Advanced search
2 files | 2.30 MB Add to list

A space-time discretization for an electromagnetic problem with moving non-magnetic conductor

Van Chien Le (UGent) , Marian Slodicka (UGent) and Karel Van Bockstal (UGent)
Author
Organization
Project
Keywords
Applied Mathematics, Computational Mathematics, Numerical Analysis, Space-time discretization, Finite element method, Error estimates, Moving non-magnetic conductor, Reynolds transport theorem

Downloads

  • (...).pdf
    • full text (Published version)
    • |
    • UGent only
    • |
    • PDF
    • |
    • 1.48 MB
  • Accepted manuscript.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 819.03 KB

Citation

Please use this url to cite or link to this publication:

MLA
Le, Van Chien, et al. “A Space-Time Discretization for an Electromagnetic Problem with Moving Non-Magnetic Conductor.” APPLIED NUMERICAL MATHEMATICS, vol. 173, 2022, pp. 345–64, doi:10.1016/j.apnum.2021.12.009.
APA
Le, V. C., Slodicka, M., & Van Bockstal, K. (2022). A space-time discretization for an electromagnetic problem with moving non-magnetic conductor. APPLIED NUMERICAL MATHEMATICS, 173, 345–364. https://doi.org/10.1016/j.apnum.2021.12.009
Chicago author-date
Le, Van Chien, Marian Slodicka, and Karel Van Bockstal. 2022. “A Space-Time Discretization for an Electromagnetic Problem with Moving Non-Magnetic Conductor.” APPLIED NUMERICAL MATHEMATICS 173: 345–64. https://doi.org/10.1016/j.apnum.2021.12.009.
Chicago author-date (all authors)
Le, Van Chien, Marian Slodicka, and Karel Van Bockstal. 2022. “A Space-Time Discretization for an Electromagnetic Problem with Moving Non-Magnetic Conductor.” APPLIED NUMERICAL MATHEMATICS 173: 345–364. doi:10.1016/j.apnum.2021.12.009.
Vancouver
1.
Le VC, Slodicka M, Van Bockstal K. A space-time discretization for an electromagnetic problem with moving non-magnetic conductor. APPLIED NUMERICAL MATHEMATICS. 2022;173:345–64.
IEEE
[1]
V. C. Le, M. Slodicka, and K. Van Bockstal, “A space-time discretization for an electromagnetic problem with moving non-magnetic conductor,” APPLIED NUMERICAL MATHEMATICS, vol. 173, pp. 345–364, 2022.
@article{8732491,
  author       = {{Le, Van Chien and Slodicka, Marian and Van Bockstal, Karel}},
  issn         = {{0168-9274}},
  journal      = {{APPLIED NUMERICAL MATHEMATICS}},
  keywords     = {{Applied Mathematics,Computational Mathematics,Numerical Analysis,Space-time discretization,Finite element method,Error estimates,Moving non-magnetic conductor,Reynolds transport theorem}},
  language     = {{eng}},
  pages        = {{345--364}},
  title        = {{A space-time discretization for an electromagnetic problem with moving non-magnetic conductor}},
  url          = {{http://doi.org/10.1016/j.apnum.2021.12.009}},
  volume       = {{173}},
  year         = {{2022}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: