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Abstract 

The intra-cellular wave dynamics of a water jetted phononic plate are experimentally 

investigated by means of high-resolution 3D scanning laser Doppler vibrometry. The study is 

focused on the vibrational behavior around the ultra-wide bandgap of the plate (with a relative 

bandgap width of 0.89), as the critical frequency range of its phononic functionality. Broadband 

vibrational excitations are applied using a piezoelectric transducer and both in-plane and out-of-

plane operational deflection shapes of the unit-cells are analyzed with respect to mode shapes 

calculated by finite element simulation. Attenuation and resonance of both symmetric and 

antisymmetric wave modes are validated, and it is shown that despite the absence of in-plane 

wave energy actuation, the symmetric modes are effectively excited in the phononic lattice, due 

to mode conversion from co-existing antisymmetric modes. Supported by finite element modal 

analysis, this mode conversion observation is explained by the slight through-the-thickness 

asymmetry introduced during manufacturing of the phononic plate which leads to coupling of 

modes with different symmetry. The results confirm the potential of such detailed 3D inspection 

of phononic crystals (and in general acoustic metamaterials) in gaining full insight about their 

intracellular dynamics, which can also illuminate discrepancies with respect to idealized 

numerical models, that might be due to manufacturing imperfections. 

Keywords: Phononic crystal, Bandgap, Guided waves, 3D Laser Doppler vibrometry, Intra-cellular 
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 Introduction 

Phononic crystals are acoustic metamaterial lattices with extraordinary effects on elastic (and 

acoustic) wave propagation [1, 2]. A prominent characteristic of phononic crystals is the 

suppression of wave propagation over particular frequency ranges, so called phononic bandgaps. 

If a wave is incident to the phononic crystal at a bandgap frequency, its amplitude is exponentially 

attenuated through a few rows of phononic unit-cells. Moreover, a wave can be resonated 

and/or guided within the bandgap frequency range, through carefully designed features and 

canals introduced in the phononic lattice [3, 4]. Also when approaching the frequency regimes 

close to the bandgap edges, other promising characteristics e.g. flat wave front and negative 
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refraction index can be achieved [5], owing to the high anisotropic interaction of unit-cells with 

the incident wave. Consequently, carefully designing and combining phononic lattices enables 

filtration, steering, focusing and self-collimation of waves with applications in e.g. energy 

harvesting, fluid flow stabilization, acoustic absorption, wireless communication  and structural 

health monitoring [3, 6-15].  

The underlying mechanism and the frequency range of a phononic bandgap substantially depend 

on the constitutive material(s), topology and the geometry of its unit-cell . In principle, a wave 

experiences high attenuation at a bandgap frequency due to its constructive reflection or its 

trapping and attenuation when interacting with the phononic unit-cells. The three well-known 

bandgap mechanisms are: (i) Bragg Scattering of waves at the interface of stiff scatterers 

embedded in a compliant matrix [3], (ii) Mie Resonance of waves in dense and compliant 

inclusions embedded in a stiff matrix [16], which can be further enhanced by adding (iii) Locally 

Resonant features to the unit-cell (e.g. a stiff and dense core inside a compliant shell) [17-19]. 

Hence, in order to activate a bandgap mechanism, it is essential to incorporate scattering or 

resonating features through a multi-material design and/or a cellular design with porosities [18, 

20-23]. The bandgap efficiency of a phononic lattice can be further tuned through mechanical 

deformation or by incorporating active materials in the unit-cell design [24-26].  

In order to maximize the phononic controllability of the unit-cell, it is necessary to achieve the 

widest phononic bandgap frequency range. Moreover, it is usually desired to minimize the 

bandgap frequency level so that the longest incident wavelength can be manipulated through a 

given unit-cell size [27]. For this purpose, the relative bandgap width (i.e. bandgap width divided 

by the mid-gap frequency) is maximized. Furthermore, the phononic lattice and its unit-cell can 

be designed so that particular wave types, e.g. bulk waves [28], surface waves [22], symmetric 

and/or antisymmetric guided waves modes, are exclusively controlled [29-31]. This has 

motivated many research works towards analysis, design and topology optimization of phononic 

crystals [19, 23, 25, 28, 32-40]. In earlier studies by current authors, phononic crystal plates were 

optimized for exclusive bandgaps of (i) symmetric or (ii) antisymmetric guided wave modes, and 

for (iii) complete bandgaps of mixed guided wave modes [29-31]. A cellular unit-cell design was 

considered which can be easily manufactured e.g. by perforation of a thin plate. Optimization of 

such cellular unit-cells for widest bandgaps is very challenging as it naturally converges towards 

tiny interconnecting features and, in fact, leads to impractical designs. Therefore, the current 

authors incorporated the effective stiffness of the phononic unit-cell in the topology optimization 

algorithm [29].  

The performance of phononic metamaterials may be experimentally evaluated by measuring the 

vibrational transmission spectrum to different unit-cells e.g. by means of piezoelectric 

transducers (PZTs) [4, 30, 31, 41, 42]. However, assessment of phononic crystals solely based on 

such transmission spectra from one point to another, is limited to the evaluation of bandgap 
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width and its transmission loss, and it does not provide any insights about the actual dynamic 

behavior of unit-cells and their activated vibrational modes. Other than the transmission loss 

inside the bandgap, achieving other aforementioned phononic functionalities is also of high 

importance, which are governed by the resonance modes of the unit-cell particularly in the 

vicinity of bandgap edges. 

