Motor retraining by real-time sonic feedback : understanding strategies of low impact running
(2021)
- Author
- Pieter Van den Berghe (UGent)
- Promoter
- Veerle Segers (UGent) , Dirk De Clercq (UGent) and Marc Leman (UGent)
- Organization
- Abstract
- Running is a gross-motor skill and a popular physical activity, though it comes with a risk of injury. Gait retraining is performed with the intent on managing the risk of running injury. The peak tibial acceleration may be linked with running injuries and is suitable as input for biofeedback. So far, retraining programs with the use of biofeedback on peak tibial acceleration have been bound to a treadmill. Therefore, the objective of this doctoral thesis was to evaluate the effectiveness of a novel music-based biofeedback system on peak tibial acceleration in the context of gait retraining in a training environment. This system is wearable and has lightweight sensors to attach to the lower leg. The sensor first records the tibial acceleration. Then, a processing unit detects the acceleration spike for direct auditory biofeedback. Studies 1 to 5 covered the measurement of peak tibial accelerations, the design of the music-based feedback, and the effectiveness evaluation of the biofeedback system for impact reduction in a training center. In study 1 the peak tibial acceleration of a group of distance runners was reliable in the same test and repeatable in a re-test. The peak tibial accelerations increased with running speed and were correlated with the maximum vertical loading rate of the ground reaction force, which is an impact characteristic derived in the biomechanics laboratory. The developed peak detection algorithm identified the peak tibial acceleration in real-time. The music-based feedback was developed in study 2. The music was superimposed with perceptible pink noise. The noise intensity could be linked to a biological parameter such as the peak acceleration tibial. The tempo of the music synchronized with the cadence of the runner to motivate the runner and allowed for a user-induced change in cadence in response to the biofeedback. Studies 3 to 5 examined the effectiveness of music-based biofeedback on the peak tibial peak in a training environment. We demonstrated that smaller peak values are achievable with the aid of the validated biofeedback system. In study 3, ten runners with high peak tibial acceleration were subjected to biofeedback on the momentary peak tibial acceleration. The group was able to reduce their peak tibial acceleration by 27% or 3 g in the biofeedback condition. Study 4 evaluated the initial learning effect within a single session at ~11.5 km/h. The main change in peak acceleration occurred after approximately 8 minutes of biofeedback. However, there was substantial between-subject variation in time which ranged from 4 to 1329 gait cycles. Study 5 confirmed the effectiveness of the biofeedback in a quasi-randomized study with control group. The experimental group received the biofeedback in a 3-week retraining program comprising of biofeedback faded in time. The control group received tempo-synchronized music as placebo. A running speed of approximately 10 km/h was maintained session after session via speed feedback. All runners completed the running program consisting of 6 sessions. The peak acceleration decreased by 26% or 3 g in the experimental group. The smaller peak values in studies 3-5 must have resulted from a movement alteration, although there was no significant change in running cadence at the group level. Studies 6 to 9 give insight into possible strategies for low(er) peak tibial acceleration in level running. In study 6, we discovered that peak tibial accelerations depend on the manner of heel striking. Specifically, a more pronounced heel landing was correlated with smaller axial (1D) and resultant (3D) peak tibial accelerations. The multicenter results of study 7 showed greater resultant peak acceleration in non-rearfoot strikes compared with heel strikes. This greater acceleration was due to an abrupt horizontal deceleration of the lower leg. In study 8, we described and compared the running mechanics of a successful long-distance runner with low (impact) load and a high load capacity. A pronounced heel strike in conjunction with long stance and short flight phases characterized a low-impact runner who successfully completed 100 marathons in 100 days. Study 9 documented adaptations post-biofeedback in a lab center. There was no clear relationship between the changes in peak tibial acceleration and in running cadence, which confirmed the results of the data captured in the training center. Casuistry showed visually detectable changes in the curve of the vertical ground reaction force. A runner with high peak tibial acceleration peaks changed to a more pronounced rearfoot strike or changed to a non-rearfoot strike pattern to reduce the axial peak tibial acceleration. These results suggest the existence of different distal strategies for impact reduction elicited by biofeedback. Our experiments opened the possibility of impact reduction with the use real-time auditory biofeedback that is perceptible and motivating. Two motor strategies were discovered to run with less peak tibial acceleration. We hope these findings offer encouragement for runners, coaches and clinicians who wish to target a form of low(er) impact running. The biofeedback system effectively modified the running form and has great ecological value due to the portable hardware and energy source for outdoor usage. User-oriented biofeedback systems should become available for the consumer and the patient if proven useful for respectively injury reduction and injury management. Overall, this doctoral thesis contributed to a better understanding of impact severity in distance running and its reduction in a gait retraining context with the use of real-time music-based biofeedback.
