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Abstract

Edit rule implication is an essential subtask when repairing data inconsistencies

against a set of edit rules. In this paper, novel techniques to enhance the per-

formance of this subtask are studied. Our work includes several contributions.

First, we draw attention to the case of nominal edit rules in particular. We

point out that in many cases, starting with a set of edit rules that is as small

as possible is important to improve the performance. This could be achieved

by folding edit rules together. Besides that, an enhanced nominal edit rule im-

plication algorithm is proposed, exploiting the properties of nominal edit rules.

Second, we introduce ordinal edit rules as a generalization of nominal edit rules,

used to capture data inconsistencies for data measured on an ordinal scale and

we propose an ordinal edit rule implication algorithm. Evaluation of our meth-

ods shows promising results for both implication algorithms, with the ordinal

algorithm as best performing in general. On average, our techniques improve

the state-of-the-art algorithm for edit rule implication with more than 50%.
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1. Introduction

The last decades, data quality is a topic that is gaining importance as it

is an essential part in the process of data management and is especially rel-
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evant in the case of large, heterogeneous data volumes. Although, there are

many facets related to this topic, such as completeness, accuracy and currency,

one of the main problems is to safeguard consistency of data [3, 4, 9, 21, 42].

In this paper, we will focus on a rule-based approach for consistency main-

tenance. Many rule-based mechanisms have been proposed in the past, such

as functional dependencies [1, 6], conditional functional dependencies [7, 22],

inclusion dependencies [6], denial constraints [15] and pattern functional de-

pendencies [40]. Although these types of constraints tend to capture most of

the consistency problems due to their extensive expressiveness, studying and

using them in a practical fashion can become a task of high complexity, espe-

cially when it comes to repairing violations. A first algorithm that is studied

to resolve this task is the Chase algorithm [27], but a particular problem is

that its search space rapidly tends to increase when used in combination with

high-expressive constraints and one has to rely on heuristics. A second tool is

HoloClean [43], which features probabilistic models to find repairs and training

such a model can also become intensive. With these issues in mind, the focus

here is on more simple types of constraints, denoted as tuple-level constraints.

Although they are less expressive than the earlier mentioned types, a recent

study argues that a large portion of inconsistencies in real-life data sets can be

captured by them [41].

A leading contribution to tuple-level constraints has been made by Fellegi

and Holt, who introduce the concept of edit rules [23]. Informally, edit rules

(edits in short) model in a concise way all data objects which are not permitted

to exist in a dataset (e.g. according to the Belgian Constitution, people under

18 years old cannot be married). Within the framework of Fellegi and Holt,

the properties of edit rules can be exploited easily to repair violations while

minimizing a linear repair cost function [8, 19, 23, 38, 39]. In other words, one

can easily identify a minimal set of attributes in an inconsistent data object

for which the values have to be changed in order to make it consistent. This

statement, however, only stands if sufficient information is captured by the given

set of edit rules to which the object is inconsistent and no additional implicit
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Figure 1: A simple example constraint that cannot be written as a linear edit rule. The red

area models non-permitted values.

information can be derived. Indeed, often it is possible that combinations of edit

rules account for implication of new edit rules. These edit rules are indispensable

because they reveal extra information that is useful for finding a minimal set

of attributes to repair. Although there are many papers that study implication

algorithms [8, 19, 25, 26, 32, 33, 34, 46, 47, 48], it still remains an exponential

problem as it relies on combinations of edit rules. Because of this reason, edit

rule implication can be enhanced further to make it more practically useful,

especially for large problems.

Furthermore, edit rules are initially introduced for data measured on a nom-

inal scale, in which case they are usually represented as a cross-product of

subsets of the attribute domains [23]. For data that are measured beyond the

nominal scale, edit rules in the form of linear (in)equalities have been studied

only [19, 26]. Many concepts introduced for nominal edits can then be trans-

ferred to linear edit rules quite straightforwardly. Edit rule implication is less

obvious to transfer, but comes down to variable substitution in the case of equal-

ity and Fourier-Motzkin elimination in the case of inequality [19]. The concept

of linear edit rules however comes with some issues. A first problem is that im-

plication becomes complicated when a mixture of nominal and linear edit rules

is used [19]. In practice, not all necessary edit rules are implied and one resorts

to branch-and-bound methods that rely on ‘local’ edit rule implication for each

erroneous data object independently. These methods can however have scaling
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issues when the number of edits or errors within one data object gets large. A

second problem (actually, a problem by design) is that linear edit rules rely on

the prerequisite that (non)-permitted combinations of values are expressed by

means of a linear connection. This hinges on two implicit assumptions, the first

being that data are additive and the second being that interactions between

variables are linear. We argue that there are simple, yet non-linear connections

that are impossible to model by this constraint. For example, the constraint on

two domains D1 and D2 as shown in Figure 1 cannot be written as a linear edit.

In order to further improve edit rule implication and help to solve the above

mentioned problems, the following contributions are provided.

1. The properties of nominal edit rules are exploited further to enhance the

edit rule implication algorithm with more efficient pruning strategies.

2. Edit rules for ordered data are investigated and a novel ordinal edit rule

implication algorithm is proposed and shown to be more efficient than the

existing algorithm for nominal data.

The remainder of the paper is structured as follows. In Section 2, we recall

the concepts related to the Fellegi-Holt framework. After this, in Section 3,

we study near-optimal representations of tuple-level constraints by sets of edit

rules to enhance the performance of edit rule implication. An improved impli-

cation algorithm, relying on the properties of nominal edit rules, is proposed

in Section 4. Then, in Section 5, ordinal edit rules are defined and an ordinal

implication algorithm is proposed. In Section 6, an overview is given of the

state-of-the-art literature related to the topics studied in this paper. We set

up several experiments to evaluate and validate the practicality of our contri-

butions in Section 7 and finally, in Section 8, we conclude our work and give a

brief overview of future research directions.

2. The Fellegi-Holt framework

Before the main goal of this paper is addressed, some theoretical and prac-

tical preliminaries concerning the Fellegi-Holt framework [23] are given.
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Definition 1 (Nominal edit rule). A nominal edit rule Ek (where k is an index

to identify the edit) over a set of m attributes1 R = {1, . . . ,m}, with respective

finite domains D1, . . . , Dm, covers a subset P (Ek) of the universe D1×. . .×Dm,

which is defined by

P (Ek) =

m∏
j=1

Ak
j (1)

with Ak
j ⊆ Dj for each attribute j ∈ {1, . . . ,m}.

Semantically, an edit rule defines a subset of the universe such that elements

of this subset are forbidden to exist in a consistent data set. Therefore, notice

that edit rules belong to the category of tuple-level constraints. Formally, this

means that, if a data object o = (v1, . . . , vm) ∈ P (Ek), with vj ∈ Dj for each

j ∈ {1, . . . ,m}, then edit Ek is failed by o and o is inconsistent according to

this edit. This is denoted by o 6|= Ek. Otherwise, o satisfies rule Ek, which is

denoted by o |= Ek. It is said that an attribute j enters or is involved in an edit

rule Ek if Ak
j ⊂ Dj , which implies that violation of Ek may depend on j. The

set of attributes entering in Ek is denoted by I(Ek). If an edit rule involves

a single attribute, it represents a constraint on the domain of that attribute:

some values in the domain are then a priori not permitted. If there exists an

attribute j in Ek for which Ak
j = ∅, then Ek is a tautology because it is always

satisfied.

In Table 1, an example of six edit rules over four attributes, based on clinical

trial design data2, is given. The domains of the attributes are: Darms = {1, 2, 3},

Dparallel = {No, Yes}, Dcrossover = {No, Yes} and Dmodel = {S, P, X}. For E1,

we see that the involved attributes are given by the set I(E1) = {arms, model}

and the edit states that value 1 of attribute arms is not allowed to appear

together with values P or X of attribute model, regardless of the values of the

other two attributes.

1For the sake of simplicity of notation, each attribute is represented by a unique index.
2Attribute semantics: arms: number of participant groups, parallel: all arms receive one

separate treatment, crossover: all arms receive all treatments, model: S(ingle) treatment,

P(arallel), X (crossover).
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Table 1: A four attribute, six edit example based on clinical trial design data.

arms parallel crossover model

E1 {1} Dparallel Dcrossover {P, X}

E2 Darms {Yes} Dcrossover {S, X}

E3 Darms {No} Dcrossover {P}

E4 Darms Dparallel {No} {X}

E5 Darms Dparallel {Yes} {S, P}

E6 {2, 3} Dparallel Dcrossover {S}

A fundamental problem is to identify, for each failed data object o in a

data set, a solution S ⊆ R such that, after adapting the values of S in o,

the new object o′ does not fail any edits. A solution is called minimal if it

minimizes a linear repair cost function. Although there are many possible cost

functions, we restrict ourselves to constant costs of 1 to repair each attribute.