This has motivated the current study to investigate the guided wave’s interaction with phononic 

plates, using a 3D infrared scanning laser Doppler vibrometer (SLDV) which gives access to both 

the out-of-plane and in-plane component of the wave field. Emergence of advanced SLDVs has 

enabled fast contact-free measurement of the vibrational response of components with complex 

geometry. The technique has been used in several preceding research works for validation of 

bandgap frequency ranges [38, 43-45], and full-field imaging and dispersion analysis of wave 

propagation [31, 46-49] in phononic metamaterials. However, investigation of their 3D wave 

dynamics has been quite limited [50-53], and a study which can illuminate the full potential of 

the technique in inspection of both out-of-plane and in-plane modes, especially in the intra-

cellular scale has not yet been reported.  

A topology with an ultra-wide complete bandgap of guided waves is selected from an earlier 

topology optimization study by the authors [31], which has been manufactured by water jetting 

a thin aluminum plate. Guided waves are excited using a PZT transducer bonded to the non-

perforated border of the plate, and their interaction with the perforated phononic lattice is 

studied. The entire phononic plate is first scanned, followed by a high-resolution scanning 

focused on a mega unit-cell taken from the middle of the lattice. This allows to study the intra-

cellular 3D wave dynamics. Symmetric and antisymmetric operational deflection shapes of the 

mega unit-cell are extracted and compared with calculated mode shapes of the unit-cell. It is 

shown that such detailed 3D inspection of the phononic lattice not only allows for validation of 

the attenuation of vibrations and resonance of phononic modes, but also reveals the coupling 

and conversion of modes stemming from the imperfection of water jetted cutting edges.  

The paper is organized as follows. In section 2, the design and manufacturing of the phononic 

plate, the finite element (FE) analysis procedure and the experimental setup are explained. In 

section 3, the modes limiting the bandgap edges are studied in detail through FE simulation. In 

section 4, the experimental results of the phononic plate and the selected mega unit-cell are 

presented and discussed, followed by section 5, which supports the discrepancies observed  in 

experiments through FE simulation of imperfect cutting edges. Conclusions are then summarized 

in section 6. 
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 Material and Methodology 

A phononic unit-cell with square symmetry and cellular topology as shown in Figure 1(a) is picked 

from the Pareto front of a multi-objective optimization study, which assures both widest bandgap 

at the lowest frequency level and maximized effective stiffness [31]. An aluminum plate with 

dimensions 400 × 500 mm2 is water jetted and a phononic lattice of 10 rows and 8 columns is 

manufactured (Figure 1(b-d)). The beam radius of the employed water jet has a value between 

0.2-0.3 mm (it evolves over time due to erosion of the nozzle). The unit-cell has a designed width-

to-thickness ratio of 10, and a resolution of 32 × 32 pixels. The plate has a nominal thickness of 

2.5 mm (actual thickness is measured 2.42 mm), leading to a unit-cell width of 𝑎 = 25 mm, and 

a pixel size of 0.78 mm. As can be seen in Figure 1(d), the border of the plate is cut into 4 separate 

sections, each of which can be used for excitation of waves and studying its transmission to the 

other sections through the phononic lattice.  

The modal band structure of the manufactured aluminum unit-cell is calculated through finite 

element analysis (FEA) using ANSYS APDL. The unit-cell is modeled with 92950 brick elements 

SOLID185 with linear formulation, reduced integration and hourglass control (20 layers through 

the thickness, and with an in-plane mesh size of 0.39 mm). Harmonic periodicity is applied 

through Floquet-Bloch boundary conditions by considering two superimposed meshes, and 

symmetric and antisymmetric modes are decoupled by applying relevant boundary conditions to 

the mid-thickness of plate [30]. An elastic modulus of 70 GPa, Poisson’s ratio of 0.34 and density 

of 2700 kg/m3 are assumed for simulation of the aluminum plate. Figure 1(e) shows the 

calculated modal band structure over the border of the irreducible Brillouin zone (the triangle 

ΓΧΜ in the inset, in the periodic wave number space) which has been proven to be sufficient for 

modal band analysis of phononic crystals [27, 54].  
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Figure 1. The phononic unit-cell with (a) an optimized cellular topology [31], manufactured by (b-d) water 
jetting an aluminum plate and (e) corresponding modal band structure calculated for a periodic unit-cell.  

Different modal branches of guided waves are present, amongst which a complete bandgap of 

all modes is found in the frequency range 8.1 kHz to 21.1 kHz (Figure 1(e)). This leads to a relative 

bandgap width of 0.89, which is among the highest relative bandgap widths reported in the 

literature for a complete bandgap in such single material phononic plate [42, 47, 55].  

In order to evaluate the vibrational response of the phononic plate, a PZT with a diameter of 27 

mm (Elkuit EPZ-27MS44W) is glued to the lower side of the plate (Figure 1(d)) to excite waves, 

and the full-field velocity response is measured using a 3D SLDV (Polytec PSV-500-3D Xtra) with 

infrared measurement lasers. A linear frequency sweep between 1 Hz and 100 kHz, with a 

duration of 40 ms and amplitude of 50 Vpp, is supplied to the PZT using a waveform generator 

and a Falcon WMA-300 high-voltage amplifier. The vibrational response is measured at a 

sampling rate of 250 MS/s and with 10 averages for increased signal-to-noise ratio. The entire 

plate is first scanned with a spatial resolution of ~2 mm, followed by a detailed scan with spatial 

resolution of ~0.3 mm for visualization of the wave field within the unit-cells. Further, the 
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measurements are repeated for the same set-up but without any excitation, so that the 

corresponding measurement noise level is determined. The frequency response of the phononic 

plate is calculated using fast Fourier transform (FFT), and the transmission spectrums of both the 

out-of-plane velocity 𝑉𝑧 and the in-plane velocity 𝑉𝑥𝑦 are studied. The plate is clamped at the 

middle of the upper edge during the measurement (see Figure 1 (d)). 