- Lopen is een grootmotorische vaardigheid en een populaire fysieke activiteit die tot blessures kan leiden. Loopherscholing is bedoeld om blessures te verminderen en te behandelen. De versnellingspiek van het onderbeen is misschien gelinkt aan loopblessures en is geschikt voor biofeedback. Tot nu waren de herscholingsprogramma's met biofeedback op de versnellingspiek van het onderbeen gebonden aan een loopband. Het doel van deze doctoraatsthesis was dan ook het ontwikkelen en het evalueren van een op muziek gebaseerd biofeedback systeem om de versnellingspiek van het onderbeen ter verminderen bij loopherscholing in een trainingsomgeving. Dit systeem is draagbaar en heeft lichte sensoren om op het onderbeen te bevestigen. Eerst registreert de sensor de versnelling van het onderbeen. Vervolgens detecteert een verwerkingseenheid de versnellingspiek voor een directe vertaling naar auditieve biofeedback. Studies 1 tot en met 5 behandelden het meten van de versnellingspiek van het onderbeen, het ontwerp van de op muziek gebaseerde feedback, en het uittesten van de effectiviteit van het biofeedback systeem voor impactreductie in een trainingsomgeving. In studie 1 was de versnellingspieken van het onderbeen betrouwbaar in eenzelfde test en herhaalbaar bij een hertest van een groep afstandslopers. Deze versnellingspieken namen toe met de loopsnelheid en waren gelinkt met de verticale beladingsgraad van de grondreactiekracht, dewelke een impactmaat uit het biomechanica laboratorium is. Het ontwikkelde piekdetectie- algoritme kon de versnellingspieken direct registreren. De ontwikkeling van biofeedback op basis van muziek gebeurde in studie 2. Bovenop de muziek kwam waarneembare roze ruis. De geluidssterkte van de ruis kon gekoppeld worden met een biologische parameter zoals de versnellingspiek van het onderbeen. Het tempo van de muziek synchroniseerde met de cadans van de loper om de loper te motiveren en een verandering in cadans toe te laten als reactie op de biofeedback. Studies 3 tot 5 onderzochten de effectiviteit van op muziek gebaseerde biofeedback op de versnellingspiek van het onderbeen. Het herscholingsprogramma ging door op een looppiste in een sporthal. Wij toonden aan dat kleinere versnellingspieken haalbaar zijn door middel van biofeedback op de versnellingspiek van het onderbeen. In studie 3 kregen 10 lopers met een hoge versnellingspiek biofeedback aangeboden op de momentane versnellingspiek van het onderbeen. In de conditie met biofeedback kon de groep hun versnellingspiek met 27% of 3 g verlagen. Studie 4 evalueerde het initiële leereffect in één loopsessie aan 11.5 km/u. De voornaamste verandering in versnellingspiek trad op na ongeveer 8 minuten lopen met biofeedback. Er was echter een aanzienlijk variatie in tijd tussen de proefpersonen, die varieerde van 4 tot 1329 loopcycli. Studie 5 bevestigde de effectiviteit van de biofeedback in een quasi-gerandomiseerd onderzoek met controlegroep. De experimentele groep kreeg de op muziek gebaseerde biofeedback gedurende een loopherscholingsprogramma van 3 weken met afnemende biofeedback in de tijd. De controlegroep kreeg op tempo gesynchroniseerde muziek als placebo. Een loopsnelheid van ongeveer 10 km/u werd sessie na sessie opgelegd via snelheidsfeedback. Alle lopers voltooiden de 6 sessies van het loopprogramma. In de experimentele groep daalde de versnellingspiek met 26% of 3 g. De kleinere versnellingspieken in studies 3-5 moeten het gevolg zijn van een bewegingsaanpassing, maar er was geen duidelijke verandering in loopcadans op groepsniveau. Studies 6 tot en met 9 bieden inzicht in mogelijke strategieën voor een kleinere versnellingspiek van het onderbeen bij overgronds lopen. In studie 6 stelden we vast dat de versnellingspiek van het scheenbeen afhangt van de hiellanding. Zo was een duidelijkere landing op de hiel gelinkt aan lagere axiale (1D) en resulterende (3D) versnellingspieken. De multicenter resultaten van studie 7 toonden een grotere resulterende piekversnelling bij een landing op voorvoet dan op de hiel. Deze grotere versnellingspiek was het gevolg van een abrupte horizontale afremming van het onderbeen. In studie 8 beschreven en vergeleken we de loopmechanica van een succesvolle langeafstandsloper met een lage (impact)belasting en een hoge belastbaarheid. Een uitgesproken hiellanding in combinatie met een lange steunfase en korte zweeffase karakteriseerden de laagimpact loper die succesvol 100 marathons in 100 dagen finishte. Studie 9 documenteert adaptaties na de ontvangen biofeedback met evaluatie in een sportlabo. Er is geen rechtlijnig verband tussen de veranderingen in versnellingspiek van het onderbeen en in loopcadans, wat een bevestiging is van de resultaten uit het trainingscentrum. Casuïstiek toont visueel waarneembare veranderingen in de curve van de verticale grondreactiekracht. Om de versnellingspiek van het onderbeen te verminderen schakelde een loper met hoge versnellingspieken over naar een uitgesproken landing op de hiel of naar een landing op de voorvoet. Deze resultaten suggereren het bestaan van verschillende distale strategieën voor impactreductie uitgelokt door biofeedback. Onze experimenten maakten loopherscholing voor impactreductie buiten het lab mogelijk door middel van waarneembare, motiverende, real-time, auditieve biofeedback. Twee motorische strategieën werden ontdekt om te lopen met kleine(re) versnellingspieken van het onderbeen. We hopen dat deze bevindingen waardevol zijn voor lopers, coaches en clinici geïnteresseerd in laagimpact lopen. Het biofeedback systeem is bruikbaar op training door de draagbare onderdelen en batterij. Als gebruiksvriendelijke biofeedback systemen nuttig blijken voor het respectievelijk verminderen en behandelen van blessures, dan moeten ze op termijn beschikbaar komen voor de consument en de patiënt. Deze doctoraatsthesis draagt bij tot een beter begrip van impactbelasting bij lopen en het gebruik van op muziek gebaseerde biofeedback om het te verlagen in een herscholingsprogramma.
- Keywords
- biomechanics, running, injury, impact, sonification, music, sport, sports, movement analysis, force, kinetics, kinematics
Citation
Please use this url to cite or link to this publication: http://hdl.handle.net/1854/LU-8732965
- MLA
- Van den Berghe, Pieter. Motor Retraining by Real-Time Sonic Feedback : Understanding Strategies of Low Impact Running. Ghent University. Faculty of Medicine and Health Sciences, 2021.
- APA
- Van den Berghe, P. (2021). Motor retraining by real-time sonic feedback : understanding strategies of low impact running. Ghent University. Faculty of Medicine and Health Sciences, Ghent, Belgium.
- Chicago author-date
- Van den Berghe, Pieter. 2021. “Motor Retraining by Real-Time Sonic Feedback : Understanding Strategies of Low Impact Running.” Ghent, Belgium: Ghent University. Faculty of Medicine and Health Sciences.
- Chicago author-date (all authors)
- Van den Berghe, Pieter. 2021. “Motor Retraining by Real-Time Sonic Feedback : Understanding Strategies of Low Impact Running.” Ghent, Belgium: Ghent University. Faculty of Medicine and Health Sciences.
- Vancouver
- 1.Van den Berghe P. Motor retraining by real-time sonic feedback : understanding strategies of low impact running. [Ghent, Belgium]: Ghent University. Faculty of Medicine and Health Sciences; 2021.
- IEEE
- [1]P. Van den Berghe, “Motor retraining by real-time sonic feedback : understanding strategies of low impact running,” Ghent University. Faculty of Medicine and Health Sciences, Ghent, Belgium, 2021.
