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Abstract—This paper presents a new method called phase of tran-

sient response using the local reference pixel vector (PTR-LRPV) 

to process pulsed thermography data for defect detection and 

depth estimation in carbon fiber reinforced polymer specimens. 

Due to the use of flash as excitation source in pulsed thermography 

and subsequently its adaptation with the conditions of suddenly 

applied input, the received signal from the infrared camera can be 

separated into two transient and steady-state responses in the fre-

quency domain. Defects cause local variations in the thermal 

spatio-temporal patterns that the transient response can fairly re-

veal such highly informative variations. On the other hand, the 

steady-state response mainly includes the intrinsic characteristics 

of the specimen (sound areas). In fact, by properly separating these 

responses and employing the phase of the transient term, a suitable 

distinction of defect characteristics from sound areas has been 

reached. The results show that the proposed PTR-LRPV is effec-

tive in both defect detection and depth estimation tasks, and also, 

can fairly compete with several well-known algorithms in terms of 

both quantitative and qualitative criteria. 

 

Index Terms—Carbon fiber reinforced polymers (CFRP), pulsed 

thermography, non-destructive testing (NDT), phase of transient 

response, suddenly applied input. 

I. INTRODUCTION 

ARBON fiber reinforced polymers (CFRP) are composite 

materials that have properties such as high corrosion re-

sistance, high strength-to-weight ratio, flexibility in large-scale 

complex designs and proper stability under various environ-

mental conditions [1]. These have led to many industrial appli-

cations, such as aerospace [2], automotive [3], wind turbine 

blades [4], transportation and infrastructure [5]. Due to their 

non-ideal manufacturing procedure or exposure to stressful 

environments during use, CFRPs are prone to defects, which 

cause to reduce their performance and structural integrity. 

Therefore, non-destructive testing (NDT) techniques are essen-

tial to monitor the CFRPs’ quality [6]. In this regard, various 

NDT techniques such as X-ray [7], ultrasound [8], terahertz 

waves [9] and infrared thermography [10] are mainly used to 

detect defects in CFRPs.  

In pulsed thermography, which is from the infrared thermog-

raphy category, heat excitation is applied to the specimen using 

an optical flash (a very short duration thermal pulse, about some 

milliseconds). After applying the excitation, the thermal energy 

 
 

is partially absorbed by the CFRP surface and converted to heat, 

which then diffuses through the specimen. However, internal 

defects restrict this heat diffusion that leads to an increase in 

temperature in such areas and provokes some thermal patterns 

on the specimen surface. These patterns are captured by an 

infrared (IR) camera as a time sequence of thermograms. 

Thanks to its acceptable accuracy in the quick and non-contact 

inspection of vast areas and also easy automation capability, 

pulsed thermography (PT) has achieved significant acceptance 

in recent years in dealing with various types of defects, such as 

flat bottom holes (FBH), Inserts and barely visible impact 

damage (BVID) [11], [12]. 
However, there are some difficulties in this field: empirical 

nature of NDT methods, inevitable presence of noise, non-

uniform thermal excitation, and lateral heat diffusion. Moreo-

ver, flash thermography itself is suffered from the highly diffu-

sive and strongly damped nature of the excited thermal waves, 

which causes the proper detection of small and deep defects to 

be very challenging [11]. Hence, various signal processing al-

gorithms have been suggested to deal with these challenges in 

thermography data. These processes try to enhance the distinc-

tion between defects and sound areas and as such lead to more 

accurate defect detection. The most well-known algorithms in 

this field are thermographic signal reconstruction (TSR) [13], 

principal component thermography (PCT) [14], and pulsed 

phase thermography (PPT) [15]. In the TSR, fitting the raw data 

(obtained from the IR camera) to the low-order logarithmic pol-

ynomials leads to noise reduction and also contrast enhance-

ment between defect and sound areas [13]. PCT is based on the 

singular value decomposition (SVD) in which 3D data is first 

converted into a 2D matrix (by allocating the thermal sequences 

as the rows of a huge 2D matrix) and then decomposed onto the 

empirical orthogonal functions (EOF) for feature extraction 

purpose. The results indicate that only the first few EOFs are 

sufficient to appropriately display defects [14]. The PPT 

method analyzes thermal data in the frequency domain using 

the discrete Fourier transform (DFT). Since the phase response 

is more robust to non-uniform heating, emissivity variations, 

and environmental noise, it has more capability for detecting 

deeper defects in comparison with raw data and amplitude 

response [16]. Further, some new approaches have been 

reported recently; in [17] a hybrid spatial and temporal 
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segmentation methodology is introduced which fuses features 