The resulting data object o′ is called a repair. For example, data object o =

(2, Yes, Yes, P) fails edit E5 given in Table 1. When assuming the above-

mentioned cost function, a minimal solution to repair o is S = {crossover}

because a possible repair is o′ = (2, Yes, No, P).

In order to easily find solutions, Fellegi and Holt introduced the concept of

implied edit rules. For these edits, they proved that, when added to the set

of explicit (or given) edits, all minimal set covers of failing edits (where a set

covers a failing edit if at least one involved attribute of that edit is in the set) are

also minimal solutions [23]. In other words, implied edit rules do not capture

new inconsistencies, but they are important to generate when one is interested

in correctly localizing the attributes S that are in error in a data object o by

means of the set cover method. In the remainder we will call sets of edit rules

meeting this requirement, sufficient sets. Given a set of edits E , it is possible to

generate implied edit rules from this set by using the following lemma.
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Lemma 1 (Implied edits). For a given contributing set of edit rules Ec ⊆ E

over R = {1, . . . ,m} and a generating attribute (or generator) g ∈ R, the edit

rule E∗ for which

A∗j =
⋂

Ek∈Ec

Ak
j , ∀j ∈ R, j 6= g

A∗g =
⋃

Ek∈Ec

Ak
g

is called an implied edit if E∗ is not a tautology.

Note that a contributing set consisting of only one edit rule leads to the

degenerate case where this edit implies itself. Therefore, it is assumed in the

remainder that each contributing set consists of at least two edit rules. Besides

that, we will refer to the construction of an implied edit rule by means of a

contributing set Ec and generator g with FH(g, Ec) in short.

One way of generating all implied edit rules is by repeatedly applying Lemma 1.

However, because this task is of exponential complexity, more efficient ways to

generate sufficient sets are needed. The best known state-of-the-art algorithm

for generating a sufficient set of edit rules is the Field Code Forest (FCF) al-

gorithm3 [8, 25]. Two steps are repeated during the course of this algorithm,

which are (1) the selection of a generator g dictated by an FCF data structure

formed by all attribute combinations and (2) the generation of implied edit rules

by means of a generator g, called edit (rule) implication in the remainder. To

reduce the number of implied edit rules, the algorithm should only keep track

of necessary edit rules (and not necessarily all implied edits). These necessary

edit rules have two important properties, as they are: (1) (essentially) new and

(2) non-redundant (NNR edit rules in short) and the fact that these conditions

are necessary and sufficient is proven extensively in [8, 19, 23, 25].

Essentially new edit rules are defined as follows.

Definition 2 (Essentially new edits). An implied edit rule E∗ is called essen-

tially new iff the generator g enters in each of the edit rules in the contributing

3The correctness of this algorithm is extensively proven in [8]
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set (i.e. g ∈ I(Ek), ∀Ek ∈ Ec), but does not enter in E∗ (i.e. g /∈ I(E∗)).

Besides that, redundant edit rules are defined as follows.

Definition 3 (Redundant edits). An edit rule Er is redundant to an edit rule

Ed iff P (Er) ⊆ P (Ed). It is said that Ed dominates Er.

An example of an essentially new edit rule is E∗ = {1}×{Yes}×Dcrossover×

Dmodel, which can be implied by using {E1, E2} as contributing set and attribute

model as generator. The edit rule {1} × {Yes} × {No} ×Dmodel is redundant to

E∗.

In this paper, an important issue with the FCF algorithm is addressed, which

is the lack of efficient strategy for edit rule implication given a generator g and

contributing set Ec. A first optimization is to reduce the number of implied

edit rules and to generate only NNR edit rules [19, 25]. A consequence of this

reduction and Definition 2 is that only combinations of edits in which attribute

g enters should be tested to see if they lead to an essentially new edit rule. In the

remainder of this paper, we will denote these edit rules as candidate contributors

for generator g. One can verify that, if there are ng candidate contributors for

generator g, an upper bound on the number of combinations to test is

ng∑
i=2

(
ng
i

)
=

ng∑
i=0

(
ng
i

)
−
(
ng
1

)
−
(
ng
0

)
= 2ng − ng − 1 (2)

as no combinations of 0- and 1-sets will lead to an NNR edit rule. Because this

number still grows exponentially in terms of ng, it is important to reduce this

number further in any possible way.

3. Explicit set representations

The representation of tuple-level constraints by means of an explicit set of

edit rules is not necessarily unique. Therefore, we study the issues related to

this observation in 3.1 and we provide techniques in 3.2 and 3.3 to reduce the

number of edit rules in an explicit set in a near-optimal way, in order to enhance

edit rule implication.
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3.1. Problem statement

A logical first step when addressing the issues of the FCF algorithm is to

investigate the explicit set of edit rules that is passed as input parameter. This

explicit set defines all value combinations that are forbidden to appear within

a consistent data set. A problem is that the representation of these forbidden

value combinations by means of an explicit set of edits is not necessarily unique.

As an example, it is straightforward to see that any set of forbidden value

combinations can be represented by a set, in which each edit rule covers only

one element of the forbidden subset. This implies that, given such an explicit

set, each attribute will enter in each edit rule (with a singleton value set) and,

when one seeks to construct all NNR edits for a given generator in a naive way,

all combinations of all edits should be tested for contributing to the generation

of an NNR edit rule. According to Eq. 2, this could increase the number of

combinations to test enormously. Considering the example given in Table 1,

the original explicit set covers 31 unique forbidden elements in the universe,

which could possibly result in 31 single-element edit rules, all consisting of four

singletons (one for each attribute). This is an increase of 25 edit rules and 112

entering attributes in total in comparison to the given explicit set.

This simple example shows that considering the most optimal representa-

tion of forbidden value combinations will improve the performance of the FCF

algorithm undoubtly. According to Eq. 2, the reference most optimal indicates

a representation with as few edits and as few entering attributes as possible.

One might think that defining an optimal explicit set is the responsibility of the

subject matter expert, but often it is the case that such an expert is not involved

(e.g. when edits are automatically discovered [5, 41]). Besides that, constructing

such an optimal representation is an NP-hard optimization problem. This is be-

cause solving this problem can be tackled as a variation of solving the NP-hard

problem of deciding the edge clique cover number in graph theory [24, 28]. To

overcome this problem, a rather simple, heuristic approach, which aims to find

a representation close to the optimal one, is proposed in 3.2 and 3.3.
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3.2. Edit rule folding

As stated in 3.1, decreasing the total number of edits and entering attributes

will positively impact the performance of edit rule implication and as a result,

of the FCF algorithm. A possible way to achieve this is by folding edits in a

given explicit set together. Before investigating the properties of edit folding,

the construction procedure of a folded edit rule Ef from a set of edits Ef is

given by the following lemma.

Lemma 2 (Folded edits). For a given set of edits Ef over R = {1, . . . ,m} and

an attribute c ∈ R, the edit rule Ef for which

Af
j = Ak

j ∀j ∈ R, j 6= c ∧ ∀Ek ∈ Ef

Af
c =

⋃
Ek∈Ef

Ak
c

is called a folded edit rule.

Lemma 2 states that a set of edit rules over m attributes can be folded

if and only if these edits have exactly the same value sets for at least m − 1

attributes. Ef is called the folding set and c is called the folding attribute needed

to construct Ef . For example, edits E61 = {2, 3}×{No}×Dcrossover×{S} and

E62 = {2, 3} × {Yes} ×Dcrossover × {S} can be used as folding set to construct

edit E6 defined in Table 1 by using folding attribute parallel.

To investigate the profit of substituting a folding set with the folded edit,

suppose a folding set Ef of edit rules over m attributes is given with attributes

{j1, . . . , ji}, i ≤ m entering in each edit. According to Lemma 2, the folded edit

consists of at most i (resp. at least i − 1) entering attributes, which implies a

reduction of |Ef | − 1 edits and i ∗ (|Ef | − 1) (resp. i ∗ (|Ef | − 1) − 1) entering

attributes. Besides that, using folded edits instead of their folding sets as input

to the FCF algorithm will still result in a sufficient set. The reason for this is that

a folded edit dominates all edits in the folding set from which it is constructed

and redundant edits can be discarded during generation [8, 25]. Based on the

aforementioned findings, a heuristic algorithm that creates a near-optimal folded

set of edits from a given explicit set is proposed in 3.3.
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3.3. A heuristic explicit set folding algorithm

In the following, a non-overlapping, heuristic set folding algorithm is de-

scribed, of which the pseudocode is given in Algorithm 1. By non-overlapping,

it is meant that, when folding the edits, no additional duplicate elements in the

entire forbidden subset are created other than the ones that initially exist. Given

the edits in Table 1, an example of a duplicate element is (1, No, No, P), be-

cause it is covered by both E1 and E3. The reason to consider a non-overlapping

set folding algorithm is to keep the procedure as simple as possible.