@phdthesis{8732965, abstract = {{Running is a gross-motor skill and a popular physical activity, though it comes with a risk of injury. Gait retraining is performed with the intent on managing the risk of running injury. The peak tibial acceleration may be linked with running injuries and is suitable as input for biofeedback. So far, retraining programs with the use of biofeedback on peak tibial acceleration have been bound to a treadmill. Therefore, the objective of this doctoral thesis was to evaluate the effectiveness of a novel music-based biofeedback system on peak tibial acceleration in the context of gait retraining in a training environment. This system is wearable and has lightweight sensors to attach to the lower leg. The sensor first records the tibial acceleration. Then, a processing unit detects the acceleration spike for direct auditory biofeedback. Studies 1 to 5 covered the measurement of peak tibial accelerations, the design of the music-based feedback, and the effectiveness evaluation of the biofeedback system for impact reduction in a training center. In study 1 the peak tibial acceleration of a group of distance runners was reliable in the same test and repeatable in a re-test. The peak tibial accelerations increased with running speed and were correlated with the maximum vertical loading rate of the ground reaction force, which is an impact characteristic derived in the biomechanics laboratory. The developed peak detection algorithm identified the peak tibial acceleration in real-time. The music-based feedback was developed in study 2. The music was superimposed with perceptible pink noise. The noise intensity could be linked to a biological parameter such as the peak acceleration tibial. The tempo of the music synchronized with the cadence of the runner to motivate the runner and allowed for a user-induced change in cadence in response to the biofeedback. Studies 3 to 5 examined the effectiveness of music-based biofeedback on the peak tibial peak in a training environment. We demonstrated that smaller peak values are achievable with the aid of the validated biofeedback system. In study 3, ten runners with high peak tibial acceleration were subjected to biofeedback on the momentary peak tibial acceleration. The group was able to reduce their peak tibial acceleration by 27% or 3 g in the biofeedback condition. Study 4 evaluated the initial learning effect within a single session at ~11.5 km/h. The main change in peak acceleration occurred after approximately 8 minutes of biofeedback. However, there was substantial between-subject variation in time which ranged from 4 to 1329 gait cycles. Study 5 confirmed the effectiveness of the biofeedback in a quasi-randomized study with control group. The experimental group received the biofeedback in a 3-week retraining program comprising of biofeedback faded in time. The control group received tempo-synchronized music as placebo. A running speed of approximately 10 km/h was maintained session after session via speed feedback. All runners completed the running program consisting of 6 sessions. The peak acceleration decreased by 26% or 3 g in the experimental group. The smaller peak values in studies 3-5 must have resulted from a movement alteration, although there was no significant change in running cadence at the group level. Studies 6 to 9 give insight into possible strategies for low(er) peak tibial acceleration in level running. In study 6, we discovered that peak tibial accelerations depend on the manner of heel striking. Specifically, a more pronounced heel landing was correlated with smaller axial (1D) and resultant (3D) peak tibial accelerations. The multicenter results of study 7 showed greater resultant peak acceleration in non-rearfoot strikes compared with heel strikes. This greater acceleration was due to an abrupt horizontal deceleration of the lower leg. In study 8, we described and compared the running mechanics of a successful long-distance runner with low (impact) load and a high load capacity. A pronounced heel strike in conjunction with long stance and short flight phases characterized a low-impact runner who successfully completed 100 marathons in 100 days. Study 9 documented adaptations post-biofeedback in a lab center. There was no clear relationship between the changes in peak tibial acceleration and in running cadence, which confirmed the results of the data captured in the training center. Casuistry showed visually detectable changes in the curve of the vertical ground reaction force. A runner with high peak tibial acceleration peaks changed to a more pronounced rearfoot strike or changed to a non-rearfoot strike pattern to reduce the axial peak tibial acceleration. These results suggest the existence of different distal strategies for impact reduction elicited by biofeedback. Our experiments opened the possibility of impact reduction with the use real-time auditory biofeedback that is perceptible and motivating. Two motor strategies were discovered to run with less peak tibial acceleration. We hope these findings offer encouragement for runners, coaches and clinicians who wish to target a form of low(er) impact running. The biofeedback system effectively modified the running form and has great ecological value due to the portable hardware and energy source for outdoor usage. User-oriented biofeedback systems should become available for the consumer and the patient if proven useful for respectively injury reduction and injury management. Overall, this doctoral thesis contributed to a better understanding of impact severity in distance running and its reduction in a gait retraining context with the use of real-time music-based biofeedback.}}, author = {{Van den Berghe, Pieter}}, keywords = {{biomechanics,running,injury,impact,sonification,music,sport,sports,movement analysis,force,kinetics,kinematics}}, language = {{eng}}, pages = {{IX, 296}}, publisher = {{Ghent University. Faculty of Medicine and Health Sciences}}, school = {{Ghent University}}, title = {{Motor retraining by real-time sonic feedback : understanding strategies of low impact running}}, url = {{https://www.ugent.be/ge/bsw/en/research/biomechanics/projects#motor-retraining-by-real-time-sonic-feedback---understanding-strategies-of-low-impact-running}}, year = {{2021}}, }