in multiple dimensions. This scheme also consists of a 

Sequence-PCA layer in the learning process which leads to 

extra semantic information. Authors in [18] have proposed a 

structured iterative alternating sparse matrix decomposition 

framework, which allows the abnormal patterns to be extracted 

automatically for flaw contrast enhancement. In [19], some 

deep learning-based methods have been reported for defect 

detection. Besides, to take advantage of different techniques, 

several hybrid methods have also been proposed in this field 

[20]- [24]. In [20], a combination of neural networks and 

principal component analysis (PCA) is used to estimate the 

depth of the defect. In another method, the PCA-based dimen-

sion reduction followed by the independent component analysis 

(ICA) is employed to detect defects [21]. In [22], using the 

optical flow, the motion properties of the thermal patterns are 

extracted and then applied to the PCA algorithm, which leads 

to convenient results in microcrack detection. In [23], 

differential absolute contrast (DAC) and TSR techniques are 

used to reduce the noise of thermal images, and then the K-

Means clustering is utilized to classify the statistical features 

extracted from the IR images. Also, in [24], based on the 

physics characteristics of the defect in inductive thermograph, 

a defect segmentation method is proposed. The segmentation 

threshold is determined based on the first-order statistical prop-

erties and then optimized using the genetic algorithm. 

Most of the existing thermographic researches only focused 

on defects detection, but a more challenging task is to estimate 

the depth of defects which is crucial for many applications. 

Various depth estimation methods have been reported in the 

literature. In [25], the concept of peak slope time is employed 

to estimate the depth. Authors in [26] used the nonlinear 

transfer model of peak contrast time analysis to reach a reliable 

depth estimation. Several defect depth estimation methods 

employed learning-based methodologies such as artificial 

neural networks [20], [27]. However, due to their training stage, 

such systems are highly dependent on basic information about 

the type and depth of defects. Also, the main challenge arises 

when it needs to examine datasets with different properties. In 

fact, the inconsistency between training and testing data can 

significantly reduce the performance of learning-based 

methods. Some other depth estimation methods have been 

introduced based on frequency domain analysis. In several 

works, the inverse relationship between defect depth and blind 

frequency has been used to estimate depth [11], [28] and [29]. 

Besides, inspired by [30], some methods developed based on a 

direct relationship between the depth of defect and phase [31], 

[32]. In [11], a new approach, called adaptive spectral band 

integration, is introduced, in which, the phase contrast is 

integrated over the relevant frequency range in a pixel-wise 

manner, resulting to a unique index map for defect. 

Several depth estimation methods have also been introduced 

based on other thermography techniques such as eddy current 

pulsed thermography [33]-[35], and vibrothermography [36], 

[37]. In [33], time analysis is performed to select optimal time 

windows for kernel-PCA. Then the depth evaluation in these 

time windows is done using the norm of the principal 

components and derivatives of the impulse response. In [34], 

the crossing point of impulse responses related to defective and 

sound areas, and also, the skewness of impulse responses are 

used for the depth estimation. In [35], a modified skewness 

calculation through inverting heating response has been 

proposed. This modified skewness feature removed the 

counteracting effect of the temperature distribution in the 

heating and cooling stages, which led to a highly sensitive and 

linear model for depth estimation. In [36], depth estimation is 

done based on the three features in the temperature-time curve: 

half-maximum power time, peak slope time, and the second 

derivative peak time. The model showed a relationship between 

the defect's depth and these features. In [37], a low-power 

vibrothermography scheme is introduced based on the pulse 

compression approach. An analytical relation of the lag of the 

compressed pulse versus the delamination depth was presented, 

showing a straightforward way to perform depth inversion in 

vibrothermographic testing. the peak extraction, time delay, and 

compressed phase pulse, which provides a lag quantity that is 

suitable for depth estimation. 