 Finite element modal analysis of the unit-cell  

As the first step, the modal behavior of the unit-cell at frequencies limiting the bandgap are 

studied in detail through FEA. This provides more insight about the resonance modes expected 

at frequencies adjacent to the bandgap so that their actuation and existence in the experimental 

study can be confirmed. For this purpose, two modes D1 and D2 on the upper edge and three 

modes D3 to D5 on the lower edge of the bandgap are selected, as indicated on Figure 2.  

 
Figure 2. Modal band structure of the optimized phononic unit-cell around its bandgap, and indication of 
selected modes D1-D5 on the bandgap edges. 

A closer look at the bandgap edges in Figure 2 reveals that the exclusive bandgap of 

antisymmetric modes is further extended to a lower frequency of 7.8 kHz. Location of the 

selected modes in the irreducible Brillouin zone, corresponding wave vector and the relevant 

mode shapes are respectively shown in the left, middle and right columns of Figure 3.  
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Figure 3. Modal analysis of the phononic unit-cell (a,b) at modes D1 and D2 on the upper edge of bandgap 
and (c-e) at modes D3 to D5 on the lower edge of bandgap. The color maps show the normalized value of 
total displacement 𝑈 associated with the mode shapes.  

The color maps show the normalized value of total displacement 𝑈. The wave vectors are added 

to indicate the wavelength and the direction of phase velocity corresponding to each mode. This 

is determined by analysis of the mode shapes of the unit-cell and the phase difference between 

its opposite faces to determine the wavelength 𝜆𝑥 = 2𝜋/𝑘𝑥 (and 𝜆𝑦 = 2𝜋/𝑘𝑦) in x-axis (and y-

axis) with respect to the unit-cell size 𝑎. It can be seen that the wave vector 𝒌 = {𝑘𝑥, 𝑘𝑦} 

associated with each mode may be different from the reduced wave vector 𝒌̂ = {𝑘̂𝑥, 𝑘̂𝑦}. This is 

due to the harmonic periodicity of boundary conditions which folds back all modal branches to 

the first Brillouin zone.  
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According to Figure 3, the following can be understood: 

• D1 and D2 are antisymmetric bending modes above the bandgap (Figure 3(a,b)), both with 

equal wavelengths in x- and y-axis leading to a wave vector along the diagonal axis of the 

unit-cell.  

• D3 is a symmetric mode with purely in-plane rotational deformation about z-axis shown by a 

dashed line arrow (Figure 3(c)). It has equal wavelengths in x- and y-axis, leading to a wave 

vector along the diagonal axis of the unit-cell shown by a solid line arrow.  

• D4 is an antisymmetric bending mode with a wavelength of two unit-cell sizes in x-axis and a 

wavelength of one unit-cell size in y-axis (Figure 3(d)). This leads to a wave vector inclined 

towards y-axis. 

• D5 is a symmetric mode with purely in-plane deformation (Figure 3(e)). It also has equal 

wavelengths in x- and y-axis leading to a wave vector along the diagonal axis of the unit-cell 

shown by a solid line arrow. The dashed line arrows show the longitudinal deformation of 

unit-cell parallel to the wave vector.  

 Measurement of the 3D wave dynamics 

4.1. 3D SLDV of the phononic plate 

In this section, the experimental results concerning full-field scanning of the phononic plate are 

presented and discussed. Figure 4(a) shows an arbitrary time snapshot of the wave field over the 

scanned area of the plate. Comparing the frequency spectrum of the excitation area ‘E’ with that 

of a reference unit-cell ‘R’ (on the 4th row of the lattice, also shown on Figure 1(d)) confirms the 

bandgap efficiency of the phononic plate for suppression of both out-of-plane component 𝑉𝑧 

(Figure 4(b)) and in-plane component 𝑉𝑥𝑦 (Figure 4(c)) of the excited wave field. The shaded area 

indicates the expected bandgap frequency range from the FEA (see Figure 2). Further, the 

measurement noise spectrum corresponding to the reference unit-cell demonstrates the 

performance of the bandgap for wave attenuation (Figure 1(d,e)). As can be seen, the noise level 

of the out-of-plane component 𝑉𝑧 is lower than the noise level of in-plane component 𝑉𝑥𝑦. This 

can be attributed to the specific angular configuration of the three laser heads of 3D SLDV, which 

in the current experimental setup favored the signal-to-noise ratio for the out-of-plane 

component.  



      9  

 

 

 

 

 
Figure 4. (a) 3D SLDV of the phononic plate. Frequency spectrum at the excitation area ‘E’ and at the 
reference unit-cell ‘R’: (b) out-of-plane velocity 𝑉𝑍 and (c) in-plane velocity 𝑉𝑥𝑦. The noise level is indicated 

by the gray dashed line. The shaded area indicates the bandgap frequency range obtained from the FEA 
(Figure 2). See appendix A for comparison of the measured transmission spectrum with FEA. 

The spatial variation of bandgap is also confirmed in Figure 5 which shows the transmission 

spectrum along an entire column of unit-cells. The results clearly demonstrate that the wave’s 

amplitude is significantly attenuated by each row of unit-cells and reaches the noise level after 

only 4 rows on which the reference unit-cell is located.  
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Figure 5. (a) Phononic plate. Frequency spectrum over the reference line AB along a single column of unit-
cells: (b) out-of-plane velocity 𝑉𝑧 and (c) in-plane velocity 𝑉𝑥𝑦. The shaded area indicates the bandgap 

frequency range obtained from FEA (see Figure 2). 