Algorithm 1 A heuristic explicit set folding algorithm.

1: function foldExplicitSet(E)

2: totalEntAttr ←
∑

Ek∈E |I(Ek)|

3: maxDiff ← 0, bestSet ← null

4: for j ∈ {1, . . . ,m} do

5: E ′ ← foldEdits(E , j)

6: newTotalEntAttr ←
∑

Ek∈E′ |I(Ek)|

7: newDiff ← totalEntAttr − newTotalEntAttr

8: if newDiff > maxDiff then

9: maxDiff ← newDiff

10: bestSet ← E ′

11: if maxDiff = 0 then

12: return E

13: else

14: return foldExplicitSet(bestSet)

The algorithm takes as input parameter a predefined explicit set of edit rules

E over m attributes R = {1, . . . ,m}. It searches in each (recursive) step for a

local optimum as it tries to identify the folding attribute that maximizes the

profit in terms of total number of entering attributes within the edits. This is

done by applying the following procedure recursively. First, the total number

of entering attributes over all edits in E is counted (line 2) and the optimization

variable maxDiff is initialized (line 3). Then, each attribute j is tested as
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folding attribute and, starting from the current set of edits E , as many folded

edits as possible are constructed by using this attribute (line 5). This is done

by the foldEdits procedure which applies the construction procedure proposed

in Lemma 2 for each possible folding set resulting in a folded edit. The edits

in E used in the folding sets are replaced by their folded edit and the resulting

set is denoted by E ′. The profit of using attribute j as folding attribute is

calculated as the difference between the previous number of entering attributes

(in E) and the new number of entering attributes (in E ′) (line 6-7). If the profit

exceeds the current most optimal profit, E ′ is kept as new bestSet (line 8-10).

Because it is possible to fold multiple times on the same folding attribute, the

only condition that leads to completing the algorithm is when no additional

profit can be reached (maxDiff = 0, line 11) when using any folding attribute.

To end this section, a complexity analysis of the algorithm is presented.

Suppose therefore that an explicit set of n edits over m attributes is given as

input parameter to the algorithm. In a worst case scenario, the foldExplicitSet

procedure is called n times and in each call, only two edits are folded, such that

the new best set of edits contains one edit less than the previous set. During

each call, m attributes are tested as folding attribute, which are used during

the foldEdits procedure, for which an optimal implementation has linear time

complexity in function of n. Therefore, the worst case theoretical complexity

of the entire algorithm is O(mn2). In practice, we can expect the performance

to be much better as often, the foldEdits procedure executed with the best

folding attribute (in terms of profit) potentially uses more than one folding set,

each containing more than two edits. Besides that, it is not uncommon that

there are edits in the given explicit set that cannot be combined with any other

edit. Finally, the number of edits n in the explicit set decreases with each call,

particularly because of the edit folding. These reasons potentially ensure that

the stop condition will be reached sooner than only after n calls. A thorough

analysis of the practical performance of this algorithm is given in Section 7.
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4. Nominal edit rule implication

In this section, we study the efficient retrieval of (potential) NNR edit rules

by means of a given generator. Indeed, as stated in Section 2, it is unnecessary

that combinations of edit rules that will never lead to an NNR edit rule are

tested, but the question remains how one can efficiently detect those combina-

tions. Therefore, three rules that can be used to prune combinations of edit

rules that certainly will not lead to the generation of an NNR edit, are pro-

posed in 4.1. In 4.2, an efficient nominal edit rule implication algorithm, which

exploits the proposed pruning rules, is proposed.

4.1. Pruning rules

A first optimization to reduce the number of combinations to test during

edit rule implication is to test only combinations of candidate contributors for

generator g (Section 2). Besides that, the following three additional properties

of NNR edit rules and their contributing sets can be used to prune combinations

during edit rule implication.

Proposition 1 (Pruning rule 1). Any superset Ec′ of a contributing set Ec that

leads to the generation of a tautology E∗ = ∅ by means of a generator g, will

also lead to the generation of a tautology E∗∗ by means of g.

Proof. Because Ec leads to the generation of a tautology E∗ = ∅ by means of

generator g, the value set of at least one of the attributes j ∈ R \ g is empty

(A∗j = ∅). According to Lemma 1, if one adds any additional edit rule Ek to

Ec in order to generate edit rule E∗∗ by means of g, the resulting value set A∗∗j

will remain empty, because A∗j ∩Ak
j = ∅.

Proposition 1 states that, if a combination is found leading to a tautology,

none of its supersets will ever lead to an NNR edit rule, reducing the total

number of combinations to test.

Proposition 2 (Pruning rule 2). Any superset Ec′ of a contributing set Ec that

leads to the generation of an essentially new edit rule E∗ by means of a generator
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g, will also lead to the generation of E∗ or an edit rule E∗∗ that is redundant

to E∗ by means of g.

Proof. This proposition is stated in [23], pg. 29 and in [25], pg. 746

Proposition 2 states that, if a combination is found leading to an essentially

new edit rule, none of its supersets will ever lead to an NNR edit rule that is

previously not found, again reducing the total number of combinations to test.

In other words, a contributing set leading to a potential NNR edit rule, should

be minimal in the sense that it should contain as few edit rules as possible. A

consequence of this proposition is stated in the following.

Corollary 1 (Pruning rule 3). Each edit rule Ek in a contributing set Ec that

leads to the generation of an essentially new edit rule E∗ by means of generator

g, should have at least one value v ∈ Dg in Ak
g that is not included in any of the

Ak′

g of each Ek′ ∈ Ec \ Ek. Otherwise, E∗ is redundant to the essentially new

edit rule E∗∗ that can be generated by means of contributing set Ec′ = Ec \ E∗

and generator g.

Corollary 1 states that, when extending a certain combination of edit rules

with an edit rule Ek, Ak
g should contain at least one value of Dg that is not

included in any of the value sets of g of the other edit rules in this combination.

Otherwise, any contributing set Ec containing the extended combination and

leading to an essentially new edit rule E∗ will not be minimal, as Ek can be

removed from Ec. All edit rules that have this property in a certain set of edit

rules E will be called contributing edits in E in the remainder.

4.2. Improving nominal edit rule implication

After introducing the pruning rules in 4.1, it is possible to propose an im-

proved implication algorithm for the retrieval of (potential) NNR edit rules by

means of generator g, exploiting these rules. Important to notice is that it is

a breadth-first algorithm, meaning that it starts with maintaining singletons

of edits, and keeps extending combinations until one of the stop conditions is

14



reached. The reason for this is that the pruning rules all bear the property

that once a combination is found that will never lead to an NNR edit rule, all

supersets should not be tested anymore, so we can prune at that point. The

pseudocode of this breadth-first algorithm is given in Algorithm 2.

As input parameters, the algorithm expects any set of edit rules E and

a generator g used to generate all (potential) NNR edit rules from. These

generated edits will be added to the result set ENNR, initialized on line 2. Then,

on line 3, only the candidate contributors for generator g are selected from E ,

as only these edit rules can be used to generate an NNR edit rule by means of

generator g. On line 4-5, it is checked if every value of Dg appears in at least

one edit rule in Eg, otherwise, it is not possible to generate an NNR edit rule

and the algorithm will return an empty result set. After the initial checks are

done, the algorithm starts creating combinations of edit rules to test over |Dg|

different iterations. Each iteration i is responsible for a certain value vi ∈ Dg,

in the sense that each edit rule Ek with vi ∈ Ak
g is added to the combinations

that remain after completing iteration i− 1. Later, we will prove that there is

an optimal order in which the values of Dg should be visited, but for now, we

assume that this order is random. The combinations in the first iteration L1 are

singletons, one for each edit rule Ek with v1 ∈ Ak
g (line 6). For all subsequent

iterations, the edits Ek ∈ Evi with vi ∈ Ak
g , are selected from Eg (line 8) and each

of these edit rules is added separately to each combination Eci−1 of the previous

iteration Li−1 (line 10-25), but only if all edits in this extended combination Eci
remain to be contributing edits in Eci , according to pruning rule 3 (line 16-17).

For all newly formed combinations it is tested by applying Lemma 1 if they

contribute to the generation of (1) a tautology (line 20), (2) an essentially new

edit rule (line 22) or (3) a non-essentially new, implied edit rule (otherwise) by

means of generator g. In the second case, the generated edit rule E∗∗ is added

to the result set (line 23). Because of pruning rule 1 and 2, only in the third

case, the combination is added to Li (line 25). However, if a combination of

the previous iteration Li−1 resulted already in an implied edit rule E∗ with

vi ∈ A∗g, it is also added to Li (line 12-14). Indeed, those combinations already
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Algorithm 2 A nominal, breadth-first edit rule implication algorithm.

1: function getNNREditRules(E , g)

2: ENNR ← ∅

3: Eg ← [Ek | Ek ∈ E ∧ g ∈ I(Ek)]

4: if
⋃

Ek∈Eg
Ak

g 6= Dg then

5: return ∅

6: L1 ← {{Ek}|Ek ∈ Eg ∧ v1 ∈ Ak
g}

7: for i← 2 to |Dg| do

8: Evi ← {Ek|Ek ∈ Eg ∧ vi ∈ Ak
g}

9: Li ← {}

10: for all Eci−1 ∈ Li−1 do

11: E∗ ← FH(g, Eci−1)

12: if vi ∈ A∗g then

13: Li ← Li ∪ {Eci−1
}

14: continue

15: for all Ek ∈ Evi do

16: if Ak
g ⊆ A∗g ∨A∗g ⊆ Ak

g then

17: continue

18: Eci ← Eci−1 ∪ {Ek}

19: E∗∗ ← FH(g, Eci)

20: if E∗∗ = ∅ then

21: continue

22: if g /∈ I(E∗∗) then

23: ENNR ← ENNR ∪ {E∗∗}

24: else

25: Li ← Li ∪ {Eci}

26: return ENNR
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Figure 2: Visual representation of running the nominal implication algorithm given the edits

from Table 1 as E and attribute model as g.

contain vi and therefore, they can be passed automatically to the next iteration

without the need for being extended. The algorithm will terminate after each

value v ∈ Dg is investigated and returns ENNR upon completion.

To illustrate the execution of the algorithm, suppose that the edit rules,

given in Table 1 are given as input E to the algorithm, together with generator

g = model. A visual representation of the execution is given in Figure 2, in which

each edit rule Ek is denoted by its index k. After the initial checks, all edit rules

in E remain in Eg, because attribute model is involved in each of the edit rules in

E and all values v ∈ Dmodel appear at least once. Suppose v1 = P, which implies

that L1 consists of all singletons of the edits Ek ∈ Eg with P ∈ Ak
model, i.e.

L1 = {{E1}, {E3}, {E5}}. After this, each edit rule Ek with v2 = S ∈ Ak
model is

added to the singletons of L1 to create the combinations listed under L2?. The

combinations resulting in an essentially new edit rule E∗∗ (e.g. {E1, E2}) are

colored green and added to ENNR and the combinations resulting in a tautology

(e.g. {E1, E6}) or containing a non-contributing edit (e.g. {E3, E5}) are colored

red. All other combinations generate a non-essentially new, implied edit rule

and are added to L2. Important to notice is that E5 is passed automatically

to L2 without being extended because {P, S} ⊆ A5
model. Finally, all edit rules

17



Ek with v3 = X ∈ Ak
model are added to the remaining combinations and tested

correspondingly. A possible optimization that is previously not mentioned is

to keep track of all combinations that are already pruned, at the expense of

increasing memory requirements. Indeed, as can be seen in the example given in

Figure 2, the combination {E1, E3, E6} should actually not be tested anymore,

because it is already known that one of its subsets ({E1, E6}) will never lead

to the generation of an NNR edit rule. All combinations that could be pruned

because of this reason are therefore presented by a red dashed line.

Now, it is possible to assert the following proposition.

Proposition 3. Algorithm 2 generates all (potential) NNR edit rules given a

set of nominal edit rules E and generator g.

Proof. We restrict ourselves to a sketch of the proof. During the course of

Algorithm 2, all generated essentially new edit rules are adopted in the result

set, once encountered. Thereby, each combination containing at least one edit

rule Ek with v ∈ Ak
g , for each value v ∈ Dg, is tested, as dictated by Definition 2,

unless the combination does not (and will never) generate a (potential) NNR

edit rule according to the pruning rules proposed in 4.1.

In the previous, we mentioned that Algorithm 2 generates all potential NNR

edits. Indeed, it is sure that all essentially new edits are generated, but it is still

possible that some edits will be redundant to others generated by Algorithm 2 or

in another step of the FCF algorithm. To resolve this, it is possible to test each

generated edit for being redundant to all other edits each time the implication

algorithm terminates and treat redundant edits properly as described in [8].

To finish this section, the complexity of the algorithm is analyzed. A worst-

case scenario is one in which (1) for each candidate contributor Ek, |Ak
g | = 1,

(2) for each v ∈ Dg, n edits exist with v in their value set of g, and (3) no

combinations can be pruned. In this case,

|Dg|∑
i=2

ni =

|Dg|∑
i=0

ni − n1 − n0 =
n|Dg|+1 − 1

n− 1
− n− 1 (3)

18



combinations have to be tested by Algorithm 2, according to the closed-form

formula for the geometric series. Although this formula is still exponential in

terms of |Dg|, it will always be lower than the upper bound given in Eq. 2,

considering there are n ∗ |Dg| candidate contributors for g. Further, if ni edit

rules exist with vi in their value set of g with ni not necessarily the same for each

value vi ∈ Dg and the other assumptions remain, the number of combinations

to test in a worst-case scenario equals

|Dg|∑
i=2

i∏
j=1

nj = (n1 ∗ n2) + (n1 ∗ n2 ∗ n3) + . . .+ (n1 ∗ . . . ∗ n|Dg|). (4)

To minimize the result of Eq. 4, one can sort the values {n1, . . . , n|Dg|} in

increasing order, as stated by the following proposition.

Proposition 4. Given a set of strict positive integers {n1, . . . , n|Dg|}. The

result of Eq. 4 will be minimal if the numbers are passed in increasing order.

Proof. Suppose for some k and l, with k < l ≤ |Dg| that nk > nl. Now, Eq. 4

can be written as

S =

k−1∑
i=2

i∏
j=1

nj +

l−1∑
i=k

i∏
j=1

nj +

|Dg|∑
i=l

i∏
j=1

nj = T1 + nk ∗ T2 + nk ∗ nl ∗ T3

If we swap nk and nl, the sum becomes S′ = T1 + nl ∗ T2 + nk ∗ nl ∗ T3. This

gives S′−S = (nl − nk) ∗ T2 < 0 because nl < nk, which implies that swapping

a larger positive integer to a later position in the sequence, will decrease S.

Therefore, S will be minimal if the numbers are passed in increasing order.

Proposition 4 states that it is good practice to start with investigating the

value of Dg that appears least in the value sets of the generator of the candidate

contributors, and continue increasingly. A more empirical evaluation of the

algorithm and the proposed pruning rules is presented in Section 7.

5. Edit rules for ordinal data

In this section, edit rules for ordinal data are introduced and defined formally.

In order to do this, we propose concepts, notations and definitions related to
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intervals on totally ordered sets in 5.1. Next, ordinal edit rules are defined in 5.2

and in 5.3, an algorithm for ordinal edit rule implication is proposed.

5.1. Intervals on totally ordered sets

As introduced in the following, the notion of ordinal edit rules is built on

the concept of intervals [10, 45]. In mathematics, intervals are usually defined

as convex subsets of the real numbers, but here, we want to use the concept

of an interval on countable sets as well. Therefore, we provide some notations

and definitions of this more general notion of intervals. We consider attributes

R = {1, . . . ,m} where the domain Dj of attribute j is equipped with a total

order≤j . In case j is understood, we denote≤j simply by≤. The set D together

with the total order ≤ is often denoted by (D,≤) and is called a chain [30].

Definition 4 (Interval on a chain). An interval I = [`, u] on a chain (D,≤) is

a subset of D determined by two values ` ∈ D (the lower bound) and u ∈ D (the

upper bound) such that ` ≤ u and is defined by I = {v | v ∈ D ∧ ` ≤ v ≤ u}.

For the sake of simplifying our notations, we assume that all Dj are finite.

This assumption allows us to consider closed intervals only and erases the ne-

cessity to introduce the strict variant of the order ≤. Moreover, if Dj is finite,

it always contains unique minimal and maximal elements, which we denote re-

spectively by vj and vj . We now introduce some convenient definitions.