The common thermography signal processing techniques try 

to emphasis those spatio-temporal variations of the thermal 

sequences that lead to better discrimination between defect and 

sound areas. In the case of deeper defects, insufficient energy 

received from the excitation source results in poor variations in 

the thermal patterns, which causes these defects to behave 

similar to sound areas. Thus, it is more challenging to highlight 

variations of the thermal patterns in such cases. Generally 

speaking, the existing methods have some issues in dealing with 

very deep defects. With particular attention to the nature of the 

signal received from the IR camera, this work attempts to 

highlight weak thermal patterns. The profile of the received 

signal depends on various conditions such as environment, IR 

camera characteristics, excitation source, and the specimen's 

material, among which this article focuses on the excitation 

source. Due to the consistency of pulsed thermography with the 

suddenly applied input conditions, the received signal from the 

IR camera is divided into two transient and steady-state 

responses [38]. But since there is no proper distinction between 

the responses in the time domain, this work has focused on their 

DFT to achieve proper separation. Thus, a new methodology 

based on the phase of transient response called phase of 
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Fig. 1. Three investigated CFRP specimens with (a) flat-bottom holes, (b) 

Inserts and (c) barely visible impact damage. 
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transient response using the local reference pixel vector (PTR-

LRPV) is presented. The experimental results showed that this 

new technique is promising for defect detection and depth 

estimation for both categories of shallow and deep defects. 

The paper is organized as follows: In Section II, test 

specimens and experimental setup are briefly described. 

Section III focuses on how to carefully separate between the 

transient and steady-state responses in such a way that be useful 

for defect detection and depth estimation purposes. After that, 

the validation of the proposed method and its comparison with 

some well-known algorithms are presented in Section IV, and 

finally, Section V concludes the paper.  

II. MATERIAL AND EXPERIMENTAL SETUP 

The experiments are performed on three autoclave manufac-

tured CFRP specimens: the first one (CFRPFBH) which is shown 

in Fig. 1(a) has a 150 × 90 × 5.5 mm3 plate with layup 

[(−45/0/45/90)3]s and includes five circular flat-bottom 

holes (FBH) with the same diameter of 10 mm. For simplicity, 

in the rest of this paper, these defects are named as FBH1, 

FBH2, FBH3, FBH4, and FBH5, which have diameter to depth 

ratios of 8.69, 4.85, 3.22, 2.53, and 2.06, respectively. The re-

maining material thicknesses of this defects (in mm) are 

illustrated in Fig. 1(a). The second specimen, (CFRPINSERT) 

which is shown in Fig. 1(b), is a CFRP laminate with 

dimensions 300 × 300 × 3 mm3 with layup [(0/90)3]s which 

was manufactured using resin transfer molding. During 

manufacturing, various Insert defects are introduced. These 

defects are made from double folded Brass foil which are sealed 

with flash-breaker tape. The Inserts A1, B1, C1, D1, E1, and F1 

have a size of 20 × 20 mm2 and length-to-depth ratio of 80.00, 

40.00, 26.66, 20.00, 16.00 and 13.33, respectively. The 

Inserts A2, B2, C2, D2, E2, and F2 have a size of 15 × 15 mm2 

and length-to-depth ratios of 60.00, 30.00, 20.00, 15.00, 

12.00 and 10.00, respectively. Their depth (in mm) are 

depicted in Fig. 1(b). The third specimen, shown in Fig. 1(c), is 

a CFRP coupon with size of 140 × 90 × 5.5 mm3, and quasi-

isotropic layup of [(+45/0/−45/90)3]s. The specimen was 

impacted by dropping a 7.72 kg impactor from a height of 0.3 

m (measured impact energy of 18.5 J) using a calibrated drop 

tower, introducing barely visible impact damage (BVID).  

All experiments are performed in reflection mode, which 

means that the excitation source (flash) and IR camera are on 

the same side. To ensure that sufficient energy is transmitted to 

the entire surface of the specimen, it is fixed at about 70 cm 

away from the source. The type of the IR camera is FLIR 

A6750sc, which has following properties: a) cryo-cooled InSb 

detector with a pixel density of 640 × 512 pixels, b) noise 

equivalent temperature difference (NETD) of < 20 mK, and c) 

bit depth of 14 bit. An internal infrared filter is employed, 

which narrows the camera’s spectral range from 1– 5 μm to 

3– 5 μm.  The flash excitation arises from a Hensel linear flash 

lamp with a nominal energy of 6 kJ and time duration of 5 

milliseconds. The experiments are performed at room 

temperature for CFRPFBH, CFRPINSERT and CFRPBVID 

specimens, using a recording time of 120, 60 and 50 seconds, 

and also, a framerate of 50, 30 and 50 Hz, respectively. The 

excitation lamp has been located in such a way to avoid its di-

rect reflection into the lens of the camera and also to have a heat 

distribution as uniform as possible over the specimen’s surface.  

