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Abstract 

Human adaptive behavior requires continually learning and performing a wide variety of tasks, often 22 

with very little practice. To accomplish this, it is crucial to separate neural representations of different 23 

tasks in order to avoid interference. At the same time, sharing neural representations supports 24 

generalization and allows faster learning. Therefore, a crucial challenge is to find an optimal balance 25 

between shared versus separated representations. Typically, models of human cognition employ top-26 

down modulatory signals to separate task representations, but there exist surprisingly little systematic 27 

computational investigations of how such modulation is best implemented. We identify and 28 

systematically evaluate two crucial features of modulatory signals. First, top-down input can be 29 

processed in an additive or multiplicative manner. Second, the modulatory signals can be adaptive 30 

(learned) or non-adaptive (random). We cross these two features, resulting in four modulation networks 31 

which are tested on a variety of input datasets and tasks with different degrees of stimulus-action 32 

mapping overlap. The multiplicative adaptive modulation network outperforms all other networks in 33 

terms of accuracy. Moreover, this network develops hidden units that optimally share representations 34 

between tasks. Specifically, different than the binary approach of currently popular latent state models, 35 

it exploits partial overlap between tasks. 36 
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1. Introduction 37 

Humans and other rational agents need to continually learn and perform an enormous number 38 

of complex tasks. Sometimes very similar contexts require totally different actions. For instance, while 39 

soccer and handball both require to put a ball in a goal which is guarded by a keeper and some defenders, 40 

soccer requires to manipulate the ball with the feet while handball requires to manipulate the ball with 41 

the hands. In such contexts, it is important to separate stimulus-action representations between the two 42 

tasks as much as possible in order to avoid interference. However, at other times, two different contexts 43 

nevertheless require partially similar actions. Despite the fact that tennis requires to play a ball over a 44 

low-hanging net and badminton requires to play a shuttle over a higher placed net, one can partially 45 

generalize the action of swinging the racket between the two sports. Thus, in these cases, an agent can 46 

significantly benefit from partially sharing knowledge between the two tasks.  47 

Previous research (Baxter, 2019; Franklin & Frank, 2018; Musslick et al., 2017; Vaidya, 48 

Jones, Castillo, & Badre, 2021; Zambaldi et al., 2018) indeed illustrated that sharing task 49 

representations significantly improves learning and generalization across tasks, two hallmarks of human 50 

flexibility. However, sharing task representations in a neural network severely impacts the network’s 51 

ability to perform more than one task at the same time (i.e., to multi-task; Alon et al., 2017; Musslick 52 

et al., 2017; Musslick, Saxe, Novick, Reichman, & Cohen, 2020). Moreover, shared task representations 53 

leave a network very vulnerable to overwriting previously learned information. This problem is known 54 

as catastrophic interference (French, 1999). In contrast, a network that develops separated task 55 

representations experiences less problems in multi-tasking (Musslick et al., 2020; Tsai, Saxe, & Cox, 56 

2016) and can continually learn without forgetting (Kirkpatrick et al., 2017; Masse, Grant, & Freedman, 57 

2018; McClelland, McNaughton, & O’Reilly, 1995; Verbeke & Verguts, 2019). However, such 58 

networks are less able to generalize and as a consequence must learn even very similar tasks (like tennis 59 

and badminton) from scratch. In sum, there exists a trade-off between sharing and separating task 60 

representations in neural networks (Musslick et al., 2017; Musslick & Cohen, 2020; Sagiv, Musslick, 61 

Niv, & Cohen, 2020). 62 

One popular solution to deal with this sharing-separating trade-off are compositional task 63 

representations (Fidler, Boben, & Leonardis, 2009; Franklin & Frank, 2018; Lake et al., 2014; Sugita, 64 
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Tani, & Butz, 2011; Tubiana & Monasson, 2017; Yang, Joglekar, Song, Newsome, & Wang, 2019). 65 

For instance, to a first approximation, knowledge of soccer can be decomposed in two basic building 66 

blocks: the goal of the task (getting the ball past the goalkeeper) and the actions (kicking the ball). This 67 

allows the agent to generalize the goal when learning to play handball but also to avoid interference by 68 

separating the actions between both sports. Hence, a novel task can be learned quickly by recombining 69 

building blocks from previously learned tasks. Indeed, generalizing information through compositional 70 

task representations received considerable attention in several cognitive domains such as language 71 

(Irsoy & Cardie, 2014; İrsoy & Cardie, 2015; Lake et al., 2014) and sensorimotor learning (Butz, 72 

Achimova, Bilkey, & Knott, 2021; Butz, Bilkey, Humaidan, Knott, & Otte, 2019; Sugita et al., 2011). 73 

Nevertheless, it is not clear which neural network configurations could learn such compositional 74 

representations (Hupkes, Dankers, Mul, & Bruni, 2020; Lake & Baroni, 2018; Lake, Ullman, 75 

Tenenbaum, & Gershman, 2017), and what the resulting compositional representations would look like. 76 

The current work aims to build upon previous cognitive and computational work to investigate which 77 

cognitive architectures can balance shared and separated task representations in typical cognitive tasks, 78 

and what type of representations successful architectures would develop.  79 

In cognitive science, the ability to perform one task while eliminating interference from other 80 

tasks, is known as cognitive control. Influential theoretical work (Miller & Cohen, 2001), suggests that 81 

cognitive control is implemented as a top-down modulatory signal that prioritizes relevant information 82 

processing in other processing areas. Specifically, it has been suggested that the human prefrontal cortex 83 

sends modulatory signals to more posterior processing areas; such signals excite task-relevant 84 

processing pathways and inhibit task-irrelevant processing pathways (Aben, Calderon, Van den 85 

Bussche, & Verguts, 2020). Hence, the prefrontal cortex can separate information by inhibiting all 86 

processing that might interfere with the current task. This approach has proven fruitful to explain human 87 

behavior in cognitively demanding tasks (Abrahamse, Braem, Notebaert, & Verguts, 2016; Botvinick, 88 

Braver, Barch, Carter, & Cohen, 2001; Cohen, Dunbar, & McClelland, 1990; Verbeke & Verguts, 89 

2019). However, as noted above, a complete separation between task representations would be 90 

inefficient. Indeed, in some cases the network might benefit from information transfer between similar 91 

tasks.  92 
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To study the balance between sharing and separation, we consider the nature of top-down 93 

signals. Interestingly, there exist some crucial differences in the literature with respect to how top-down 94 

modulation is implemented. For instance, while some research treats the top-down signal as any other 95 

input signal and add all inputs together (Cohen et al., 1990), other research has treated the top-down 96 

signal as multiplicative (Masse et al., 2018; O’Reilly & Frank, 2006), which allows to effectively shut 97 

down (multiply by zero) activity for irrelevant neurons. Additionally, while in most research the 98 

modulatory signal is adapted to the needs of the current task (Botvinick et al., 2001; Cohen et al., 1990; 99 

Verguts & Notebaert, 2008), other work (Bouchacourt & Buschman, 2019; Masse et al., 2018) 100 

illustrated that also random, non-adaptive modulatory signals can be sufficient to allow optimal 101 

performance on complex tasks. Hence, random signals can often meet performance of learned signals, 102 

while requiring far less computational constraints. Moreover, because less parameters need to be 103 

learned, these random modulatory signals are often faster in learning to process novel inputs. More 104 

generally, random signals have proven to be useful in constructing powerful neural networks (Lillicrap, 105 

Cownden, Tweed, & Akerman, 2016; Maass, Natschläger, & Markram, 2002). Thus, top-down 106 

modulation signals differ in whether they are additive or multiplicative and whether they are adaptive 107 

or non-adaptive. 108 

The current work provides a systematic investigation of different types of modulation signals 109 

in balancing the trade-off between shared and separated representations. Specifically, we propose four 110 

approaches for modulation. In a first approach, non-adaptive additive modulation (N+ network) is 111 

applied. Here, for each task, a different random top-down signal contributes to the activity patterns in 112 

an additive manner. Second, in adaptive additive modulation (A+ network), top-down input is also 113 

added to the network. However, in this approach, the top-down input is treated like any other task-114 

processing input in the sense that top-down weights are susceptible to the same (backpropagation) 115 

learning rules as the regular task-processing weights. Third, in non-adaptive multiplicative modulation 116 

(Nx network), the network inhibits and/or excites a random proportion of pathways in every task context 117 

by multiplying activation with zero (inhibition) or a random positive value (excitation). Fourth, in 118 

adaptive multiplicative modulation (Ax network), the network learns which processing pathways to 119 

excite or inhibit.  120 
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Since previous work illustrated that the impact of shared representations depends on the nature 121 

of the task environment (Musslick et al., 2017), networks are tested on three different types of input 122 

(discrete low-dimensional, continuous low-dimensional, and continuous high-dimensional; see also 123 

Figure 1). For each input type, we consider a number of tasks that differ in the amount of overlap of 124 

their stimulus-action mappings. Interestingly, for artificial agents, there is more catastrophic 125 

interference when trained in a blocked fashion. In contrast, blockwise training appears beneficial for 126 

human agents (Flesch, Balaguer, Dekker, Nili, & Summerfield, 2018). To evaluate each network’s 127 

ability to overcome interference, we thus trained our artificial networks in a blocked fashion. In sum, 128 

we test the four modulation signals on a task that requires them to optimally balance the transfer 129 

(sharing) and avoidance of interference (separating) between tasks. Network performance is evaluated 130 

in terms of accuracy and the ability to find the optimal amount of sharing between task representations. 131 

  132 

2. Methods 133 

2.1 The network 134 

Our network (Figure 1a) consists of an Input, Hidden, and Output layer. Information flows in 135 

a feedforward manner from Input to Hidden to Output layer. All neurons in each layer are fully 136 

connected to all neurons in the next layer. Neurons in the Input layer are divided in a Stimulus group 137 

and a Task group. Activation at the Hidden layer is a combination of input from the Stimulus group and 138 

a modulatory signal from the Task group. In analogy to previous work, we use 139 

 𝑯 = 𝑓(𝑺𝑾𝒔,𝒉 + 𝑻𝑾𝒕,𝒉) (1) 

 140 

for additive modulation (e.g., Cohen et al., 1990) and  141 

 𝑯 = 𝑓(𝑺𝑾𝒔,𝒉)⨂𝑔(𝑻𝑾𝒕,𝒉) (2) 

 142 

for multiplicative modulation (e.g., Masse et al., 2018). However, see the Supplementary materials for 143 

additional simulations with other implementations of modulation. In these equations, H, S and T are 144 

vectors representing activation in the Hidden, Stimulus and Task group respectively. A weight matrix 145 
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between layers is represented by W. The symbol  represents elementwise multiplication. The 146 

functions f() and g() represent (elementwise) nonlinear activation functions. In the main text we 147 

consider simulations in which f() represents a sigmoid activation function:  148 

 149 

 𝑠𝑖𝑔(𝑿𝑾𝒙,𝒋) =  
1

1 + 𝑒−(𝑿𝑾𝒙,𝒋)
 (3) 

 150 

and g() represents a RELU activation function: 151 

 152 

 
𝑅𝐸𝐿𝑈(𝑿𝑾𝒙,𝒋) = max (0, (𝑿𝑾𝒙,𝒋)) 

(4) 

 153 

In these equations, X is a (row) vector representing activity in the sending layer and Wx,j represents a 154 

weight matrix between the sending (x) and receiving (j) layer. Thus, Hidden neurons with a negative 155 

weight from the active Task neuron are gated out (activation multiplied by 0), while activation of 156 

Hidden neurons with a positive weight, are multiplied by a positive value. The Supplementary materials 157 

present additional simulations in which different combinations of sigmoid and RELU functions are 158 

explored. Activation at the Output layer (O) simply follows O = sig(HWh,o). After each trial, weights 159 

are adapted by the backpropagation learning rule (Rumelhart, Hinton, & Williams, 1986): 160 

 161 

 
∆𝑾𝒙,𝒋 =  −𝛼 × 

𝜕𝐸

𝜕𝑾𝒙,𝒋
 

(5) 

 162 

in which again x represents the sending layer and j represents the receiving layer. The parameter  > 0 163 

represents a learning rate, and 
𝜕𝐸

𝜕𝑾𝒙,𝒋
 is the (partial) derivative of the error (E) with respect to the weights 164 

(W).  165 
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 166 

Figure 1. Network architecture and simulations. a: General network architecture. The network consists 167 

of three layers. Information flows in a feedforward manner from Input to Hidden to Output layer. The Input 168 

layer is divided in a Stimulus and Task group. The Task group sends a modulation signal (red arrow). We 169 

evaluate four different types of modulation and test the network on three types of stimulus datasets (b-d). b: 170 

Stroop (discrete) dataset. Stimuli are a combination of a cue, a font (color) and a (color) word. The cue 171 

indicates which other dimension (word or font) is relevant for responding. Five tasks are defined in which 172 

the mapping between three response options and three values for color (in font and word) are changed. 173 

Mappings are represented in the panel. c: Trees (continuous low-dimensional) dataset. The stimulus figure 174 

is adopted from Flesch et al. (2018). Current work has coded this dataset with two neurons that can take on 175 

any value between 0 and 1. Four tasks are defined in which the network needs to give a yes or no judgement 176 

(one response neuron). d: MNIST (continuous high-dimensional) dataset. Here, stimuli are 28 x 28 pixel 177 

images of handwritten digits from 0 to 9. Examples are taken from 178 

https://www.tensorflow.org/datasets/catalog/mnist. We defined six possible tasks in which again the 179 

network needs to give a yes/no judgement. 180 

2.2 Datasets 181 

The network was tested on three datasets (Figure 1b-d), allowing us to evaluate several 182 

combinations of input and task type. Note that the size of the Input, Output and Task layers were adapted 183 

depending on the input dataset. The first dataset had discrete (binary) low-dimensional input patterns. 184 

Specifically, we consider the classic cognitive control Stroop task (Stroop, 1935). See Figure 1b for an 185 

illustration of the network specifics for this dataset. Here, on each trial a (color) word is presented 186 

(“red”, “green” or “blue”) in a particular font (color) (red, green or blue). Additionally, a cue is provided 187 

https://www.tensorflow.org/datasets/catalog/mnist
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telling the agent to respond either to the word or to the font dimension. The task consists in learning 188 

mappings between colors (red, green and blue) and response buttons (left, middle, right). Crucially, 189 

both stimulus dimensions can provide congruent evidence (e.g. “red” presented in red) or incongruent 190 

evidence (“red” presented in blue). In the latter case, the correct response depends on the cue dimension 191 

(respond to red when cue is word and to blue when cue is font). In terms of the network, we consider 8 192 

input neurons (2 cues, 3 words and 3 colors; see also Figure 1b). Here, each stimulus consists of the 193 

activation (input value = 1) of 3 (a cue, a word and a font) out of 8 Stimulus neurons, resulting in 18 (2 194 

instructions  3 fonts  3 words) possible stimuli. Additionally, we activate one Task neuron on every 195 

trial, which determines the appropriate mappings between stimuli and responses. In this task, the Output 196 

layer consists of 3 neurons. On each trial, the Output neuron with the highest activation (argmax(O)) is 197 

considered to be the network response. Depending on the task, each color value (red, green or blue) was 198 

mapped to one of the neurons in the Output layer. Specifically, we define five tasks (see also Figure 199 

1b). Here, tasks A, B and C share no stimulus-action mappings. Task D represents a mix of tasks A, B 200 

and C. Specifically, D shares exactly 1/3 of stimulus-action mappings with all three other tasks. The 201 

last task E shared all stimulus-action mappings with A but activated a different neuron in the Task group 202 

(in a sense, A and E are synonyms). Note that we call this a Stroop task because the input consists of 203 

font and word input where one dimension was relevant; we did not mimic the imbalance between color 204 

naming and word reading that appears in typical Stroop tasks. 205 

The second dataset is the Trees dataset (see also Flesch et al., 2018). Specifics for this dataset 206 

are presented in Figure 1c. In the Trees dataset, there are two Stimulus neurons which can take on any 207 

value in a range of 0 to 1 (continuous low-dimensional input). One Stimulus neuron represents the 208 

‘leafiness’ of a tree and the other Stimulus neuron represents the ‘branchiness’ of the tree. The Output 209 

layer contained only one neuron. For this dataset, the network has to make a yes (output = 1) or no 210 

(output = 0) judgement. We defined four different tasks for this input type. One task was to respond yes 211 

to leafy trees (leafiness >.5), a second task was to respond to branchy trees (branchiness >.5), a third 212 

task required the network to respond to trees that were both leafy and branchy (AND task), and the 213 

fourth task consisted of responding to trees that were either leafy or branchy (but not both; XOR task). 214 

Note that for this dataset there were no completely (100%) dissimilar tasks. The Leafy and Branchy 215 
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task share 50% of stimulus-action mappings with each other but also with the AND and XOR taks. The 216 

AND and XOR task share 25% of mappings with each other. 217 

The third dataset consisted of images (continuous, high-dimensional input). More specifically, 218 

we used the MNIST data set (LeCun, Cortes, & Burges, 2010) which contains grey-scaled images (28 219 

x 28 pixels) of handwritten digits from 0 to 9. Again, the Output layer consisted of one neuron. For this 220 

input type, 6 different tasks were provided. One task was to respond to odd digits (i.e., output = 1 for 221 

odd digits; output = 0 for even digits); another task required a response to even digits. A third and fourth 222 

task required the network to respond to digits that were respectively larger or smaller than 5. The fifth 223 

task consisted of responding to digits larger than 3 and the sixth task was to respond to digits smaller 224 

than 7. This resulted in a complex pattern of overlap between the different tasks. Tasks vary from 100% 225 

dissimilar (odd and even), to only 20% dissimilar (>3 and >5; <5 and <7). 226 

2.3 Simulations 227 

As described before, four versions of the network were simulated. Activation at the Hidden 228 

layer follows Equation (1) for additive modulation networks (N+ and A+), and Equation (2) for 229 

multiplicative modulation networks (Nx and Ax). In adaptive modulation networks (A+ and Ax), the 230 

weights between the Task group and Hidden layer are learned by the backpropagation rule (Equation 231 

(5)), just like the other weights. In non-adaptive modulation networks (N+ and Nx), the weights between 232 

the Task group and Hidden layer are fixed at their initial (random) values. All weights are initialized 233 

with a random value drawn from the normal distribution N(0, 1). Only for the Ax network, modulating 234 

weights (between Task and Hidden layer) had an initial random value drawn from the uniform 235 

distribution U(0, 1), such that RELU(T) > 0 (all gates open) at the first trial. This set up provides the 236 

most optimal initialization for each network. We illustrate network performance with other weight 237 

initialization distributions in the Supplementary materials.  238 

All four versions of the network were tested on all three data sets. Additionally, we explored 239 

different learning rates () and shapes of Hidden layer. Also the shapes of the Input, Output and Task 240 

layers were adapted depending on the input dataset. For the Stroop and Trees input datasets,  took on 241 

6 values ranging from 0 to 1 in steps of .2. We explored the network with one Hidden layer of either 12 242 
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or 24 neurons. For the MNIST dataset we used lower learning rates. Here,  took on 6 values ranging 243 

from 0 to .1 in steps of .02. For this data set, we explored performance with one Hidden layer of 400 244 

neurons; and also with two Hidden layers (300 and 100 neurons respectively) and three Hidden layers 245 

(200, 100 and 100 neurons respectively). Note that for this dataset, the total number of Hidden neurons 246 

did not differ between architectures. Activation at the first Hidden layer (H1) followed Equation (1) or 247 

(2) for additive or multiplicative networks respectively. In standard simulations, activation at the second 248 

and third Hidden layer followed: Hi = sig(Hi-1WHi-1,Hi), in which i is the index of the Hidden layer. 249 

Hence, the Task modulation signal was not sent directly to the deeper Hidden layer(s). However, for 250 

completeness we also explored network performance (with two hidden layers) when the Task signal 251 

was sent to only the second hidden layer, to both hidden layers or to none of the hidden layers. Results 252 

of these simulations are presented in section 3.5. 253 

For every combination of  and shape of the Hidden layer, 25 simulations (N = 25) were 254 

performed for each dataset. For each simulation, 1200 or 12000 inputs were randomly sampled for the 255 

Trees and MNIST datasets respectively. Since there were only 18 stimuli (input patterns) for the Stroop 256 

dataset, we chose to repeat these 18 stimuli 75 times in each simulation, resulting in 1350 trials. 257 

Additionally, we randomly shuffled the order of tasks before a simulation. In a next step, we divided 258 

the sampled input patterns over 3 repetitions (450, 400 or 4000 trials per block for the Stroop, Trees 259 

and MNIST dataset respectively). In every repetition, the network was trained (training phase) 260 

blockwise on each task, using the predetermined input sample and order of tasks. Thus, each task was 261 

repeated 3 times in a blocked fashion. At the end of the third block, weights were frozen, and the 262 

network was tested (test phase). For this test phase a new order of tasks was generated. Each task was 263 

tested for one block of trials. For this purpose, 100 or 500 new inputs were randomly sampled from the 264 

Trees and MNIST datasets respectively. For the Stroop dataset, no new inputs could be generated so 265 

we repeated the 18 possible inputs 5 times, resulting in 90 trials. 266 

2.4 Analyses 267 

2.4.1 Accuracy 268 
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To investigate whether networks suffered from catastrophic interference during learning, we 269 

computed accuracy for each task repetition (averaged over all tasks). Networks that suffer from 270 

catastrophic interference would need to relearn a task on every repetition because they would learn 271 

other tasks in between. Hence, such a network would not improve over task repetitions.  272 

Next, we investigated the network’s ability to balance separating representations with sharing 273 

representations. More specifically, we computed accuracy for each task during the test phase. For this 274 

analysis we mainly focus on the Stroop dataset but we present results for the other datasets as well. The 275 

Stroop dataset is optimally suited for this analysis since there is a larger variation in (dis)similarities 276 

between tasks (see also the objective dissimilarity table in Figure 2) than is the case for the other 277 

datasets. More specifically, five tasks were proposed for the Stroop dataset. As described in section 2.2, 278 

three of them (A, B and C) did not share any stimulus-action mappings and thus can be totally separated. 279 

Tasks A and E however, share all stimulus-action mappings and can be fully shared. Additionally, task 280 

D shares 1/3 of its stimulus-action mappings with all other tasks. On the one hand, a full sharing of task 281 

representations would allow the network to exploit the shared mappings between A, D and E but lead 282 

to catastrophic interference in tasks B and C, illustrated by a strong decrease of accuracy in tasks B and 283 

C compared to A, D and E. On the other hand, a full separation of tasks would improve accuracy of 284 

tasks B and C (by less interference), but would also eliminate the advantage of the full overlap between 285 