Definition 5 (Interval equivalence). Two closed intervals I ′ = [`′, u′] and I ′′ =

[`′′, u′′] on a chain (D,≤) are called left-equivalent (denoted by I ′ ≡` I
′′) if

`′ = `′′ and right-equivalent (denoted by I ′ ≡u I
′′) if u′ = u′′.

Definition 6 (Interval connection). Two closed intervals I ′ = [`′, u′] and I ′′ =

[`′′, u′′] on a chain (D,≤) are connected (denoted by I ′ ↔ I ′′) if the union of I ′

and I ′′ (defined by {v | v ∈ D∧ (v ∈ I ′∨v ∈ I ′′)}) is also an interval on (D,≤).

On a countable chain (D,≤), two intervals are connected if either their

intersection is not empty (e.g. [1, 3] and [2, 4]), or the lower bound of one interval

is the next element in the chain of the upper bound of the other interval (e.g.
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[1, 2] and [3, 4]). Finally, we consider two partial orders �` and �u on the set

of intervals for a chain (D,≤).

Definition 7 (Interval partial orders). For two closed intervals I ′ = [`′, u′] and

I ′′ = [`′′, u′′] on a chain (D,≤), we have that I ′ �` I
′′ if `′ ≤ `′′ and I ′ �u I

′′

if u′ ≤ u′′.

5.2. Ordinal edit rules

With the definitions and notations set, we introduce an ordinal edit rule.

Definition 8 (Ordinal edit rule). An ordinal edit rule Ek over a set of m

attributes R = {1, . . . ,m} with respective totally ordered domains D1, . . . , Dm

covers a subset P (Ek) of the universe D1 × . . .×Dm, which is defined by

P (Ek) =

m∏
j=1

Ikj (5)

with Ikj an interval on the chain (Dj ,≤).

An example of an ordinal edit rule based on Figure 1 is A : [2, 8]×B : [1, 4].

It can be seen that the definition of ordinal edit rules is closely related to

Definition 1, with sets replaced by intervals. From this point of view, ordinal edit

rules are a natural extension of nominal edit rules for ordered data in particular

(which includes data measured on the ordinal, interval and ratio scale as well).

Indeed, intervals are sets that can be concisely described in terms of a lower and

upper bound. However, not every subset from Dj can be written as an interval.

In the strict sense, this is not an obstacle with respect to expressiveness as it

trivially holds that any subset of D1 × . . . × Dm can be expressed by a set

of ordinal edit rules. Of course, some representations will contain many edit

rules and if we extend our reasoning to the case of infinite domains, then some

representations will contain infinitely many edit rules. Additionally, when one

imposes an artificial order on the values of each attribute, these observations

imply that each nominal edit rule can be written as a set of ordinal edit rules.

Vice versa, it is possible to write each ordinal edit rule as one nominal edit rule.

Therefore, the aforementioned properties of nominal edit rules still hold.
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5.3. Ordinal edit rule implication

Now, we will show that the properties of intervals on a chain (D,≤) can be

exploited during ordinal edit rule implication. Before we propose an algorithm

for this, we must first point out that the representation of ordinal edit rules is

not closed under edit rule implication. Indeed, according to Lemma 1, edit rule

implication will introduce the union of intervals for the generating attribute

and the union of two intervals is not necessarily an interval itself. However,

for an essentially new edit rule, the generating attribute is no longer involved

(Definition 2). Moreover, for non-generating attributes, an implied edit rule

features the intersection of intervals, which is ensured to be an interval itself. As

such, our representation of ordinal edit rules is closed under edit rule implication

of essentially new edits. Because we are only interested in edit rules that are

essentially new, this weaker form of closure is sufficient.

A first step is to check the set Eg ⊆ E , containing all candidate contributors

for generator g, with respect to the intervals for g. If each such interval is either

left-equivalent or right-equivalent with Dg, then any NNR edit will be generated

by using a contributing set consisting of exactly two edit rules. This result is

formalised in the following proposition.

Proposition 5. Let Eg be a set of ordinal edit rules over a set of m attributes

R = {1, . . . ,m} with ∀Ek ∈ Eg, g ∈ I(Ek). If ∀Ek ∈ Eg : Ikg ≡` Dg ∨ Ikg ≡u Dg,

then any contributing set Ec ⊆ Eg used for generating an NNR edit rule E∗ by

means of generator g, contains exactly two edit rules.

Proof. We can partition Eg into Eg` and Egu , where Eg` contains all edits that

are left-equivalent with Dg and Egu contains all edits that are right-equivalent

with Dg. This is a partition because any E ∈ Eg is by definition in at least

one of both sets Eg` and Egu and moreover, because g enters in each E ∈ Eg,

an edit cannot be in both sets. Because of the involvement assumption, no sets

containing edits of Eg` or edits of Egu only can ever generate an essentially new

edit. Hence, we must consider at least one edit rule E` ∈ Eg` and one edit rule

Eu ∈ Egu . Now, we can see that for two edits E`1 and E`2 from E`g we always
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have either I`1g ⊆ I`2g or I`2g ⊆ I`1g . Because of Corollary 1, we know that any

contributing set containing E`1 and E`2 will not be minimal and either E`1 or

E`2 can be removed. The same holds for edits from Egu .

The consequence of Proposition 5 is that, if the premise is satisfied, we can

generate all NNR edit rules in time O
(
|Eg|2

)
. Of course, the requirements of

Proposition 5 are quite strong and it is likely that these requirements will not

be met. In that case, we resort to a more general strategy for generating all

ordinal NNR edit rules. In this work, we propose a stack-based ordinal edit rule

implication algorithm as such a more general strategy.

As can be seen in the following, the algorithm will exploit the same properties

as introduced in 4.1 in the case of nominal edit rules. The main idea of the

algorithm is that validating these properties for ordinal edit rules can be done

more efficiently by using the following observations and the fact that each value

set (interval) is represented by a lower and upper bound only, instead of being

represented by an enumeration of set elements in the case of nominal edit rules.

Proposition 6. Consider a set of ordinal edit rules E over m attributes R =

{1, . . . ,m}, with Eg ⊆ E the set of candidate contributors for generator g ∈ R.

Suppose also that E∗ is an implied edit rule generated by means of a contributing

set Ec ⊆ Eg and generator g. Let L be the list of intervals for attribute g that

appear in edit rules from Ec sorted according to �`, then E∗ is not NNR if any

of the following conditions are met.

(a) ∃i : ¬ (L[i]↔ L[i+ 1])

(b) ∃i : L[i] ≡` L[i+ 1]

(c) ∃i : L[i+ 1] �u L[i]

(d) ∃i : L[i− 1]↔ L[i+ 1]

Proof. a If two consecutive intervals in the sorted list do not connect, then the

union of all intervals is not equal to Dg and E∗ is not essentially new, according

to Definition 2.
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b If there are two intervals with an equal left bound, then one interval is a

subset of the other. According to Corollary 1 (pruning rule 3), if E∗ is essentially

new, the contributing set leading to the generation of E∗ is not minimal as the

edit rule that corresponds with the smallest interval can be removed.

c If the upper bound of L[i+1] is smaller than or equal to the upper bound

of L[i], then L[i+1] ⊆ L[i], because L is sorted by �`. According to Corollary 1

(pruning rule 3), if E∗ is essentially new, the contributing set leading to the

generation of E∗ is not minimal as the edit rule that corresponds with L[i+ 1]

can be removed.

d If two non-consecutive intervals L[i−1] and L[i+1] connect, we can skip

the interval at position i. According to Proposition 2 (pruning rule 2), if E∗

is essentially new, the contributing set leading to the generation of E∗ is not

minimal as the edit rule that corresponds with L[i] can be removed.

E1

E2

E3

E4

E5

E6

E7

E8

1 3 5 7 9 11 13

Figure 3: An example scenario of intervals that appear in edit rules for the generating attribute

g. The intervals cover the entire domain Dg and are sorted according to �`.

Algorithm 3 presents the pseudocode of an ordinal edit implication algo-

rithm, given a set of ordinal edit rules E and generator g. In order to illustrate its

main ideas, the situation sketched in Figure 3 will be considered. In this exam-

ple, eight candidate contributors for generator g exist (i.e. Eg = {E1, . . . , E8}).

For each edit rule Ek ∈ Eg, Ikg is shown in the diagram. The domain of generator

g equals Dg = {1, . . . , 13}.