III. METHODOLOGY  
 

A. Suddenly Applied Input  

Assuming that the received signal by the IR camera in the 

time domain, 𝑡, is represented as 𝑇(𝑡) and given the discrete-

time variable as 𝑡𝑘 = 𝑘𝛥𝑡 such that 𝛥𝑡 is the sampling time 

step, and 𝑘 =  0, 1, 2, …, 𝑁 − 1, the received signal can be 

expressed in discrete form as 𝑇[𝑘𝛥𝑡] ≡ 𝑇[𝑘]. Also, assuming a 

linear time invariant (LTI) system with input 𝐼[𝑘], impulse re-

sponse ℎ[𝑘], and output 𝑇[𝑘], therefore 𝑇[𝑘]  =  𝐼[𝑘]  ∗  ℎ[𝑘], 
where * indicates the convolution operator. Because of using a 

short-duration high-intensity pulse (an overdamped flash) to ex-

cite the specimen under investigation, the input can be properly 

approximated as 𝐼[𝑘] = 𝛿[𝑘] which expresses suddenly applied 

behavior. Thus, the output is the same as impulse response 

(𝑇[𝑘]  =  𝛿[𝑘]  ∗  ℎ[𝑘]  =  ℎ[𝑘]), consequently, due to the 

adaptation of the pulse thermography to the suddenly applied 

   

 

  

 
(e) (f) 

Fig. 2. Comparison of the transient response phase (φ𝛽
𝑡𝑟[𝑛]) as a function of 𝛽 for a sample of the sound area and a sample of each defect with (a) 𝑛 = 1, (b) 𝑛 = 2, 

and (c) 𝑛 = 3, (d) magnified version of the peak occurred in (b) for 𝛽 in the range of [2600: 4000]. Also, the images obtained using the peak of φ𝛽
𝑡𝑟[𝑛 = 2], and 

using 𝛽𝑜𝑝𝑡 are shown in parts (e) and (f), respectively. Further, (g) shows the relation between φ𝛽𝑜𝑝𝑡
𝑡𝑟 [𝑛 = 2] and 𝛽𝑜𝑝𝑡 for all pixels. 
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input conditions, the signal received by the IR camera can be 

separated into two parts as follows [38]: 

𝑇[𝑘] =  𝑇𝑡𝑟[𝑘] + 𝑇𝑠𝑠[𝑘]                      (1) 

where 𝑇𝑡𝑟[𝑘] and 𝑇𝑠𝑠[𝑘] are the transient and steady-state 

impulse responses, respectively. 𝑇𝑡𝑟[𝑘] is mostly manifested by 

the suddenly applied input’s characteristics, which means its 

effect disappears fairly quickly. In contrast, 𝑇𝑠𝑠[𝑘] mainly 

refers to the characteristics of the system itself. It provides the 

intrinsic features of the system, which means its effect is long-

lasting. Further, the defect's effects appear after flash excitation 

as local variations in the thermal spatio-temporal patterns, and 

then, disappear with the complete cooling of the specimen. 

Therefore, the defect property can be associated with 𝑇𝑡𝑟[𝑘]. 

Sound areas reflect the characteristics of the specimen itself. 

Obviously, the effect of these areas is present even after the 

effect of the defects has disappeared. Hence, the sound areas 

property can be associated with 𝑇𝑠𝑠[𝑘]. Thus, it seems that the 

proper separation between 𝑇𝑡𝑟[𝑘] and 𝑇𝑠𝑠[𝑘] can lead to a 

reliable defect detection result. 
 