The experimentally measured bandgap range, which extends from 7 kHz up to 21 kHz (Figure 4 

and Figure 5), also includes the additional range corresponding to the exclusive bandgap of 

antisymmetric modes (see the red shaded area in Figure 2). This is explained by the poor 

excitation of the symmetric modes of the plate at frequencies below the bandgap, as confirmed 

in Figure 4(c) and Figure 5(c). In fact, at such low frequencies, the symmetric modes have a 

relatively large wavelength (comparable to the global size of the plate), and may not be present 

in the finite size of the plate’s border. For the same reason, the small PZT transducers have a 

weak coupling to the symmetric modes at low frequencies, and can only effectively excite the 

antisymmetric guided wave modes [56]. The reader is referred to appendix A in which the good 

correlation of experimental transmission spectrum with FEA results is confirmed.  

It is expected that the lack of in-plane excitation leads to inefficient stimulation of the symmetric 

modes present on the lower edge of bandgap (Figure 1(e)). Nonetheless, the results show that 

the phononic lattice is quite significantly resonated at the frequencies below the bandgap and 

with a relatively high in-plane component (Figure 4(c) and Figure 5(c)).  

This is further confirmed in Figure 6 which shows full-field frequency responses of the plate at 

three different frequencies 6.7, 15.0 and 21.0 kHz around the lower edge, the middle and the 

upper edge of the bandgap. The results demonstrate resonation and wave transmission 
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efficiency of the phononic lattice just outside the bandgap (Figure 6(a,b,e,f)), and its high 

attenuation inside the bandgap (Figure 6(c,d)), for both out-of-plane and in-plane components. 

At 6.7 kHz, the entire plate shows a relatively high out-of-plane response (Figure 6(a)), while the 

in-plane response is only exclusively present in the phononic lattice (Figure 6(b)). At this 

frequency, even the excitation side of plate shows almost no in-plane activation.  

 
 Figure 6. Full-field frequency response of the phononic plate at: (a,b) frequency 6.7 kHz, (c,d) frequency 
15.0 kHz and (e,f) frequency 21.0 kHz. The top row shows the out-of-plane velocity 𝑉𝑧 and the bottom row 
shows the in-plane velocity 𝑉𝑥𝑦.  

According to the modal band structure of the unit-cell below the bandgap (Figure 2, the area 

shaded in red), symmetric modes have to be present up to a higher frequency than antisymmetric 

modes. Nonetheless, the measured bandgap frequency range of both in-plane and out-of-plane 

responses is the same, and the presence of in-plane resonances is only observed when there is a 

co-existing antisymmetric mode (Figure 4-6). Hence, the distinctive in-plane response of the 

phononic lattice despite lack of in-plane excitation, can be explained by:  

• the in-plane displacement associated with resonance of antisymmetric modes, and/or 

• mode conversion from co-existing antisymmetric modes to symmetric modes, to be 

discussed later on, in section 5. 
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A high-resolution 3D SLDV scan of the phononic unit-cells can reveal which modes are present in 

the vibrational response, and can also explain the nature of the in-plane resonance observed at 

6.7 kHz. This is the focus of the following section. 

4.2. Intra-cellular high-resolution 3D SLDV  

A high-resolution 3D SLDV measurement with a scanning grid of ~0.3 mm is performed over a 

mega unit-cell (i.e. the reference unit-cell and its four adjacent unit-cells), as shown in Figure 7. 

 
Figure 7. Close-up view of the mega unit-cell for which a high-resolution 3D SLDV measurement is 
performed 

The out-of-plane and in-plane operational deflection shapes of the mega unit-cell are inspected 

at frequencies adjacent to the bandgap edges and are compared with the mode shapes expected 

from FE simulation (Figure 3). Different modes co-exist at bandgap edges which makes their 

individual identification from experimental results quite challenging. However, the frequencies 

that provide the most distinctive and almost exclusive indication of every individual mode shape 

are extracted and corresponding responses are shown in Figure 8. This includes frequencies 22.3 

and 21.0 kHz just above the bandgap (Figure 8(a-d)), and frequencies 6.7, 6.5 and 6.4 kHz below 

the bandgap (Figure 8(e-j)). The left column shows the out-of-plane velocity 𝑉𝑧 and the right 

column shows the in-plane velocity 𝑉𝑥𝑦.  

Carefully comparing the results with the mode shapes from FEA (Figure 3) confirms that all 

expected modes at the lower edge and upper edge of bandgap do exist in the response. This is 

understood based on the good match between the effective wavelengths in x- and y-axis and 

also the dominant polarization of the in-plane or out-of-plane components. The direction of the 

in-plane motion associated with symmetric modes is indicated by arrows in Figure 8(f,h,j). 

Animated operational deflection shapes are also provided in appendix B for better understanding 

of the 3D oscillations of the mega unit-cell at the selected frequecies, and are compared with 

animated mode shapes of a mega unit-cell from FEA of the phononic plate.  
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Figure 8. Measured operational deflection shapes of the mega unit-cell at selected frequencies (a-d) above 
bandgap and (e-j) below bandgap. The left column shows the out-of-plane velocity 𝑉𝑧 and the right column 
shows the in-plane velocity 𝑉𝑥𝑦. See appendix B for animated operational deflection shapes. 
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At frequencies above the bandgap, both antisymmetric modes D1 and D2 (Figure 3(a,b)) are 

present and distinctively excited at frequencies 21.0 kHz and 22.3 kHz (Figure 8(c,a)). There are 

no symmetric modes associated with the phononic unit-cell at these frequencies and the in-plane 

responses are induced by the antisymmetric resonances. 