The resulting NNR edit rules are collected in ENNR, which is initially empty

24



(line 2). First, Eg is created (line 3) and it is checked if every value of Dg appears

in at least one edit rule in Eg (line 4-5, cfr. Algorithm 2). The algorithm is

constructed around two data structures. The first is a stack S that keeps all

sequences (or combinations) of edits that can still lead to a (potential) NNR edit

rule. This stack is initialized with sequences consisting of single edits, where

each edit is left-equivalent with Dg (line 6). In the example of Figure 3, the

stack would be initialized with two single-edit sequences: one with edit E1 and

one with edit E2 (blue intervals). The second data structure is a sorted list L

that keeps all edits that are not initially added to the stack. The order in this

list is determined by �` (line 7). In the example of Figure 3, the list contains

edits E3 to E8 in that order. In a final initialization step, for each value v ∈ Dg,

the first index i in the sorted list L is determined such that the edit rule at L[i]

has a left bound that is strictly greater than v. These indices are assigned to

the variables idxv (line 8). We note here that it suffices to calculate only those

idxv for which there is some edit in Eg that has v as the left bound of its interval

for g. In Figure 3, there are eight edits in Eg and they correspond to six unique

left bounds: 1, 3, 4, 6, 7 and 10, so we need to keep an index for only these

values. In the example, the index is 4 for value 4 because the first edit (E6) of

which the left bound is strictly greater than 4 is located at position 4 in L.

After the initialization phase, the algorithm starts popping sequences from

the stack. If a sequence Es is popped from the stack, the last edit of Es is

assigned to the variable Es. Then sequence Es is extended with edits from the

sorted list. In order to do so, the left bound of interval Isg is considered and

the index for that value is looked up. Adding edits to the sequence that occur

before idxv is of no use as our sequence of intervals should always progress from

left to right in the sense of ≤g (Proposition 6). Also, idxv will skip those edits

for which the left bound of interval Isg is equal to the left bound of the last edit

in the sequence (Proposition 6, (b)). For each edit in L, the intervals should

be connecting (line 14). If this is not the case, then by condition (a) from

Proposition 6 we know that the edits are not essentially new. In fact, we can

break the entire loop because due to the sorting of L, all remaining edits in L
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Algorithm 3 An ordinal edit rule implication algorithm.

1: function getOrdinalNNREditRules(E , g)

2: ENNR ← ∅

3: Eg ← [Ek | Ek ∈ E ∧ g ∈ I(Ek)]

4: if
⋃

Ek∈Eg
Ikg 6= Dg then

5: return ∅

6: S← {[Ek] | Ek ∈ Eg ∧ Ikg ≡` Dg}

7: L← sort
([
Ek | Ek ∈ Eg ∧ ¬

(
Ikg ≡` Dg

)]
,�`

)
8: ∀v ∈ Dg : idxv = min{i | v < left(L[i])}

9: while S 6= ∅ do

10: Es ← pop (S)

11: Es ← Es [|Es|]

12: for all i ∈ {idxleft(Is
g), . . . , |L|} do

13: Ek ← L[i]

14: if ¬
(
Isg ↔ Ikg

)
then

15: break

16: Es′ ← Es [|Es − 1|]

17: if Ikg ⊆ Isg ∨
(
|Es| ≥ 2 ∧ Is′g ↔ Ikg

)
then

18: continue

19: E∗ ← FH(g, S ⊕ Ek)

20: if E∗ = ∅ then

21: continue

22: if g /∈ I(E∗) then

23: ENNR ← ENNR ∪ {E∗}

24: else

25: push
(
S, S ⊕ Ek

)
26: return ENNR

will fail this connection test. Next, conditions (c) and (d) from Proposition 6 are

verified and if any of them is met, the loop is continued (line 17-18). If none of

26



the above pruning rules can be applied, the implied edit rule is computed with

the extended sequence (line 19). If it is a tautology (line 20), the algorithm

continues. If it is an essentially new rule, it is added to ENNR (line 23). Else,

the extended sequence of edits is pushed to the stack (line 25). This process

continues until the stack is empty and finally, all generated NNR edit rules are

returned.

We can now assert the following proposition.

Proposition 7. Algorithm 3 generates all (potential) NNR edit rules given a

set of ordinal edit rules E and generator g.

Proof. We restrict ourselves again to a sketch of the proof. Clearly, for any

NNR edit rule, the contributing set requires at least one edit Ek for which the

interval Ikg is left-equivalent to Dg. Else, the edit rule can never be essentially

new. Initially, all edits Ek for which Ikg is left-equivalent to Dg are pushed on

the stack. From there, all possible combinations of edit rules are tested, unless

the combination does not (and will never) generate a (potential) NNR edit rule

according to Proposition 6 (based on the pruning rules given in 4.1).

The theoretical time-complexity of the algorithm can be analyzed in the

same way as done for Algorithm 2 given in 4.2. The benefit of validating the

pruning rules for ordinal data compared to nominal data is that ordinal edit

rules use a representation of intervals only defined by a lower and an upper

bound, instead of being represented by an enumeration of set elements in the

case of nominal edit rules. This implies that comparing value sets in the case of

ordinal edit rules comes down to comparing two values instead of a set of values

in the case of nominal edit rules and the larger the intervals of the generator

are, the more beneficial for the performance of edit rule implication. Also, the

properties of intervals can be used to extend combinations in a more intelligent

way. A more empirical evaluation of the algorithm and the proposed pruning

rules is presented in Section 7.

To conclude this section, two additional observations are given. First, as

already mentioned in 5.2, it is possible to convert a set of nominal edit rules to
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ordinal edit rules and vice versa. Therefore, Algorithm 2 and 3 can both be used

for edit rule implication, without making any assumption on the type of data.

Additionally, the findings concerning edit folding, described in Section 3, can be

used given either an explicit set of nominal or ordinal edit rules. Besides that,

we point out that Algorithm 3 requires some modifications if Dg is no longer

finite. First, if Dg becomes countably infinite, it is crucial to store indices for

only those values that appear as a left bound in the candidate contributors Eg.

Second, if Dg is not a countable set (e.g., R), then we must introduce open

intervals to keep the same expressiveness of ordinal edit rules. In that case, the

computation of indices needs to account for open intervals. Moreover, in the

case of uncountable domains, intervals are connecting as soon as they are not

disjunct. Studying this in more detail is subject to future work.

6. Related work

For more than half a century, the problem of automatic repair of (statistical)

data inconsistencies by means of data quality rules has been investigated thor-

oughly [19, 29, 38, 39]. Fellegi and Holt proposed in their seminal paper [23]

that a possible way to solve this problem is to tackle it as a two-step process,

consisting of error localization (determining the attributes in error) on the one

hand and imputation (estimating correct values for the attributes in error) on

the other hand. Besides analyzing this problem, Fellegi and Holt also introduced

an essential concept related to this problem, which they called an edit rule [23].

Although edit rules belong to the category of tuple-level constraints and can

only represent forbidden data objects by means of equalities of attribute values,

it is already stated in Section 1 and Section 2 that exploiting the properties of

edit rules could simplify the first step in the process of repairing data inconcis-

tencies tremendously. Because our work focuses especially on error localization

by means of edit rules, an overview of the most notable literature related to this

topic is given in the remainder of this section, together with a positioning of our

work among these contributions.
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The techniques to locate data inconsistency errors in data objects can be sub-

divided into two categories. A first category captures the techniques that treat

this problem as (a variant of) the covering set problem. Fellegi and Holt stated

that this can only be done correctly if all necessary information is made available

by means of edit rule implication which relies on the techniques proposed in their

framework [23]. Although this method was proven to be useful, generating all

necessary edit rules, captured in a sufficient set, could become labour-intensive.

Therefore many researchers, such as Liepins [32, 33, 34], Garfinkel et al. [25],

Winkler [46, 47], Boskovitz [8] and Chen [11, 13], proposed and investigated

algorithms to deal with this efficiently and correctly. Apart from the techniques

that generate an entire sufficient set, techniques exist in which this generation

is not fully completed, but each failing data object is treated separately and

only the edits that are required to solve the problem by means of the covering

set method for the object under investigation are generated by means of edit

implication. However, a disadvantage of these techniques is that when the data

set is updated, one has to reconsider the problem. Contributions exploiting this

method are proposed by Garfinkel et al. [25] and by Chen and Winkler [13]. Our

work is a continuation of the above-mentioned contributions in the sense that it

investigates and improves the remaining shortcomings of the current techniques

used for edit rule implication. In particular, in Section 3, we show that different

edit rule sets that capture the same set of inconsistencies, can result in differ-

ent performances. Besides that, in Section 4, we investigate efficient ways of

evaluating pruning strategies exploited by the nominal implication algorithm.

A second category includes approaches that do not use (any variant of) the

covering set method. Examples include vertex generation methods [16, 18, 44]

based on the Chernikova algorithm [14], branch-and-bound strategies [16, 17, 20]

or treating it as a dynamic disjunctive facet problem [16].

