (Ye et al., 2020). In comparison, relatively few soft sensors have been 460 

developed for influent parameters. These include models for influent COD and TP 461 

developed by Wang et al. (2019); and the model for influent TP of Zhu et al. (2017). 462 

So far, this study is one of the only a few studies to develop a soft sensor for the 463 

influent BOD5; the XGBoost-based machine learning model provided good 464 

opportunity for achieving this objective.  465 
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 466 

5. Conclusion 

This study developed soft sensors for predicting BOD5 using XGBoost machine 467 

learning. This new method was applied to two cases to evaluate its robustness. In both 468 

cases, XGBoost estimated a wide range of BOD5 values, showing consistent 469 

performance across different test sets. Although the average performance of machine 470 

learning models tended to converge, XGBoost has an innate method of handling 471 

missing values; is less prone to overfitting; and was observed to be more effective in 472 

measuring higher values of pollutant concentration. XGBoost was particularly 473 

effective in estimating effluent BOD5 which is characterized by important outliers, as 474 

cases of high pollutant concentration rarely occur. The soft sensor developed in this 475 

study was validated through 10-fold cross validation; however, in future work, we 476 

expect to validate the soft sensor in lab-scale or full-scale operation.  477 
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Tables 

Table 1 RMSE (mg/L) of the model trained on the (a) UCI Machine Learning 

Repository dataset and (b) Hong Kong dataset (using different methods of handling 

missing values) 

 

 (a) Case 1: UCI Machine 

Learning Repository 

(b) Case 2: Hong Kong 

Dataset 

 
Influent BOD Effluent BOD 

Influent  

BOD 

Effluent 

BOD 

Ave 
Std. 

Dev. 
Ave 

Std. 

Dev. 
Ave 

Std. 

Dev. 
Ave 

Std. 

Dev. 

Samples 

without missing 

values 

 

52.41 9.06 10.59 7.96 67.79 17.52 0.47 0.20 

Missing values 

filled in with 

kNN 

 

52.07 8.96 10.59 8.01 70.64 16.64 0.77 0.86 

Missing values 

processed by 

XGBoost 

 

51.93 9.31 10.55 7.98 68.60 19.97 1.17 1.48 
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Table 2 RMSE (mg/L) of 10-fold cross-validation for models developed using the (a) 

UCI Machine Learning Repository dataset and (b) Hong Kong dataset. 

 

 (a) Case 1: UCI 

Machine 

Learning 

Repository 

(b) Case 2: Hong Kong 

Dataset 

Influent BOD 

Average  Std. Dev. Average  Std. Dev. 

XGBoost*  

 
51.93 9.31 67.79 17.52 

ANN with kNN 

 
50.51 11.04 67.58 19.60 

SVM with kNN 

 
50.51 11.04 67.49 23.58 

 Effluent BOD 

Average  Std. Dev. Average  Std. Dev. 

XGBoost * 

 
10.55 7.98 0.47 0.20 

ANN 

 
10.80 9.95 0.48 0.30 

SVM 

 
11.98 12.87 0.51 0.41 

* Note: For Case 1, the XGBoost were analyzed with Sparsity Awareness Algorithm 
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Figures 

 

 

Figure 1 Soft sensor development frameworks: (a) methods applied, and (b) XGBoost model structure. 
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Figure 2 PLS regression coefficients for (a and c) influent BOD and (b and d) effluent BOD, with common parameters indicated by color.  
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Figure 3 Change in RMSE (mg/L) supporting sensors are incrementally added to the soft sensor for (a, c) influent BOD and (b, d) effluent BOD. 
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Figure 4 Visual comparison and RMSE (mg/L) of (a) BODinf estimated by XGBoost; (b) BODinf estimated by ANN with kNN; (c) BODeff 

estimated by SVM with kNN; (d) BODeff estimated by XGBoost; (e) BODeff estimated by ANN with kNN; and (e) BODeff estimated by SVM 

with kNN, modeled using the UCI Machine Learning Repository dataset. 
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Figure 5 Visual comparison and RMSE (mg/L) of (a) BODinf estimated by XGBoost; (b) BODinf estimated by ANN with kNN; (c) BODeff 

estimated by SVM with kNN; (d) BODeff estimated by XGBoost; (e) BODeff estimated by ANN with kNN; and (e) BODeff estimated by SVM 

with kNN, modelled using the Hong Kong dataset. 
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