At frequencies below the bandgap, uncorrelated in-plane and out-of-plane responses are 

observed corresponding to co-existing symmetric and antisymmetric modes. The out-of-plane 

components (Figure 8(e,g,i)) show resonance of the antisymmetric mode, particularly at 6.5 kHz 

(Figure 8(g)) which resembles the mode shape of D4 (Figure 3(e)). The in-plane component at 6.4 

kHz (Figure 8(j)) indicates a pure symmetric mode equivalent to the mode D3 (Figure 3(c)). 

Symmetric modes with dominantly longitudinal deformations are also observed at 6.5 and 6.7 

kHz (Figure 8(h,f)) which are almost equivalent to the calculated mode D5 (Figure 3(d)). There is 

also a minor indication of co-existing symmetric mode D3 at these latter frequencies (see the 

animated operational deflection shapes in the supplementary materials).  

The intra-cellular vibrational measurement also confirms the results of section 4.1 that despite 

very poor in-plane excitation of the plate, the symmetric modes are efficiently stimulated in the 

phononic region. This is even more significantly observed at 6.7 kHz showing a dominant in-plane 

vibrational response (Figure 8(e,f)). According to the operational deflection shapes of the mega 

unit-cell below the bandgap, this dominant in-plane response is due to resonance of symmetric 

modes, and not the in-plane component associated with antisymmetric modes. This can be 

explained by mode conversion from co-existing antisymmetric modes as explained later on, in 

the section 5. 

Because of the very low vibrational response of the mega unit-cell within the bandgap, its 

response at a mid-gap frequency of 15 kHz is separately shown in Figure 9, in log scale. The results 

clearly show the high attenuation of both out-of-plane and in-plane components at this 

frequency.  

 
Figure 9. Vibrational response of the mega unit-cell at mid-gap frequency of 15 kHz: (a) out-of-plane 
velocity 𝑉𝑧 and (b) in-plane velocity 𝑉𝑥𝑦. 
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 Asymmetry of water jetted edges and mode conversion 

This section is dedicated to understanding the underlying reason of the mode conversion 

observed at the lower edge of bandgap in the 3D experimental results of section 4. 

A detailed inspection of the manufactured phononic plate, reveals that the cutting edges are not 

perfectly square and there is a minor indication of non-uniform and asymmetric cutting edges 

(Figure 10(a,b)). As illustrated in Figure 10(c), this observation can be explained by an offset angle 

𝛼 in water jetting (e.g. due to an initial deflection or a small tilt of the plate while manufacturing) 

and also the well-known tapering effect in water jetting which leads to V-shaped or barrel-like 

edges [57, 58].  

 
Figure 10. (a,b) Presence of asymmetric cutting edges in the phononic plate, due to (c) the tapering effect 
and/or an offset angle in water jetting 

In a 2D phononic lattice with uniform through-the-thickness design, only modes of the same 

symmetry can couple and only in asymmetric planes of the lattice (e.g. over the edge ΧΜ of the 

irreducible Brillouin zone) [59]. However, any asymmetry of cutting edges can further lead to 

hybridization and coupling of different mode types, over the entire Brillouin zone.  In order to 

understand the effect of such through-the-thickness asymmetry, the modal band structure is 

calculated for an obliquely perforated unit-cell with a small and constant offset angle of 𝛼 = 2°. 

Although the modal band structure negligibly changes by such small offset angle, a close look at 

the intersection of modal branches reveals its substantial impact on the modal behavior of the 

unit-cell. As an example, a magnified view of the intersection C1 along the edge ΓΧ of the 

irreducible Brillouin zone (as indicated on Figure 2), is shown in Figure 11(a). From the results, it 

is clear that in case of perpendicular perforation (i.e. 𝛼 = 0), the two symmetric and 

antisymmetric modal branches are uncoupled and cross each other. However, after applying a 

small offset angle of 𝛼 = 2°, the intersection disappears, the two modal branches split and a 

partial bandgap opens from around 7.15 kHz to around 7.25 kHz. The modes are hybrid, meaning 

that the purely symmetric and purely antisymmetric modes are not present anymore (see the 

insets of Figure 11(a). In the upper modal branch, the hybrid (predominantly symmetric) mode 
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D3H1 converts to the hybrid (predominantly antisymmetric) mode D4H2. In the lower modal 

branch, the hybrid (predominantly antisymmetric) mode D4H1 converts to the hybrid 

(predominantly symmetric) mode D3H2. In fact, D3H1 and D3H2 are similar to the symmetric 

mode D3 (Figure 3(c)), but with minor out-of-plane displacement component. Likewise, D4H1 

and D4H2 are similar to the antisymmetric mode D4 (Figure 3(d)), but with minor in-plane 

displacement component. 

Figure 11(b) further demonstrates the variation of both the partial bandgap opened at 

intersection C1 and the optimized complete bandgap of unit-cell, by variation of the offset angle 

𝛼 from 0 to 5°. The results show that the partial bandgap immediately opens by deviating the 

offset angle from 𝛼 = 0°, and widens up to 0.21 kHz at 𝛼 = 5°. The optimized bandgap with total 

width of 13 kHz at 𝛼 = 0° (from 8.1 kHz to 21.1 kHz, see Figure 2) slightly narrows down by 0.09 

kHz at 𝛼 = 5°  . 

 
Figure 11. (a) Mode hybridization and mode conversion at the intersection C1 between the modal 
branches D3 and D4 (see Figure 2) resulted from a small perforation offset angle of 𝛼 = 2° (with no 
tapering), and (b) opening a partial bandgap at intersection C1 and narrowing the optimized bandgap in 
function of the offset angle 𝛼. 

It can be shown that the same phenomenon occurs at other modal intersections, e.g. the 

intersection C2 indicated on Figure 2. Therefore, even a small offset angle (or tapering) in water 

jetting of the phononic crystals can lead to coupling and mode conversion between symmetric 

and antisymmetric modes, while slightly changing the optimized bandgap width.  

This can explain the mode conversion observed at the lower edge of the bandgap which, in the 

absence of in-plane incident wave energy, leads to resonance of symmetric modes within the 

phononic region. This can be clearly observed in the in-plane vibrational response of Figure 6(b), 

showing that the phononic lattice is adequately activated while the response of the plate’s border 



      17  

 

 

 

 

is in the noise level. In essence, at such low frequencies, the symmetric modes may not exist in 

the finite width of the plate’s border and also may not couple to and get excited by the attached 

small PZT actuator. This is due to the relatively long wavelength of symmetric modes at the low 

frequencies below the bandgap, which is comparable to the global size of the tested plate.  

 Conclusions 

A water jetted phononic plate with ultra-wide bandgap of guided waves is experimentally 

investigated, and its broadband frequency response is measured using 3D scanning laser Doppler 

vibrometry. Both out-of-plane and in-plane components of the guided wave field are analyzed. 

The attenuation and resonance behavior of the different wave modes is investigated, as well as 

mode coupling and mode conversion phenomena. The results confirm a promising bandgap 

efficiency for the plate in which both out-of-plane and in-plane components are attenuated to 

the measurement noise level. Furthermore, a high-resolution SLDV measurement is performed 

over a mega unit-cell chosen at the middle of the phononic lattice and its 3D operational 

deflection shapes are analyzed. Resonance of symmetric and antisymmetric modes at 

frequencies adjacent to the bandgap edges is confirmed and a good agreement with FEA of the 

phononic unit-cell is observed.  

Due to the poor excitation of symmetric guided wave modes, the measured bandgap is 

effectively wider and rather corresponds to the exclusive bandgap of antisymmetric modes. 

Nonetheless, it is shown that the symmetric modes of the phononic unit-cells are effectively 

stimulated due to mode conversion from the co-existing antisymmetric modes. With the support 

of finite element modal analysis, this observation is explained by the hybridization and coupling 

of symmetric and antisymmetric modes due to a slight asymmetry of water jetted cutting edges. 

This observation, demonstrates the great potential of such detailed 3D  inspection in  revealing 

manufacturing-induced deviations of the unit-cell’s dynamic response from simulation, which 

may not be achieved through a simple measurement of transmission spectrum between two 

points. Moreover, it explains why the symmetric modes of the phononic plate get excited when 

interacting with a predominantly out-of-plane incident wave (which is more easily excited in 

practice). Therefore, one may consider such asymmetric cutting in the design stage of phononic 

lattice, at locations where energy transfer and coupling between dissimilar mode types is desired.  

Appendix A. Transmission spectrum to the reference unit-cell (SLDV versus FEA) 

In this appendix, the transmission spectrum of guided waves from the PZT excitation to the 

reference unit-cell is calculated through FEA and is compared with SLDV measurements. The 

transmission spectrum is calculated as the ratio of average (i.e. root mean square) response over 

the entire unit-cell divided by the average response over the excitation area. 
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The entire phononic plate is simulated by ABAQUS CAE, with an in-plane mesh resolution of 0.39 

mm and using one layer of continuum shell elements SC8R with linear formulation, reduced 

integration and hourglass control. The PZT transducer is modeled using brick piezoelectric 

elements C3D8E, and NCE51 piezoceramic material properties provided by the manufacturer 

(NOLIAC® Kvistgård, Denmark) are used. Steady state harmonic response of the phononic plate 

is calculated up to 30 kHz and with a frequency resolution of 50 Hz.  

  
Figure A1. Transmission spectrum of guided waves from PZT transducer to the reference unit-cell, from 
both SLDV measurement and steady state harmonic FEA: (a) out-of-plane response and (b) in-plane 
response 

By comparison of the experimental and FEA transmission spectra, a good agreement in the 

bandgap frequency range of both the out-of-plane and in-plane responses is observed (Figure 

A1). However, one may realize that the experimental transmission loss starts at a slightly lower 

frequency than the simulation. This minor discrepancy can be explained by the overshooting 

visible in the water jetted unit-cells (see an example in the inset of Figure A1(a)) which reduces 

the effective stiffness of the unit-cell and leads to a small deviation of effective bandgap 

properties. As expected, the experimental transmission loss inside the bandgap is lower than FEA 

due to the presence of measurement noise, particularly for the in-plane response which has a 

higher noise level in the current experimental set-up.  
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Appendix B. Animated response of the mega unit-cell (SLDV versus FEA) 

(To be possibly made available online by the journal as an appendix with a direct link to 

animations. Otherwise, provided as supplementary materials.) 

The same finite element model developed in appendix A is further solved for modal analysis of 

the phononic plate. Mode shapes of the mega unit-cell are extracted and compared with the 

measured operational deflection shapes.  

References  

1. Deymier, P., Acoustic metamaterials and phononic crystals. 2011: Springer. 

2. Li, W., et al., Topology optimization of photonic and phononic crystals and metamaterials: a review. 
Advanced Theory and Simulations, 2019. 2(7): p. 1900017. 

3. Olsson Iii, R.H. and I.F. El-Kady, Microfabricated phononic crystal devices and applications. Measurement 
Science and Technology, 2009. 20(1): p. 012002. 