Besides the techniques used to solve the error localization problem on its

own, the entire repair problem (including error localization and imputation) can

also be solved at once [19, 31, 37]. An important contribution exploiting this

is due to Bankier et al. [2] as they used a nearest-neighbour-based approach to
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identify, for each failing object, a donor object that resembles the failing object

as close as possible. Although it is noted that Nearest-Neighbour Imputation

(NIM), works well for particular applications (e.g. census editing), the covering

set-based approaches described above are more generally applicable and can be

used in situations where NIM would not work at all [12, 19].

It should be noted that most of the approaches mentioned above can also

be applied to continuous or mixed data, yet in a slightly different form [17, 19,

20, 26, 31]. Although, no particular attention is given to implication of edit

rules for ordered data, which tends to be useful, as explained in Section 1 and

Section 5, and shown to be more efficient than nominal implication.

To finish this discussion, two frameworks are mentioned that are available

to repair data inconsistencies against a set of rules, called HoloClean [43] and

Llunatic [27]. An extensive overview of state-of-the-art research in the field of

(statistical) data cleaning can be found in [19].

7. Evaluation

In this section, the practicality of the algorithms and techniques described

in Section 3-5 is investigated thoroughly by using them in a set of experiments.

During the evaluation, we try to provide an answer to the following questions.

• What is the impact of edit folding on the total number of edit rules and

entering attributes in an explicit set of edit rules?

• What is the impact of edit folding on the performance of the FCF algo-

rithm?

• What is the impact of using the nominal implication algorithm (Algo-

rithm 2) and the ordinal implication algorithm (Algorithm 3) on the per-

formance of the FCF algorithm?

• What is the impact of using the pruning rules in the edit implication

algorithms (Algorithm 2 and Algorithm 3) on the number of combinations

to test?

30



With these research questions in mind, we performed a number of experi-

ments described below. The results listed in this section are obtained by using

custom implementations of the algorithms in Java (version 8) executed on an

Intel Core i7-8550U processor (1.8GHz) with 16GB of RAM running Windows

10. To test the performance of the FCF algorithm, we used a custom imple-

mentation proposed by Boskovitz [8], adopting different edit rule implication

algorithms (including our proposals) for executing step 2.

7.1. Data and edit set characteristics

Table 2: Overview of the main characteristics of the data and edit sets used in the experiments.

data set |R| |R| |D| value type edit set id. |E|
∑
|I(E)|

Adult 48842 11 202 categorical A1 146 328

A2 205 485

Mushroom 8124 23 119 categorical M1 206 665

M2 299 996

Breast Cancer 699 9 90 integer BC1 57 141

Trials 1512 25 95 categorical T1 209 518

During the experiments reported in the following, six (explicit) edit sets

based on four different data sets are used. An overview of the main character-

istics of the data sets, including the number of data objects |R|, the number

of attributes |R|, the total number of values |D| and the type of the attribute

values, is given in Table 2. Also, Table 2 gives an overview of the main charac-

teristics of the six edit sets, including the size of the edit set |E| and the total

number of entering attributes
∑
|I(E)| over all edits in the set in particular.

Note that all edit sets also have a unique identifier in order to refer to the sets

easily.

Three data sets (Adult, Mushroom, Breast Cancer), commonly used as a
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standard when evaluating research on data consistency [5, 19, 41] can be down-

loaded from the UCI Machine Learning repository4. The data in Adult is ex-

tracted from the 1994 US Census database and relates demographic features to

income of US citizens. For the experiments, it is preprocessed the same way as

described in [41] by discretizing ages and removing other continuous attributes.

The Mushroom data set contains an overview of the physical characteristics of

mushrooms extracted from The Audubon Society Field Guide to North Amer-

ican Mushrooms [35]. The Breast Cancer data set originates from the Breast

Cancer Wisconsin Database and describes different types of breast cancer tu-

mors. In this data set, only the integer, non-ID attributes are kept. Finally,

the Trials data set contains real-life data, as it is (self-)composed by collecting

data concerning the design of clinical trials reported in both the German trials

register5 and the US trials register6. Therefore, we can state that Trials will be

used as a representative of a realistic dataset.

Concerning the edit sets, the Adult- and Mushroom-based edit sets contain

edit rules (or more specifically, low lift forbidden itemsets that are transformed

to edit rules) that are automatically discovered by using the FBIMiner algo-

rithm, described in [41] with different values for the maximal lift threshold τ .

The Breast Cancer-based edit set contains edit rules obtained by first construct-

ing an isolation forest on the dataset and then convert small sized branches of

the trees of that forest to edit rules [36]. Therefore, we do not have any notion

about the quality of the edits in these sets. The Trials-based edit set, however,

is self-composed and we tried, to the best of our knowledge, to capture as many

correct, forbidden value combinations as possible in an edit rule form to meet

the demand of having a real-life edit set on which characteristics we based the

other edit sets as well. Moreover, based on the cardinality of this last set, we

can report that edit sets containing more than 200 edit rules are no exception.

4http://archive.ics.uci.edu/ml/
5http://drks.de
6http://clinicaltrials.gov
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Finally, it is noted that all edit rules in the given sets corresponding with a

categorical data set have the property that each entering attribute in the edit

rules consists of only one value7. We will call edit rules that have this form

single-value edits in the remainder. The advantage of a nominal edit rule in this

form is that it can be converted to exactly one ordinal edit rule, making the

comparisons between nominal and ordinal edit rule algorithms more reasonable.

7.2. Impact of edit folding

Table 3: Performance results of the edit folding algorithm.

edit set id. # recursive calls worst case # recursive calls
mean execution time

(in ms, based on 40 runs)

A1 8 146 14

A2 8 205 18

M1 5 206 31

M2 7 299 56

BC1 5 57 9

T1 9 209 41

In Section 3, a novel heuristic algorithm to reduce the total number of edits

and entering attributes in an explicit set of edit rules is proposed, which exploits

the properties of edit folding. Before evaluating the impact of edit folding on

the number of edit rules and entering attributes, we show that the performance

of the algorithm in practice tends to be much better than the theoretical worst

case. Indeed, it can be seen from the results that are given in Table 3, that the

number of times the algorithm is called recursively is far less than the worst-case

scenario as well as n (with n the number of edit rules in the original set) for

each given edit set and does not even reach the number of attributes m. This is

7Each edit rule set has the ability to be converted in such a way.
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also something which could be expected, because only in very specific cases, an

edit rule can be folded twice by means of the same folding attribute. Therefore,

it can be stated that the mean execution time of the algorithm increases nearly

linear in function of n, given a fixed number of attributes m, and the practical

time complexity is estimated to be O(nm2), typically with m� n, as the results

show.

Next, the impact on the total number of edits and the number of entering

attributes over all edits is investigated. These results are given in Figure 4. For

the Adult- and Trials-based edit sets (A1, A2, T1), the reduction in number

of edits and entering attributes is tremendous. In these cases, the cardinality

of the explicit set is reduced by at least 40% and the total number of entering

attributes is reduced by at least 30% when using edit folding. The difference is

much smaller for the Mushroom- and Breast Cancer-based edit sets (M1, M2,

BC1) with a reduction of at most 8% for the number of edits and 6% for the

total number of entering attributes. The reason for this is that these data sets

consist of more than twice as many attributes as the Adult and Trials data sets,

which reduces the probability that the condition holds, which states that edit

rules should have equal values for m− 1 attributes to fold.
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Figure 4: Impact of edit folding on the total number of edits and entering attributes.

To end this discussion on edit folding, it should be noted that a brute force

approach for edit folding was tested on the edit set A1. Comparing these results

to the results obtained by using the heuristic given above, it is noted that the
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folded set is exactly the same, but the mean execution time increased with a

factor 13000. As a conclusion, it can be stated that the performance of the

heuristic is very promising, but the reduction in number of edits and entering

attributes highly depends on the data and edit sets. Therefore, it is necessary

to investigate if it is always worth to apply edit folding, even if the reduction

is limited. For this, the mean execution time of edit folding is compared to the

total execution time of the FCF algorithm (both with and without first applying

edit folding) in 7.3.

7.3. Efficiency of edit rule implication

Table 4: Mean execution times (in ms, based on 40 runs) of the FCF algorithm including

different edit rule implication algorithms. The lowest mean execution time in the nominal

case is underlined and the lowest mean execution time in general is indicated in bold.

edit set id.
Chen

unfolded

breadth-first

unfolded

Chen

folded

breadth-first

folded

ordinal

unfolded

A1 56 21 32 20 17

A2 44538 1075 404 82 191

M1 1355 1251 1135 1130 1164

M2 4583 4412 4172 4154 4027

BC1 351 324 300 271 175

T1 5093 2558 2667 1331 1046

Nominal data. In the following, four different configurations of the FCF al-

gorithm for nominal edit rules are compared to assess the performance of the

proposed edit rule implication algorithm for nominal data. Each configuration

differs either in the edit rule implication algorithm used during step 2 of the

FCF algorithm or in the fact that the explicit set of edits is folded before it

is given as input to the FCF algorithm. As can be seen from Table 4, the
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Figure 5: Impact of executing the FCF algorithm on the total number of edit rules, starting

from an unfolded set of nominal edits.

proposed breadth-first algorithm (Algorithm 2) is compared to the Chen algo-

rithm [11, 13], which is, to the best of our knowledge, state-of-the-art for this

task. It must be said that the starting point of the Chen algorithm is slightly

different, as it only searches for combinations of edit rules that together cover

the entire domain of the generator, without testing if the resulting implied edit,

is eventually NNR. Also, the breadth-first algorithm includes the optimization

that already pruned combinations are kept and each newly formed combination

that is a superset of one of the already pruned combinations is pruned itself.

The mean execution times8 over 40 runs are listed in Table 4, with the lowest

mean for each edit set in the nominal case being underlined. Figure 5 shows the

number of edits in each unfolded explicit set compared to the number of edits in

its corresponding sufficient set in order to give an impression of the work that

has to be done. The same factor of increase can be reported when starting from

folded explicit sets, so no additional chart is given.

It is easy to notice that for each edit set, the mean execution times of the

FCF algorithm including the breadth-first algorithm are lower than the mean

execution times of the FCF algorithm including the Chen algorithm. Especially

8The mean execution times of the configurations with edit folding also include the time to

fold the explicit set.
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for edit set A2, there is a huge gain in performance when starting from an

unfolded set. This is due to the fact that, when using the Chen algorithm, there

is one branch in the Chen algorithm that tests many combinations and that is

pruned early when using the breadth-first algorithm. For both edit sets M1 and

M2, the mean execution times are comparable, which has to do with the limited

depth of the branches. Therefore, we can say that the performance gain does

depend on the fact if and when certain pruning rules can be applied (see 7.4).

Besides that, if the mean execution times of edit folding, given in Table 3, are

reconsidered, it can be stated that the execution time spend on edit folding is

only a small fraction of the total execution time of the entire FCF algorithm

(including edit folding). This implies that it is definitely worth to apply edit

folding before generating a sufficient set, because for both algorithms and each

edit set, the FCF algorithm given a folded set outperforms the FCF algorithm

given an unfolded set. Moreover, as is argumented in Section 3, edit folding

especially makes an impactful difference on the performance if it reduces the

total number of edits and entering attributes vigorously, which is the case when

applying it to edit sets A1, A2 and T1.

Ordinal data. To assess the performance of the ordinal implication algorithm,

the mean execution times of the FCF algorithm including the ordinal implication

algorithm (Algorithm 3) are also given in Table 4. It should be noted that the

configuration to test the performance in the ordinal case does not include edit

folding. The reason for this is that, when edit folding is applied, there is no

guarantee that nominal edit rules can be converted to exactly one ordinal edit

rule, which makes comparing mean execution times unreasonable. Also, the

mean execution times do include the time for converting a nominal to an ordinal

edit set, except for edit set BC1, which already consists of ordinal edit rules by

definition and the optimization proposed in Proposition 5 is not considered.

From Table 4, it can be learned that for all edit sets, the ordinal FCF

algorithm performs better than the nominal FCF algorithm, starting with an

unfolded set of edit rules. For edit sets A2, BC1 and T1, there is a huge reduction
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in mean execution times by 82%, 46% and 59% respectively. Thereby, it can

be seen from the lowest mean execution times indicated in bold that for edit

sets A1, M2, BC1 and T1, the ordinal case even outperforms the nominal case

starting from a folded set of edit rules, although slighlty. Therefore, it is highly

recommended to consider converting a set of nominal edit rules to ordinal edit

rules and using the ordinal edit rule implication algorithm, or at least, to use the

nominal breadth-first algorithm preceded by edit folding, when the alternative

is not possible.

7.4. Impact of pruning rules

In a final experiment, the impact of the pruning rules on the number of

tested combinations during the FCF algorithm is evaluated to validate their

effectiveness. Therefore, each combination that is tested to see if it leads to the

generation of an NNR edit rule during the entire execution of the FCF algorithm

is classified into one of the following categories: the combination should not be

extended further (1) due to pruning rule 1, (2) due to pruning rule 2, (3) due

to pruning rule 3, (4) because it is a superset of an already pruned combination

or (5) the combination should be extended further because it leads to a non-

essentially new, implied edit rule.

Table 5: Total number of tested combinations during the execution of the FCF algorithm

starting from an unfolded set (nominal vs. ordinal case).

edit set id. nominal ordinal

A1 1045 1040

A2 22557 16878

M1 31510 31245

M2 81129 78662

BC1 31817 13542

T1 232152 198425
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First, the total number of combinations tested during the entire execution

of the nominal and ordinal FCF algorithm, starting from an unfolded set of edit

rules, is given in Table 5. For all edit sets, the number of combinations tested in

the ordinal case is lower than in the nominal case, which could explain part of

the performance gain. The reason for this is that the addition of new edit rules

to already existing combinations is considered in a more intelligent way than

by the nominal breadth-first algorithm, reducing the total number of created

combinations. Moreover, the total number of combinations tested is much lower

than the theoretical upper bound defined in 4.2.
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Figure 6: The percentage share of tested combinations during the entire nominal FCF algo-

rithm assigned to each category.

In Figure 6, the percentage share of tested combinations during the entire

FCF algorithm assigned to each category, defined above, is given. We only

consider the nominal case, as the ordinal case is similar. In general, the impact

of pruning rules 1 and 2 is huge. This is in fact very interesting, because

pruning rule 1 is something that could not be used by the Chen algorithm as

this algorithm does not generate implied edit rules during its execution. Indeed,

this implies that validating pruning rule 1 comes at the performance cost of

generating implied edits, but as explained in 7.3, this performance cost does

not balance out the benefit of pruning. Besides that, there is only one edit

set (BC1) that prunes combinations due to pruning rule 3 or because these

combinations are supersets of already pruned combinations. For pruning rule

3, the explanation is twofold. First, the sets of edit rules (except for BC1)
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remained by the FCF algorithm only contains single-value edit rules and this

will not change as only essentially new edits will be adopted. Second, because of

the single-valuedness, edit rules that are considered during a certain iteration,

will always contain one value, which is new compared to edit rules that are added

to combinations in previous iterations. Therefore it can be said that, when one is

not restricted to single-value edits, pruning rule 3 could be useful. For supersets

of pruned combinations, the explanation is more difficult. However, for edit sets

M1 and M2, notice that there are no combinations resulting in a non-essentially

new implied edit rule, which means that all combinations are pruned at iteration

2. This makes it impossible for certain combinations to be assigned to become

supersets of already pruned combinations. Therefore, it can be concluded that

this strategy will be less effective in general when many combinations are pruned

early, which will be often the case.

8. Conclusion

The main contribution of this work is to investigate and enhance the pro-

cess of edit rule implication. Besides that, we provide a new way to deal with

inconsistencies in ordinal data. The reason behind this is that, first, edit rule

implication is an essential part in many data inconsistency repair strategies and

second, it can become a complex process when edit rules are used on data mea-

sured beyond the nominal scale. As an overall result, we developed an efficient

method to locate inconsistency errors. Indeed, as the evaluation of the methods

shows, both implication algorithms, with the ordinal one as the frontrunner,

outperform state-of-the-art methods. Moreover, the proposed methods both

can be used for nominal edit rules and ordinal edit rules as one can easily trans-

form edit rules from one type to the other. This implies that all properties and

algorithms introduced for nominal edit rules also apply for ordinal edit rules

and vice versa and additionally, both edit rule implication algorithms can also

be used for a mix of nominal and ordinal data. Also, an essential part in each

edit rule implication algorithm is to start with a set of edit rules that is as small
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as possible, which can be achieved by folding edits together.

Still, some research questions remain related to these topics. As is the case

for many data quality rules, an efficient strategy to automatically discover or-

dinal edits lacks. Besides that, we only have considered a simple strategy to

convert nominal to ordinal edit rules, but most likely, more intelligent ways to

achieve this can be developed, that will enhance ordinal edit rule implication

even further. Finally, edit rules capture only specific types of tuple-level con-

straints, based on equality of constant values. Therefore, investigating implica-

tion algorithms for more general types of tuple-level constraints (e.g. constraints

based on inequalities or containing variables) can be very interesting.
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