B. Transient Response 

The goal of this section is to efficiently separate between 

𝑇𝑡𝑟[𝑘] and 𝑇𝑠𝑠[𝑘] for the IR camera’s received signal (𝑇[𝑘]). 
Given (1), 𝑇𝑡𝑟[𝑘] can be expressed as: 

𝑇𝑡𝑟[𝑘] =  𝑇[𝑘] −  𝑇𝑠𝑠[𝑘].                      (2) 

Since (2) cannot be easily separated in the time domain, the 

calculations have been transferred to the frequency domain 

using DFT. Assuming that the received signal by the IR camera 

in the frequency domain, 𝑓, is represented as 𝐹(𝑓) and given 

the discrete-frequency variable as 𝑓𝑛 = 𝑛 𝑁∆𝑡⁄  where 𝑛 =
0,1,2, … , 𝑁 − 1, the received signal can be expressed in discrete 

form as 𝐹[𝑛 𝑁∆𝑡⁄ ] ≡ 𝐹[𝑛], which is the DFT of the 𝑇[𝑘] and 

can be written as follow  

𝐹[𝑛] = 𝛥𝑡 ∑ (𝑇[𝑘𝛥𝑡]𝑒(−2𝜋𝑖𝑛𝑘 𝑁)⁄ )𝑁−1
𝑘=0  =  𝑅𝑒[𝑛] + 𝑖 𝐼𝑚[𝑛]  (3) 

where 𝑁 is the total number of the captured thermograms from 

the IR camera, 𝑖 is the imaginary number, 𝑅𝑒[𝑛] and 𝐼𝑚[𝑛] are 

respectively the real and imaginary parts of the 𝐹[𝑛]. According 

to (2), property of the suddenly applied input, and utilizing 

DFT, it can be shown that in the frequency domain [38]  

𝐹𝛽
𝑡𝑟[𝑛] =  𝐹[𝑛] − 𝐹𝛽

𝑠𝑠[𝑛] = 𝛥𝑡 ∑ (𝑇[𝑘𝛥𝑡]𝑒(−2𝜋𝑖𝑛𝑘 𝑁)⁄ )𝑁−1
𝑘=0 −

𝛥𝑡 ∑ (𝑇[𝑘𝛥𝑡]𝑒(−2𝜋𝑖𝑛𝑘 𝑁)⁄ )𝑁−1
𝑘=𝛽 = 𝑅𝑒𝑡𝑟[𝑛] + 𝑖 𝐼𝑚𝑡𝑟[𝑛]    (4) 

where, 𝐹𝛽
𝑡𝑟[𝑛] is the DFT of the 𝑇𝑡𝑟[𝑘], 𝐹𝛽

𝑠𝑠[𝑛] is the DFT of 

the 𝑇𝑠𝑠[𝑘], 𝑅𝑒𝑡𝑟[𝑛] and 𝐼𝑚𝑡𝑟[𝑛] are respectively the real and 

imaginary parts of the 𝐹𝛽
𝑡𝑟[𝑛] and also 𝛽 is the threshold level 

for separating the total and steady-state responses, which can be 

defined in [0,1, … , 𝑁 − 1] interval. Here to calculate 𝐹𝛽
𝑡𝑟[𝑛] in 

(4), by choosing an optimum 𝛽 value (which is named 𝛽𝑜𝑝𝑡 

hereafter), 𝐹𝛽
𝑠𝑠[𝑛] is firstly computed and then subtracted from 

𝐹[𝑛]. 𝐹𝛽
𝑠𝑠[𝑛] is the DFT of 𝑇[𝑘] over a finite interval [𝛽,𝑁 −

1], in which 𝑇[𝑘] mainly contains the steady-state response’ 

characteristics. Determining 𝛽𝑜𝑝𝑡 in such a way that leads to a 

reliable separation between 𝐹𝛽
𝑠𝑠[𝑛] and 𝐹𝛽

𝑡𝑟[𝑛] is challenging, 

and this task will be studied in Section III.C. 

In the frequency domain, the processes can be done on both 

amplitude and phase. Given that the phase response shows 

better ability for defect detection in thermography [16], this 

work employs phase response. The phase of transient response 

(PTR) can be written as below 

φ𝛽
𝑡𝑟[𝑛] = tan−1(𝐼𝑚𝑡𝑟[𝑛] 𝑅𝑒𝑡𝑟[𝑛]⁄ ).                  (5) 

 

C. Processing Using the Phase of Transient Response (PTR) 

This section aims to find 𝛽𝑜𝑝𝑡, for proper separation of the 

steady-state response from the total response, which conse-

quently results in a reasonable φ𝛽
𝑡𝑟[𝑛]. According to (4) for each 

pixel, 𝐹𝛽
𝑡𝑟[𝑛] is calculated from its time history in the thermal 

sequence for different values of 𝛽, and then by using (5), φ𝛽
𝑡𝑟[𝑛] 

can be determined. Also, based on the value of 𝑛, the evalua-

tions are performed on a particular frequency, which is deter-

mined by 𝑓𝑛 = 𝑛 𝑁∆𝑡⁄ .  Fig. 2(a)-(c) show φ𝛽
𝑡𝑟[𝑛] as a function 

of 𝛽 for those frequencies corresponding to respectively 𝑛 =
 1, 2, and 3, in the time sequence of pixels from the centers of 

each defect and a pixel in a sound area. As can be understood, 

the total number of peaks and valleys is 2𝑛. In fact, the 

𝑒𝑥𝑝−2𝜋𝑖𝑛𝑘 𝑁⁄  in (4), passes n periods with length of 2𝜋 for 𝑘 =
 [0, 𝑁 − 1]. Additionally, in Fig. 2 (a)-(c), despite the relative 

similar behavior of φ𝛽
𝑡𝑟[𝑛] curves in defective and sound areas, 

there are significant distinctions in their peaks. For instance, a 

peak of the Fig. 2(b) is emphasized in Fig. 2(d), for 𝛽 =
[2600: 4000]. As can be seen in Fig. 2(d), there is an appropri-

ate contrast between the defect and sound areas, as well as be-

tween the different types of defects in terms of depth. In fact, 

for the shallowest defect (FHB1), the curve of the φ𝛽
𝑡𝑟[𝑛 = 2] 

 
(a) 𝑛 = 2 

 
(b) 𝑛 = 4 

 
(c) 𝑛 = 6 

 
(d) 𝑛 = 8 

Fig. 4. Output images obtained from 𝛽𝑜𝑝𝑡 at φ𝛽
𝑡𝑟[𝑛] using 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡] for the 

frequencies corresponding to (a) 𝑛 = 2, (b) 𝑛 = 4, (c) 𝑛 = 6 and (d) 𝑛 = 8.  

 

 
 

Fig. 3. Comparison of the φ𝛽
𝑡𝑟[𝑛 = 2] curves for 𝛽 in the range of [0: N-1] using 

𝑇𝑟𝑒𝑓[𝑘𝛥𝑡] for the defects’ centers and a sample sound area. Also, a magnified 

version of the beginning part (for 𝛽 in the range of [0: 500]) is illustrated. 
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is further away from the curve of the sound area (indicated by 

black). As a result, it can be stated that 𝛽𝑜𝑝𝑡 for an appropriate 

separating between transient and steady-state responses is the 

same 𝛽 that peaks up the φ𝛽
𝑡𝑟[𝑛]. 

 Fig. 2(e), shows the corresponding image of φ𝛽
𝑡𝑟[𝑛 = 2]. 

This image is obtained as follows: for each pixel, firstly 

φ𝛽
𝑡𝑟[𝑛 = 2] is calculated for 𝛽 = [2600: 4000] (the range of 

the peaks for the pixels), and then the maximum of φ𝛽
𝑡𝑟[𝑛 = 2] 

is chosen (φ𝛽𝑜𝑝𝑡
𝑡𝑟 [𝑛 = 2]). In this figure, the FBHs 1, 2, and 3 

are well distinguished from the sound areas and are clearly iden-

tifiable, but the FBH4 is hard to identify, and the FBH5 is not 

visible at all. Further, for each pixel, the 𝛽𝑜𝑝𝑡 is employed and 

the result is demonstrated in Fig. 2(f).  In this figure, the 

distinction between the defect and sound areas is very similar 

to that of Fig. 2(e) except that the intensity levels of the defects 

relative to the sound areas are in contrast to Fig. 2(e). As shown 

in Fig. 2(g), there is a linear relation with a negative slope 

between them, thus, the concept of the images in Fig. 2 (e) and 

(f) is the same. To simplify the proposed method in this paper, 

the strategy that is used in Fig. 2(f) is employed.  
 