4. Krushynska, A.O., et al., Arbitrary-curved waveguiding and broadband attenuation in additively 
manufactured lattice phononic media. Materials & Design, 2021. 205: p. 109714. 

5. Astolfi, L., et al. Negative refraction in conventional and additively manufactured phononic crystals. in 2019 
IEEE International Ultrasonics Symposium (IUS). 2019. IEEE. 

6. El-Kady, I., R. Olsson, and J. Fleming, Phononic band-gap crystals for radio frequency communications. 
Applied Physics Letters, 2008. 92(23): p. 233504-233504-3. 

7. Lv, H., et al., Vibration energy harvesting using a phononic crystal with point defect states. APPLIED PHYSICS 
LETTERS, 2013. 102: p. 034103. 

8. Semperlotti, F. and H. Zhu, Achieving selective interrogation and sub-wavelength resolution in thin plates 
with embedded metamaterial acoustic lenses. Journal of Applied Physics, 2014. 116(5): p. 054906. 

9. Hussein, M., et al., Flow stabilization by subsurface phonons, in Proceedings of the Royal Society of London 
A: Mathematical, Physical and Engineering Sciences. 2015, The Royal Society. p. 20140928. 

10. Ciampa, F., A. Mankar, and A. Marini, Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave 
Sensing. Scientific Reports, 2017. 7(1): p. 14712. 

11. Miniaci, M., et al., Proof of concept for an ultrasensitive technique to detect and localize sources of elastic 
nonlinearity using phononic crystals. Physical review letters, 2017. 118(21): p. 214301. 

12. Gao, N. and K. Lu, An underwater metamaterial for broadband acoustic absorption at low frequency. 
Applied Acoustics, 2020. 169: p. 107500. 

13. Shan, S., F. Wen, and L. Cheng, Purified nonlinear guided waves through a metamaterial filter for inspection 
of material microstructural changes. Smart Materials and Structures, 2021. 30(9): p. 095017. 

14. Liao, G., et al., Broadband controllable acoustic focusing and asymmetric focusing by acoustic 
metamaterials. Smart Materials and Structures, 2021. 30(4): p. 045021. 

15. Hu, G., et al., Acoustic-Elastic Metamaterials and Phononic Crystals for Energy Harvesting: A Review. Smart 
Materials and Structures, 2021. 

16. Brunet, T., J. Leng, and O. Mondain-Monval, Soft acoustic metamaterials. Science, 2013. 342(6156): p. 323-
324. 

17. Liu, Z., et al., Locally resonant sonic materials. Science, 2000. 289(5485): p. 1734-1736. 



      20  

 

 

 

 

18. Mizukami, K., et al., Three-dimensional printing of locally resonant carbon-fiber composite metastructures 
for attenuation of broadband vibration. Composite Structures, 2021. 255: p. 112949. 

19. Hedayatrasa, S., K. Abhary, and M. Uddin. On topology optimization of acoustic metamaterial lattices for 
locally resonant bandgaps of flexural waves. in Proceedings of ACOUSTICS 2016: The Second Australasian 
Acoustical Societies Conference. 9-11 November 2016, Brisbane, Australia. 

20. Mehaney, A. and A.M. Ahmed, Locally Resonant Phononic Crystals at Low frequencies Based on Porous SiC 
Multilayer. Scientific Reports, 2019. 9(1): p. 14767. 

21. Yuan, L., et al., Study on Lamb Waves in a Composite Phononic Crystal Plate. Crystals, 2020. 10(9): p. 799. 

22. Liu, Z., H.-W. Dong, and G.-L. Yu, Topology optimization of periodic barriers for surface waves. Structural 
and Multidisciplinary Optimization, 2021. 63(1): p. 463-478. 

23. Hedayatrasa, S., et al., Introducing obliquely perforated phononic plates for enhanced bandgap efficiency. 
Materials, 2018. 11(8): p. 1309. 

24. Wang, Y.-F., et al., Tunable and Active Phononic Crystals and Metamaterials. Applied Mechanics Reviews, 
2020. 72(4). 

25. Hedayatrasa, S., et al., Optimal design of tunable phononic bandgap plates under equibiaxial stretch. Smart 
Materials and Structures, 2016. 25(5): p. 055025. 

26. Hedayati, R. and S. Lakshmanan, Pneumatically-Actuated Acoustic Metamaterials Based on Helmholtz 
Resonators. Materials, 2020. 13(6): p. 1456. 

27. Sigmund, O., Systematic Design of Metamaterials by Topology Optimization, in IUTAM Symposium on 
Modelling Nanomaterials and Nanosystems, R. Pyrz and J.C. Rauhe, Editors. 2009, Springer Netherlands. p. 
151-159. 

28. Lu, Y., et al., 3-D phononic crystals with ultra-wide band gaps. Scientific Reports, 2017. 7(1): p. 43407. 

29. Hedayatrasa, S., et al., Optimum design of phononic crystal perforated plate structures for widest bandgap 
of fundamental guided wave modes and maximized in-plane stiffness. Journal of the Mechanics and Physics 
of Solids, 2016. 89: p. 31-58. 

30. Hedayatrasa, S., et al., Maximizing bandgap width and in-plane stiffness of porous phononic plates for 
tailoring flexural guided waves: Topology optimization and experimental validation. Mechanics of 
Materials, 2017. 105: p. 188-203. 

31. Hedayatrasa, S., et al., Optimization and experimental validation of stiff porous phononic plates for widest 
complete bandgap of mixed fundamental guided wave modes. Mechanical Systems and Signal Processing, 
2018. 98: p. 786-801. 