A and E and the partial overlap between D and the other tasks. Hence, accuracy would be the same for 286 

all tasks. Importantly, when the network is only able to fully share or separate information it would 287 

benefit from the full overlap between A and E but would not benefit from the partial overlap between 288 

task D and the other tasks. In sum, an optimal network would find a balance between sharing and 289 

separating, resulting in an improved accuracy for tasks A, D and E while minimizing the dip in accuracy 290 

for tasks B and C. 291 

To evaluate overall performance of the networks we also computed accuracy during the test 292 

phase for all learning rates and all tasks.  293 

2.4.2 Representational dissimilarity 294 

In order to analyze to what extent the networks shared or separated stimulus-action mappings 295 

across tasks, we computed how dissimilarity between tasks in terms of stimulus-action mappings was 296 
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represented in the network. This analysis considers several steps. An overview of these steps in the 297 

context of the Stroop dataset is provided in Figure 2.  298 

In a first step, we computed for each simulation the objective dissimilarity between stimulus-299 

action mappings across tasks. Specifically, we computed a matrix where rows and columns represent 300 

the tasks, and each cell contains the proportion of stimuli that were matched with a different action 301 

across the two respective tasks (row and column).  302 

A second step was to compute the representational dissimilarity within the network. For this 303 

purpose, we first computed the mean activation at Hidden layer for each stimulus (18 Stroop stimuli, 4 304 

quadrants of branchy-leafy space and 10 digits in MNIST dataset) in each task across trials. Then the 305 

difference between task representations was extracted by computing the mean Euclidean distance for 306 

two tasks T1 and T2. Here,  307 

 308 

 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑇1,𝑇2 = ∑ ‖𝑯𝑇1
𝑆 − 𝑯𝑇2

𝑆 ‖ 𝑛𝑆𝑡𝑖𝑚⁄

𝑛𝑆𝑡𝑖𝑚

𝑆

 (6) 

 309 

in which 𝑯𝑇1
𝑠 and 𝑯𝑇2

𝑠  are vectors of length nHidden, representing the average activity for all Hidden 310 

neurons when stimulus S was presented to the network. Hence, we compute the Euclidean distance 311 

(indicated by- ) for each stimulus (S) and each task pair (T1, T2). This distance is then averaged 312 

over all possible stimuli (nStim) to obtain one dissimilarity matrix of Hidden representations between 313 

tasks.  314 

In a third and last step we compared the objective dissimilarity to the representational 315 

dissimilarity. Specifically, we reshaped both matrices to vectors and computed the Spearman rank 316 

correlation coefficient between these vectors. This resulted in one value of the dissimilarity correlation 317 

between objective task dissimilarity and a network’s representational task dissimilarity. 318 
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 319 

Figure 2. Methods. Illustration of the different steps in the representational dissimilarity analyses. Examples 320 

are shown for one simulation of the Stroop dataset with a learning rate of .6 and 12 Hidden neurons. 321 

2.4.3 Neural activation analyses 322 

We performed two additional analyses to gain more insight into how the different modulatory 323 

signals organize Hidden layer activity. For this purpose, we again computed for each task the mean 324 

activation at Hidden layer for each stimulus, resulting in a matrix with size (nStim, nTask, nHidden). 325 

First, we investigated the distribution of activation for all stimuli and tasks across the Hidden neurons. 326 

Second, in order to visualize the network representations for each task, we reduced Hidden layer 327 

dimensionality via principal component analysis. For this purpose, we entered the activation matrix 328 

with size (nStim, nTask, nHidden) into the principal component analysis and approximated it by a matrix 329 

of size (nStim, nTask, 2). As a result, we could plot the representation of each stimulus in each task in 330 

a two-dimensional space.  331 

3. Results 332 

3.1 Accuracy 333 

First, we evaluated the networks’ ability to separate task representations. For this purpose, we 334 

investigated whether average accuracy (during the training phase) increased over task repetitions. 335 

Networks that do not separate task sets suffer from catastrophic interference because they overwrite 336 

mappings of one task by the mappings of another task. As a result, such networks need to relearn the 337 

original task when it is presented again, and do not show any improvement over task repetitions. In 338 

Figure 3, it is observed that accuracy hardly improves for the additive networks (A+ and N+). Thus, 339 

these networks severely suffered from catastrophic interference. In contrast, for multiplicative 340 
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modulation networks, in particular for the Ax network, there was a significant improvement over task 341 

repetitions. Thus, multiplicative modulation seems more efficient in separating task representations, 342 

rendering them less vulnerable to catastrophic interference during learning. 343 

 344 

Figure 3. Accuracy in training phase per task repetition. Lines illustrate mean accuracy for each task 345 

repetition during the training phase averaged across all learning rates (), all tasks and all simulations. Bars 346 

indicate 95% confidence intervals over 25 simulations. The dashed lightgrey line indicates chance level 347 

accuracy. Results are shown for different datasets (rows) and different shapes of Hidden layer (columns). 348 

Second, we zoomed in on accuracy for each task during the test phase. Here, we focus mainly 349 

on the Stroop dataset (see section 2.2) because the Stroop dataset has a broader range of dissimilarities 350 

between tasks. Specifically, tasks A, B and C have completely dissimilar mappings, task D has a partial 351 

overlap of 1/3 with all other tasks and task E shares all mappings with task A. An optimal network 352 

would find a balance between sharing and separating, resulting in an improved accuracy for tasks A, D 353 

and E while minimizing the dip in accuracy for tasks B and C (see also section 2.4.1). In Figure 4a,b 354 

we observe a strong dip in accuracy for tasks B and C when the modulation signal was additive. This 355 
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suggests that additive modulating signals are well suited for sharing task representations, but less so for 356 

separating task representations. This dip in accuracy for tasks B and C is less strong for the 357 

multiplicative modulation networks. Importantly, the Nx network has an approximately equal accuracy 358 

for all tasks (Figure 4a,b). This suggests that the Nx network has strongly separated task representations, 359 

which did not allow that network to benefit from overlap between task mappings across the different 360 

tasks. The Ax network is clearly the network that was able to optimally balance the separation and 361 

sharing of task representations, showing an advantage in accuracy for all tasks compared to the other 362 

networks, and only a small dip for tasks A and B. Note that although task D only had a partial overlap 363 

with other tasks, accuracy is equally high as for tasks A and E which fully overlapped. Hence, the Ax 364 

network does not treat sharing or separation as an all-or-none process, but also captures partial overlap. 365 

 366 

Figure 4. Accuracy in test phase per task. Lines illustrate mean accuracy during the test phase for each 367 

task, averaged across all learning rates () and all simulations. Bars indicate 95% confidence intervals over 368 

25 simulations. The dashed lightgrey line indicates chance level accuracy. Results are shown for different 369 

datasets (rows) and different shapes of Hidden layer (columns). 370 
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We also show results for the other datasets but these are less informative in this respect, 371 

because there is no strong variability in objective task dissimilarity (see section 2.2). For the Trees 372 

dataset (Figure 4 c,d) there was an average objective dissimilarity of 50% for the leafy and branchy 373 

task, and an average dissimilarity of 41.5% for the AND and XOR tasks. For the MNIST dataset (Figure 374 

4e-g) there was a strong variability of dissimilarity between tasks themselves (20-100%), but when 375 

averaged over all tasks, the range of dissimilarity between one task and all other tasks was rather small 376 

(between 56 and 64%). Despite the absence of variability in overall dissimilarity between tasks, it is 377 

also clear for the Trees (Figure 4c, d) and MNIST (Figure 4e, f) dataset that the Ax network performs 378 

best. 379 

This suggestion that the Ax network is best able to find a balance between sharing and 380 

separating task representations, is supported by the fact that this network reaches a higher accuracy 381 

overall when we analyze accuracy over all tasks during the test phase. In Figure 5, it is observed that 382 

the Ax network outperforms all other networks for all learning rates, all shapes of Hidden layer and all 383 

datasets. The non-adaptive additive (N+) network performs worst. The non-adaptive multiplicative 384 

modulation (Nx) network and the adaptive additive (A+) network perform in between these other 385 

networks. Here, the Nx modulation network seems to obtain an advantage over the A+ network when 386 

there are more Hidden neurons (Figure 5b,d) and for high-dimensional (MNIST; Figure 5e,f) input 387 

datasets. In sum, multiplicative modulation outperforms additive modulation, and adaptive modulation 388 

outperforms non-adaptive modulation.  389 
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 390 

Figure 5. Accuracy in test phase per learning rate (). Lines illustrate mean accuracy during the test 391 

phase for each value of , averaged across all tasks and all simulations. Bars indicate 95% confidence 392 

intervals over 25 simulations. The dashed lightgrey line indicates chance level accuracy. Results are shown 393 

for different datasets (rows) and different shapes of Hidden layer (columns). 394 

3.2 Representational dissimilarity 395 

We next investigate whether objective dissimilarity of stimulus-action mappings between 396 

tasks was represented in the network. For this purpose, we computed for each network simulation a 397 

representational dissimilarity matrix and correlated this matrix elementwise with an objective 398 

dissimilarity matrix of stimulus-action mappings between tasks (see section 2.4.2 and Figure 2 for 399 

details). Results of this analysis are shown in Figure 6. As was already suggested by the accuracy results 400 

(section 3.1), the Ax network was clearly better at extracting the objective dissimilarity between tasks. 401 

Interestingly, the A+ network was also (although less strongly) able to capture the objective overlap 402 

between tasks for the Stroop and Trees input datasets (Figure 6a-d), but not for the MNIST dataset 403 

(Figure 6e-g).  404 
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For the MNIST dataset, we simulated a network with one Hidden layer (Figure 6e), one with 405 

2 Hidden layers (Figure 6f) and one with three Hidden layers (Figure 6g). Overall, there does not seem 406 

to be a strong benefit for dividing the (same number of) Hidden neurons over multiple layers in the 407 

current setup. However, only the first Hidden layer received a modulation signal. In section 3.5 we 408 

present results for simulations that modulated deeper and/or more hidden layers. 409 

 410 

Figure 6. Correlation of objective and representational dissimilarity between tasks. Lines illustrate the 411 

mean task dissimilarity correlation for each value of  across all simulations. Bars indicate 95% confidence 412 

intervals over 25 simulations. Results are shown for different datasets (rows) and different shapes of Hidden 413 

layer (columns).  414 

3.3 Neural activation analysis 415 

To provide additional insight into how the different modulation signals organize Hidden layer 416 

activity, Figure 7 shows the distribution of activation at the Hidden layer for all networks and datasets. 417 

This is shown for the networks with 12 Hidden neurons (Stroop and Trees dataset) or 1 Hidden layer 418 

(MNIST dataset). Here, it is observed that activation distributions are strongly bimodal with peaks 419 
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around 0 and 1. Note that, because of the RELU modulatory signal (see Equations (2) and (4)), 420 

activation in the multiplicative modulation networks were theoretically not bound to 1. Nevertheless, 421 

also these multiplicative modulation networks show a clear activation bound of 1 after learning. 422 

Interestingly, the multiplicative modulation networks illustrate a strong asymmetrical distribution with 423 

a higher peak of activity around zero. Especially the Nx network has a high zero-centered peak. This 424 

suggests that the Nx network is learning more sparse representations and potentially creates different 425 

groups or modules of neurons where each module learns (part of) one task. Hence, in line with what 426 

was described before, the Nx network is well suited for separating task representations. The activity 427 

distribution of the additive networks is clearly more symmetrical with a higher number of neurons that 428 

exhibit strong activity for each stimulus and task. As a result, the additive networks will probably share 429 

more neurons for representing stimuli and/or tasks. In line with what we described before, the Ax 430 

network illustrates a mixture between the properties of the Nx and additive networks and is therefore 431 

optimally suited to balance shared and separated representations.  432 

 433 

Figure 7. Distribution of activity at Hidden layer. The distribution of activation at the Hidden layer of the 434 

different modulation networks is shown for each dataset.  435 

For the next analyses, we reduced Hidden layer dimensionality into two principal components 436 

with the highest eigenvalues. For the Stroop dataset these components explained on average over all 437 

simulations, networks, learning rates and shapes of Hidden layer, 54.34% of the variance (SD = 6.41%). 438 

For the Trees dataset, two components explained 71.29% of the variance (SD = 8.16%) and for the 439 

MNIST dataset, two components explained 44.95% of the variance (SD = 4.68%). In Figure 8, we show 440 

neural representations in the Hidden layer for each stimulus (dots) and each task (colors) on 2 441 
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dimensions. Notice that this analysis does not allow us to average over simulations. Hence, results are 442 

shown for one representative simulation of the network with an intermediate learning rate of  = .6 for 443 

the Stroop and Trees dataset and  = .06 for the MNIST dataset.  444 

Generally, results are in line with our previous findings in accuracy and representational 445 

dissimilarity analyses. For the Stroop dataset, we observe that the additive modulation networks show 446 

a tendency to share neural representations across tasks (Figure 8g,j). In contrast, the Nx network (Figure 447 

8d) effectively separates the different tasks but fails to share tasks A and E (blue and green dots) which 448 

have no dissimilarities in their stimulus-action mappings. The Ax network however (Figure 8a), shows 449 

a remarkable ability in discovering the overall relational structure between tasks. The network finds 450 

three orthogonal axes for the three orthogonal tasks A, B and C. Task D which shares stimulus-action 451 

mappings with all previous tasks, is placed in between (at the origin of the three axes) the 452 

representations of A, B and C. Additionally, the network discovered that task E fully overlaps with task 453 

A.  454 

For the Trees dataset (Figure 8b,e,h,k), all networks were able to separate task representations. 455 

Thus, in contrast to the Stroop input datasets, the additive networks were able to separate task 456 

representations for the Trees dataset. This explains why the difference in accuracy between networks 457 

was much smaller for the Trees dataset in comparison to other datasets (Figure 5). Note that in this 458 

dataset the inputs were significantly less complex (only 2 dimensions) than for the other datasets (18 or 459 

784 (28
2
) dimensions for the Stroop and MNIST dataset respectively).  460 

For the MNIST dataset, the additive networks again fail to separate task representations 461 

(Figure 8i,l). Notice that the networks extracted separate representations for the 10 digits (0-9) but 462 

shared the digit representations across all tasks. The Nx network (Figure 8f) was able to separate task 463 

representations but did not extract a clear relational structure. Again, only the Ax network (Figure 8c) 464 

was able to extract the full relational structure of the tasks. Here, two dimensions were extracted by the 465 

network. One dimension (Dimension 2) was used to separate the odd from the even tasks, the other 466 

dimension (Dimension 1) was used to separate the larger than (>5 and >3) tasks from the smaller than 467 

(<5 and <7) tasks.  468 
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 469 

Figure 8. Task representations after principal component analysis. The neural representation for each 470 

stimulus (dots) and each task (colors) are shown along the first two principal components. This is shown for 471 

a representative simulation and an intermediate learning rate, for all modulation networks (columns). 472 

3.4. Multilayer networks 473 

To provide more insight into the deeper (more than one Hidden layer) networks, we provide 474 

results of the representational dissimilarity analyses in each layer separately (Figure 9a-e). This is 475 

shown for the two and three Hidden layer networks that were tested on the MNIST dataset. Remarkably, 476 

while the modulation signal is only delivered to the first Hidden layer (Figure 9a,c), the other (second 477 
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and third but not the first) Hidden layer(s) represent the dissimilarity between tasks better (Figure 478 

9b,d,e).  479 

Intriguingly, we observe in Figure 9f-j that, in terms of activation, the differences between the 480 

modulation networks are more pronounced at the first layer than at the second or third layer. This 481 

contrasts with the previous result (Figure 9a-e) that task dissimilarity correlations are more pronounced 482 

in the second and/or third Hidden layer(s). However, it is important to keep in mind that separating task 483 

representations does not necessarily lead to higher dissimilarity correlations as the different tasks also 484 

illustrate significant similarities. This is also emphasized by the fact that the Nx network clearly 485 

separates all tasks but does not show a strong dissimilarity correlation. Although it deserves further 486 

investigation, it might well be that task mappings are maximally separated in the first Hidden layer and 487 

then (compositionally) recombined in the deeper layers. 488 
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 489 

Figure 9. Hidden layer activity for multilayer networks. The upper two rows (panels a-e) illustrate the 490 

mean task dissimilarity correlation for each value of  across all simulations. Bars indicate 95% confidence 491 

intervals across 25 simulations. This is shown separately for each Hidden layer of the two Hidden layer 492 

network in (a-b) and for the three Hidden layer network (c-e). The lower two rows (f-j) illustrate the 493 

distribution of activation at each Hidden layer of the two-layer network (f-g) and the three-layer network (h-494 

j).  495 

3.5. The location of modulation 496 

To gain insight in how network performance is influenced by the location of modulation we 497 

performed additional simulations of the two Hidden layer network on the MNIST dataset. Here, we 498 

explored performance when the network received no modulatory input from the Task layer, when 499 

modulation was applied at the first Hidden layer (as before), at the second Hidden layer, or at both 500 



 25 

Hidden layers. As can be observed in Figure 10a, all networks perform at chance level when no 501 

modulation is applied. When modulation is applied at one or more Hidden layers, the multiplicative 502 

modulating networks, and in particular the Ax network, outperforms the additive networks. Although 503 

network performance seems more reliable (narrow confidence intervals) with modulation at deeper 504 

and/or more Hidden layers, the increase in mean accuracy is very small. 505 

 506 

Figure 10. Accuracy in test phase for different locations of modulation. Lines illustrate mean accuracy 507 

during the test phase for each value of , averaged across all tasks and all simulations. Bars indicate 95% 508 

confidence intervals over 25 simulations. The dashed lightgrey line indicates chance level accuracy. Results 509 

are shown for different datasets (rows) and different shapes of Hidden layer (columns). 510 

Also the results of task representational dissimilarity correlations seem highly similar for all 511 

locations of modulation. Note that this analysis could not be performed for the network that used no 512 

modulation. Since there was no task modulation, task representations were completely similar and the 513 

representational dissimilarity matrices for these networks were constant. Hence, no correlation could 514 

be computed with the objective dissimilarity matrix. 515 
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In sum, there does not seem to be a significant difference in network performance depending 516 

on where modulation is applied. In this specific case, modulation at layer 2 could be considered as most 517 

optimal since it requires to only learn 100 weights from each Task neuron to that second layer, compared 518 

to 300 for the first layer, and 400 for both layers. 519 

 520 

Figure 11. Correlation of objective and representational dissimilarity depending on location of 521 

modulation. Lines illustrate the mean task dissimilarity correlation for each value of  across all 522 

simulations. Bars indicate 95% confidence intervals over 25 simulations. Results are shown for different 523 

locations of modulation (rows) and different Hidden layer(s) (columns).  524 

4. Discussion 525 

Current work investigated how neural networks can optimally balance the trade-off between 526 

avoiding interference via separating task representations and generalizing information via sharing 527 

representations. For this purpose, we identified and systematically investigated two crucial features of 528 

modulation signals. First, the modulation signals can be additive or multiplicative. Multiplicative 529 

signals were better suited for separating task representations. The multiplicative networks were less 530 

vulnerable to catastrophic interference than the additive networks. Second, the modulation signals could 531 

be adaptive (learned) or non-adaptive (random). Adaptive modulation signals provided a clear 532 
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advantage over non-adaptive modulation signals in terms of both accuracy and balancing 533 

representations. Hence, the adaptive multiplicative (Ax) network was able to optimally balance the 534 

trade-off between sharing and separating task representations. This Ax network can avoid interference 535 

but also generalize across tasks which resulted in an overall better accuracy compared to the other 536 

networks. 537 

Crucially, multiplicative signals modulated task-specific input more strongly. A Hidden 538 

neuron that receives input from many bottom-up Stimulus neurons, needs a strong (negative) additive 539 

modulation signal in order to be inhibited. In contrast, our multiplicative signal followed a RELU 540 

activation function (Equation (4); see Supplementary materials for an investigation of activation 541 

functions), which means that a small negative weight was sufficient to shut down (multiply by zero) a 542 

Hidden neuron activation. As a result, multiplicative signals developed sparser representations (Figure 543 

7) which is optimal for separating task representations. This advantage was especially present when 544 

there were many Stimulus neurons (i.e., the MNIST task). When there were only 2 Stimulus neurons, 545 

as in the Trees task (see Figure 1c), the additive network was also able to separate task representations 546 

(see Figure 8h,k). Thus, multiplicative modulation is more efficient than additive signals, especially for 547 

separating high-dimensional inputs. Specifically, the Ax network warped the representational space in 548 

order to effectively organize tasks that obey similar mappings as well as tasks that obey dissimilar 549 

mappings within one neural architecture. In this representational space, dissimilar tasks were placed at 550 

the edges of a regular grid (see Figure 8c) and tasks that were similar were placed closer together. Such 551 

a geometrical organization of task rules is optimally suited for generalizing task rules (Bernardi et al., 552 

2020; Kim, Pitt, & Myung, 2013). Consistent with the current analysis, Kim et al., (2013) demonstrated 553 

how backpropagation shapes hidden space to accommodate quasi-regularities in language processing, 554 

thus to accommodate both regular and irregular stimuli (e.g., orthography-phonology mappings). They 555 

demonstrated that after training by backpropagation, both regular and irregular stimuli could be placed 556 

in hidden neuron space at the edges of a slightly deformed grid; sufficiently grid-like to process the 557 

regular stimuli (and profit from generalization), but sufficiently deformed to cope with irregular 558 

mappings as well. Moreover, previous work has illustrated a similar systematicity of task 559 
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representations in neural activation of prefrontal areas and hippocampus of monkeys (Bernardi et al., 560 

2020).  561 

An extensive amount of work describes how humans share or separate representations by 562 

extracting latent states in the environment (Collins & Frank, 2016; Franklin & Frank, 2018; Gershman 563 

& Niv, 2012; Wilson, Takahashi, Schoenbaum, & Niv, 2014; Yu, Wilson, & Nassar, 2020). Here, the 564 

agent decides on every new experience whether to categorize it as belonging to a new state or as 565 

belonging to a state that it has experienced before. Each latent state would then develop its own 566 

representations. An important disadvantage of the latent state approach is that it uses a dichotomous 567 

decision on whether an object belongs to the state or not. Such an approach is less suited to capture 568 

partial overlap between tasks. In the example of the Stroop dataset, a latent state approach would 569 

correctly assign tasks A, B and C to three different states because the mappings are completely 570 

dissimilar. The latent state approach would also correctly assign task E to the same latent state as A 571 

because they fully share the stimulus-action mappings. However, task D shares 1/3 of the mappings 572 

with all four other tasks. In this case, D would be optimally handled as a combination of the other 573 

mappings that are already learned. This is problematic for a latent state approach since it can only decide 574 

to assign D to a new latent state or to one of the previous ones.  575 

To accommodate this limitation of the latent state approach, previous work has proposed 576 

compositionality (Fidler et al., 2009; Franklin & Frank, 2018; Lake et al., 2014; Sugita et al., 2011; 577 

Tubiana & Monasson, 2017; Yang et al., 2019). Specifically, the latent state approach could allow 578 

mixed overlap between tasks by representing a task as multiple states, each representing a subset of 579 

mappings (Franklin & Frank, 2020; Griffiths & Ghahramani, 2011). Nevertheless, this approach could 580 

significantly increase the number of possible states, which can be problematic in very complex task 581 

environments. This raises the question in how many states/dimensions the agent should cluster its 582 

experiences in order to optimally balance generalization and interference (Badre, Bhandari, Keglovits, 583 

& Kikumoto, 2021). As we have shown in Figure 4a,b, the current Ax network could benefit equally 584 

from the partial overlap in D and the full overlap between A and E without the need of extracting latent 585 

states. This is consistent with previous work, showing that multiplicative network interactions lead to 586 

useful compositional task representations (İrsoy & Cardie, 2015; Sugita et al., 2011). 587 
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Multiplicative modulation is also sometimes called gating (Masse et al., 2018; O’Reilly & 588 

Frank, 2006; Rougier, Noelle, Braver, Cohen, & O’Reilly, 2005). A crucial question that remains is 589 

how multiplicative signals are mechanistically implemented in the human brain. In this respect, we 590 

point to recent work that described an important role for neural oscillations in organizing functional 591 

networks. For example, it has been proposed that neural oscillations at alpha frequency (8-12 Hz) reflect 592 

gating by inhibition (Jensen & Mazaheri, 2010). Here, GABAergic inhibition provided by the task-593 

irrelevant areas would be reflected by stronger alpha activity in those areas. Another oscillatory 594 

frequency that is known to organize functional networks in the brain is the theta frequency (4-8 Hz). 595 

More specifically, recent theoretical and empirical work (Helfrich & Knight, 2016; Lisman & Jensen, 596 

2013; Verbeke et al., 2021; Verbeke & Verguts, 2019; Verguts, 2017) has proposed that prefrontal theta 597 

activity functions to (de)synchronize gamma (>40 Hz) activity in posterior processing areas. Here, 598 

synchronization leads to effective communication (gates open) between processing areas while 599 

desynchronization eliminates effective communication (gates closed) between processing areas (Fries, 600 

2005, 2015). Thus, previous work has described how oscillatory interactions within and between 601 

different frequency bands (theta, alpha and gamma) reflect gating processes that could biologically 602 

implement the multiplicative modulation signals that were used in the current networks.  603 

Previous work has also described how neurotransmitters such as dopamine and noradrenaline 604 

can modulate neural activation in a way that mimics multiplicative modulation (O’Reilly & Frank, 605 

2006; Servan-Schreiber, Printz, & Cohen, 1990). Moreover, current work observed that additive 606 

modulation can reach similar performance as multiplicative modulation when stimulus dimensionality 607 

was low (Trees dataset). Hence, combining additive modulation with weight regularization between 608 

Stimulus and Hidden layer but not between Task and Hidden layer could allow the additive modulation 609 

networks to overcome high-dimensional inputs and reach similar performance as the multiplicative 610 

modulation networks. Future work should further explore biologically plausible implementations of 611 

multiplicative modulation. 612 

In analogy to previous work (e.g., Cohen et al., 1990), the current networks used a low-613 

dimensional Task layer which sent modulation signals to modulate a higher-dimensional Hidden layer. 614 

Typically, information in the Task layer has been considered to correspond to dorsolateral prefrontal 615 
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cortex (DLPFC) and the Hidden layer to posterior task-related (e.g., visual and motor) processing 616 

pathways (Miller & Cohen, 2001). Hence, we propose that modulation signals are implemented by 617 

DLPFC.  618 

A detailed investigation of activation at Hidden layer (Figure 7) illustrated that 619 

(multiplicative) networks separate tasks by developing sparse representations (see also Bowers, 620 

Vankov, Damian, & Davis, 2014). Here, for every task, only a small subset of neurons is active. In the 621 

current context, this suggests that the network develops groups or modules of neurons that each become 622 

specialized for a given task. Developing specialized modules might be beneficial for cognition in 623 

various ways (Bullinaria, 2007; Clune, Mouret, & Lipson, 2013; Coltheart, 1999; Fodor, 1983; 624 

Meunier, Lambiotte, Fornito, Ersche, & Bullmore, 2009). Moreover, recent work in reinforcement 625 

learning has also described hierarchical forms of modularity (Botvinick, Niv, & Barto, 2009; Dietterich, 626 

2000; Holroyd & Verguts, 2021; Krueger & Dayan, 2009). Here, it is proposed that the dorsal part of 627 

the anterior cingulate cortex processes prediction errors related to specific events while the rostral part 628 

processes prediction errors related to the context in which these events occur (Alexander & Brown, 629 

2015). However, modularity of processes in a single task requires integration of information across 630 

stages of processing. Hence, exploring the trade-off between sharing and separating representations at 631 

different levels of processing is an important avenue for future research. 632 

In the current work, modulation signals are employed to guide learning over trials. Here, (for 633 

the adaptive networks) weights between the Task and Hidden layer are adapted to learn representations 634 

of different tasks. In contrast, a lot of previous work considered how modulation is adapted to guide 635 

online performance. Here, the intensity of the modulation signal is typically increased in response to 636 

some evaluation of the cost-benefit structure of the task context (Shenhav, Botvinick, & Cohen, 2013). 637 

These networks typically adapt the intensity of the modulation signal by changing activity in the Task 638 

layer instead of changing the weights (Botvinick et al., 2001; Verbeke & Verguts, 2020; Verguts, 2017). 639 

Consistent with this approach, research on visual attention has proposed that activity can be modulated 640 

(in a multiplicative manner) at the level of the Stimulus layer (Martinez-Trujillo & Treue, 2004; Treue 641 

& Martínez Trujillo, 1999). Alternatively, previous work (Cheadle et al., 2014) suggested that decisions 642 

can be guided via adaptive (multiplicative) gain functions in the transfer from input to output. Hence, 643 
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there is a potentially important functional distinction between modulation in learning versus 644 

performance (see also Lindsay & Miller, 2017). 645 

The trade-off between shared and separated representation also impacts performance 646 

(Musslick et al., 2020) Specifically, a wide range of empirical observations of interference during multi-647 

tasking (performing multiple tasks at the same time) can be explained by a tendency to share task 648 

representations. Musslick et al. (2020) suggest that for generalization purposes, representations of novel 649 

tasks should strongly overlap with other task representations; unfortunately, such overlap leads to strong 650 

interference when these tasks need to be performed at the same time. However, with extensive training, 651 

the networks will gradually separate task representations, which leads to less interference. Hence, future 652 

work should consider a more extensive exploration of modulation signals in performance as well.  653 

We evaluated the ability of different modulation signals to balance shared and separated 654 

representations by investigating how the networks could overcome catastrophic interference. 655 

Importantly, while modulation has proven to be efficient (Masse et al., 2018; Verbeke & Verguts, 2019), 656 

previous work also described other methods to avoid catastrophic interference. For instance, sharing or 657 

separation of task sets might be implemented in complementary learning systems (O’Reilly & Norman, 658 

2002). Alternatively, machine learning literature has introduced methods such as synaptic intelligence 659 

(Kirkpatrick et al., 2017) in which weights learn whether they should be specific for one task and hence 660 

not change during further learning or whether they can be shared across all tasks. Future work should 661 

further address the differences between these approaches. 662 

Several additional tests and extensions can be made to the network. First, previous work 663 

(Flesch et al., 2018) has pointed to an important distinction between interference in artificial and human 664 

agents. While artificial agents show more interference when they learn in a blocked fashion, human 665 

agents exhibit more interference when they learn in an interleaved fashion. The current work trained 666 

artificial agents in a blocked fashion. However, the different types of modulation signals should also be 667 

evaluated for interleaved learning. Potentially this approach could yield more insight in the existing 668 

distinction of learning benefits for artificial compared to human agents. Second, the current networks 669 

did not learn which task features were relevant for modulation. Here, the input layer was divided a-670 

priori in a Stimulus group and a Task group. Hence, an important next step for the network would be to 671 
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learn a hierarchical structure in input features in order to extract which inputs are relevant for 672 

modulation and which are relevant for basic stimulus-action mappings (Rougier et al., 2005). 673 

Alternatively, previous work has illustrated that compositional representations can even develop 674 

without providing task input if they are considered useful as situational signals (Butz et al., 2021). Third, 675 

although we illustrated that the Ax network was able to significantly benefit (in terms of accuracy) from 676 

shared mappings between tasks (Figure 4a,b), we did not perform a direct test of generalization. That 677 

is, we did not evaluate whether newly learned mappings in Task A of the Stroop task were transferred 678 

to task E without further training in task E. That is, we did not test whether the learned task relations 679 

were also suited for few-shot learning (Lake et al., 2014; Sylvain, Petrini, & Hjelm, 2020). Note that 680 

for an exact transfer between A and E, the weight matrix between Task neuron A and the Hidden layer 681 

should be exactly the same as the weight matrix between Task neuron E and the Hidden layer, which 682 

seems a strong requirement. Yet, it is not clear either whether two contexts that require the same 683 

stimulus-action mappings would also function in exactly the same way at behavioral and neural levels. 684 

Nor is this computationally desirable: In the natural environment, two labels that lead to the same 685 

stimulus-action contingencies, may still suggest (subtle) differences. Consider looking for lunch and 686 

seeing a “restaurant” versus a “snack bar” in the distance: Both tell you that you will be able to eat 687 

there, but expectations will differ at least slightly. As we discussed before, extracting a relational 688 

structure between contexts that allows for partial generalization might be more optimal than using a 689 

dichotomous same or different decision.  690 

In sum, efficient human learning and performance requires to balance a trade-off between 691 

sharing representations to allow generalization and separating representations to avoid interference. We 692 

evaluated four different modulation signals and found that an adaptive multiplicative modulation signal 693 

was best suited to balance the sharing/separation trade-off. This modulation signal allowed the Hidden 694 

layer of the network to make a geometrical abstraction of the relational structure between tasks. 695 

Importantly, our work opens several avenues for future work to increase the understanding of the 696 

sharing/separation trade-off in both artificial and human agents.  697 

 698 
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Supplementary materials 

S.1. Exploration of activation functions 

In the main text (see Equation (2)), multiplicative modulation was established by combining 

two nonlinear transformations of the Stimulus and Task input via f() and g(). Here, f() represented the 

sigmoid activation function (see Equation (3)) and g() represented a RELU activation function (see 

Equation (4)). Additive modulation (see Equation (1)) was implemented by transforming both the Task 

and Stimulus input with f(). Here, we present 4 novel simulations in which we explored all combinations 

of activation functions. Specifically, we tested networks in which both f() and g() corresponded to the 

sigmoid function (i.e. Sig ( Sig)), we tested when f() corresponded to the sigmoid function and g() to 

the RELU function (i.e. Sig ( RELU); as in the main text), we tested when f() corresponded to the 

RELU function and g() to the sigmoid function (i.e. RELU ( Sig)) and we tested the networks when 

both f() and g() corresponded to the RELU function (i.e. RELU ( RELU)). Note that for the additive 

modulation networks, only f() is relevant. This is why our notation shows the second function (i.e., g()) 

between brackets. 

For these additional simulations, the networks were tested on the Stroop and Trees dataset 

with 12 Hidden neurons. We again explored different values of  ranging from 0 to 1 in steps of .2. 

Again, 25 simulations were performed in which we shuffled task contexts and trained networks for 

three context repetitions after which weights were frozen and the networks were tested again on each 

context. 

Accuracy and dissimilarity correlations were analysed during the test phase. As can be 

observed (Figure S1), the network that is presented in the main text Sig ( RELU) is most optimal for 

both the multiplicative and additive modulation networks. Although the multiplicative modulation 

seemed less efficient when implemented via a sigmoid function (Figure S1a,c,e,g,i,k,m,o), the Ax 

network still outperformed the other modulation methods. Presumably, the RELU function is more 

efficient for modulation because it operates at a much larger scale [0, +] than the sigmoid function 

which has bounds at 0 and 1. 
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Figure S1. Activation function exploration. Lines illustrate mean accuracy/dissimilarity correlations for 

each value of  across all tasks and all simulations. Bars indicate 95% confidence intervals over 25 

simulations. The dashed lightgrey line indicates chance level accuracy. Results are shown for different 

datasets (rows) and different combinations of activation functions (columns). 

S.2. Concatenated versus separated input transformations 

In the main text (see Equation (2)), multiplicative modulation was established by combining 

two separated nonlinear transformations of the Stimulus and Task input via f(SW) g(TW) while 

Additive modulation (see Equation (1)) was implemented by transforming both the Task and Stimulus 

input with f(SW+TW). Hence, for additive modulation, inputs were concatenated in one transformation, 

while for multiplicative modulation inputs were separated in two transformations. We choose these 

different implementations because they are most closely related to previous work (e.g., Cohen, Dunbar, 

& McClelland, 1990; Masse, Grant, & Freedman, 2018 for additive and multiplicative modulation 
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respectively). However, for completeness, we also explored other implementations of multiplicative 

and additive modulation. Specifically, we tested networks in which for both types of modulation 

(additive and multiplicative) the inputs were concatenated. This results in f(SW)  g(TW) for 

multiplicative modulation and f(SW) + g(TW) for additive modulation. Additionally, we tested networks 

in which the inputs were separated. This resulted in f(SW  TW) for multiplicative modulation and f(SW 

+ TW) for additive modulation.   

Again, the networks were tested on the Stroop and Trees dataset with 12 Hidden neurons. We 

explored different values of  going from 0 to 1 in steps of .2 and 25 simulations were performed in 

which we shuffled task contexts and trained networks for three context repetitions after which weights 

were frozen and the networks were tested again on each context. 

Accuracy and dissimilarity correlations were analysed during the test phase. As illustrated in 

(Figure S2), for none of the modulation methods there is a clear difference when using separated versus 

concatenated input transformations. 
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Figure S2. Concatenated versus separated input transformations. Lines illustrate mean 

accuracy/dissimilarity correlations for each value of  across all tasks and all simulations. Bars indicate 95% 

confidence intervals over 25 simulations. The dashed lightgrey line indicates chance level accuracy. Results 

are shown for different datasets (rows) and different concatenated versus separated input transformations 

(columns). 

S.3. Exploration of weight initialization 

In the main text we described that all weights are initialized with a random value drawn from 

the normal distribution N(0, 1). Only for the Ax network, modulating weights (between Task and 

Hidden layer) had an initial random value drawn from the uniform distribution U(0, 1), such that 

RELU(T) > 0 (all gates open) at the first trial. However, previous work has demonstrated that the way 

in which weights are initialized is not trivial (e.g., Flesch, Juechems, Dumbalska, & Saxe, 2021). To 

illustrate that our results were not solely driven by this choice of weight initialization, we performed 
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additional simulations in which we tested a normal initialization for all modulating weights and 

compared this to a uniform initialization for all modulating weights.  

The networks were again tested on the Stroop and Trees dataset with 12 Hidden neurons. We 

explored different values of  ranging from 0 to 1 in steps of .2. Again, 25 simulations were performed 

in which we shuffled task contexts and trained networks for three context repetitions after which 

weights were frozen and the networks were tested again on each context. 

As shown in Figure S3, the Ax network indeed performs a bit worse when the weights are 

initialized from the normal distribution. However, it is also the case that for the other three networks 

the uniform initialization was a bit less optimal. Hence, the main text describes simulations in which 

the optimal weight initialization was chosen for each of the four modulation methods. 
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Figure S2. Weight initialization exploration. Lines illustrate mean accuracy/dissimilarity correlations for 

each value of  across all tasks and all simulations. Bars indicate 95% confidence intervals over 25 

simulations. The dashed lightgrey line indicates chance level accuracy. Results are shown for different 

datasets (rows) and for different initializations of the modulation weights (columns). 

References 

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: a 

parallel distributed processing account of the Stroop effect. Psychological Review, 97(3), 332–

361. https://doi.org/10.1037/0033-295X.97.3.332 

Flesch, T., Juechems, K., Dumbalska, T., & Saxe, A. (2021). Rich and lazy learning of task 

representations in brains and neural networks. BioRxiv. 

Masse, N. Y., Grant, G. D., & Freedman, D. J. (2018). Alleviating catastrophic forgetting using 

context-dependent gating and synaptic stabilization. Proceedings of the National Academy of 

Sciences, 115(44), 1–12. https://doi.org/10.1073/pnas.1803839115 

 

 
 

 
 

 

 
 