32. D'Alessandro, L., et al., Shape optimization of solid–air porous phononic crystal slabs with widest full 3D 
bandgap for in-plane acoustic waves. Journal of Computational Physics, 2017. 344: p. 465-484. 

33. Bortot, E., O. Amir, and G. Shmuel, Topology optimization of dielectric elastomers for wide tunable band 
gaps. International Journal of Solids and Structures, 2018. 143: p. 262-273. 

34. Chen, J., B. Xia, and J. Liu, A sparse polynomial surrogate model for phononic crystals with uncertain 
parameters. Computer Methods in Applied Mechanics and Engineering, 2018. 339: p. 681-703. 

35. Boukadia, R.F., et al., A wave-based optimization framework for 1D and 2D periodic structures. Mechanical 
Systems and Signal Processing, 2020. 139: p. 106603. 

36. Liang, X. and J. Du, Design of phononic-like structures and band gap tuning by concurrent two-scale topology 
optimization. Structural and Multidisciplinary Optimization, 2020. 61(3): p. 943-962. 

37. Bilal, O.R. and M.I. Hussein, Ultrawide phononic band gap for combined in-plane and out-of-plane waves. 
Physical Review E, 2011. 84(6): p. 065701. 



      21  

 

 

 

 

38. Bilal, O.R., A. Foehr, and C. Daraio, Enhancement of deep-subwavelength band gaps in flat spiral-based 
phononic metamaterials using the trampoline phenomena. Journal of Applied Mechanics, 2020. 87(7). 

39. Palermo, A. and A. Marzani, A reduced Bloch operator finite element method for fast calculation of elastic 
complex band structures. International Journal of Solids and Structures, 2020. 191-192: p. 601-613. 

40. Zega, V., et al., Experimental proof of emergent subharmonic attenuation zones in a nonlinear locally 
resonant metamaterial. Scientific reports, 2020. 10(1): p. 1-11. 

41. Miranda Jr, E.J.P., et al., Wave attenuation in elastic metamaterial thick plates: Analytical, numerical and 
experimental investigations. International Journal of Solids and Structures, 2020. 204-205: p. 138-152. 

42. D'Alessandro, L., et al., Modeling and experimental verification of an ultra-wide bandgap in 3D phononic 
crystal. Applied Physics Letters, 2016. 109(22): p. 221907. 

43. Zouari, S., J. Brocail, and J.M. Génevaux, Flexural wave band gaps in metamaterial plates: A numerical and 
experimental study from infinite to finite models. Journal of Sound and Vibration, 2018. 435: p. 246-263. 

44. Meng, H., et al., 3D rainbow phononic crystals for extended vibration attenuation bands. Scientific Reports, 
2020. 10(1): p. 18989. 

45. Gao, N., et al., Elastic wave modulation of double-leaf ABH beam embedded mass oscillator. Applied 
Acoustics, 2021. 173: p. 107694. 

46. Zhou, C., et al., Numerical and experimental investigation on broadband wave propagation features in 
perforated plates. Mechanical Systems and Signal Processing, 2016. 75: p. 556-575. 

47. Miniaci, M., et al., Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide. 
Frontiers in Materials, 2018. 5(8). 

48. Wang, T.-T., et al., Collective resonances of a chain of coupled phononic microresonators. Physical Review 
Applied, 2020. 13(1): p. 014022. 

49. Kherraz, N., et al., Experimental full wavefield reconstruction and band diagram analysis in a single-phase 
phononic plate with internal resonators. Journal of Sound and Vibration, 2021. 503: p. 116098. 

50. Celli, P. and S. Gonella, Laser-enabled experimental wavefield reconstruction in two-dimensional phononic 
crystals. Journal of Sound and Vibration, 2014. 333(1): p. 114-123. 

51. Celli, P. and S. Gonella, Manipulating waves with LEGO® bricks: A versatile experimental platform for 
metamaterial architectures. Applied Physics Letters, 2015. 107(8): p. 081901. 

52. Andreassen, E., K. Manktelow, and M. Ruzzene, Directional bending wave propagation in periodically 
perforated plates. Journal of Sound and Vibration, 2015. 335: p. 187-203. 

53. Miniaci, M., et al., Experimental observation of topologically protected helical edge modes in patterned 
elastic plates. Physical Review X, 2018. 8(3): p. 031074. 

54. Maurin, F., et al., Probability that a band-gap extremum is located on the irreducible Brillouin-zone contour 
for the 17 different plane crystallographic lattices. International Journal of Solids and Structures, 2018. 135: 
p. 26-36. 

55. Jiang, S., H. Hu, and V. Laude, Ultra‐Wide Band Gap in Two‐Dimensional Phononic Crystal with Combined 

Convex and Concave Holes. physica status solidi (RRL)–Rapid Research Letters, 2018. 12(2): p. 1700317. 

56. Giurgiutiu, V. Lamb wave generation with piezoelectric wafer active sensors for structural health 
monitoring. in Smart Structures and Materials 2003: Smart Structures and Integrated Systems. 2003. 
International Society for Optics and Photonics. 

57. Wang, S., et al., Exploring cutting front profile in abrasive water jet machining of aluminum alloys. The 
International Journal of Advanced Manufacturing Technology, 2021. 112(3): p. 845-851. 



      22  

 

 

 

 

58. Bañon, F., et al., A Review on the Abrasive Water-Jet Machining of Metal–Carbon Fiber Hybrid Materials. 
Metals, 2021. 11(1): p. 164. 

59. Chen, J.-J., B. Bonello, and Z.-L. Hou, Plate-mode waves in phononic crystal thin slabs: mode conversion. 
Physical Review E, 2008. 78(3): p. 036609. 

 