D. PTR Using the Reference Pixel Vector (PTR-RPV) 

As mentioned in previous subsections (III.B and III.C), in 

(4), for a given pixel, firstly, choosing the 𝛽𝑜𝑝𝑡 the 𝐹𝛽
𝑠𝑠[𝑛] has 

to be calculated, and then by subtracting this term from 𝐹[𝑛], 

the 𝐹𝛽
𝑡𝑟[𝑛] can be obtained. Also, 𝐹𝛽

𝑡𝑟[𝑛] is mainly related to the 

defects’ features, while 𝐹𝛽
𝑠𝑠[𝑛] is mainly related to the sound 

areas’ features. Hence, instead of using the time sequence 

vector for each pixel to determine 𝐹𝛽
𝑠𝑠[𝑛], a single common 

vector as a reference for all pixels can be used. One reasonable 

suggestion for creating this reference vector is to use the time 

sequence of sound areas. Therefore, in this case, 𝐹𝛽
𝑡𝑟[𝑛] can be 

obtained as follows 

𝐹𝛽
𝑡𝑟[𝑛] = 𝛥𝑡 ∑ (𝑇[𝑘𝛥𝑡]𝑒𝑥𝑝(−2𝜋𝑖𝑛𝑘 𝑁)⁄ )𝑁−1

𝑘=0  −

                  𝛥𝑡 ∑ (𝑇𝑟𝑒𝑓[𝑘𝛥𝑡]𝑒𝑥𝑝
(−2𝜋𝑖𝑛𝑘 𝑁)⁄ )𝑁−1

𝑘=𝛽                         (6) 

where 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡] is the reference pixel vector (RPV) that must 

be chosen from the sound area. However, due to the unknown 

location of the defects, choosing this RPV can be challenging. 

Thus, by calculating the median value for each thermogram in 

the time sequence for the 3D IR data, a vector of these medians 

is achieved that can be a proper candidate for 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡]. The 

motivation for using the median operator is that the defect area 

is mainly smaller than the sound ones in thermograms, thus this 

operator can give a good approximation for the time sequence 

of the sound area. In Fig. 3, φ𝛽
𝑡𝑟[𝑛 = 2] are shown as a function 

of 𝛽 = [0: 𝑁 − 1], for the central pixels of the defects and also 

a pixel in the sound area, which are obtained by first using (6) 

to determine 𝐹𝛽
𝑡𝑟[𝑛], and then utilizing (5) to determine φ𝛽

𝑡𝑟[𝑛]. 

Due to using a fixed vector for all pixels with sound areas’ 

characteristics, it is expected that 𝛽𝑜𝑝𝑡 occurs in the range of [0 

500], which consequently leads to a proper separation between 

defects and sound areas. It also can be seen in Fig. 3, for 

relatively low-depth defects (FBH1 to FBH3), φ𝛽
𝑡𝑟[𝑛 = 2] 

starts from some negative values, then increase drastically and 

finally after reaching its peaks, demonstrate gradually 

decreasing behaviors. However, for sound areas, φ𝛽
𝑡𝑟[𝑛 = 2] 

starts at a positive value and drastically decreases. Notice, due 

to the more depth in comparison to others, FBH4 and FBH5 

behave like a sound area.  

In this regard, in Fig. 4, for every pixel in its thermal se-

quence, the values of φ𝛽
𝑡𝑟[𝑛] for 𝛽 = [0: 500] are calculated 

using (5 and 6), and then the 𝛽𝑜𝑝𝑡 is chosen. Fig. 4(a-d) are ob-

tained at frequencies corresponding to 𝑛 =  2, 4, 6 and 8, re-

spectively. In Fig. 4(a), the FBH1, 2 and 3 are well recogniza-

ble. Also, FBH1 and 2 in Fig. 4(b), and only the FBH1 in Fig. 

4(c and d), are clearly detected. However, deeper defects FBH4 

and 5 are not detectable here. Overall, this method shows good 

quality in the case of low to mid-depth defects, but in the deeper 

cases, the quality is lost. 
 

E. PTR Using the Local Reference Pixel Vector (PTR-LRPV) 

In Section III.D, the vector 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡] was calculated from 

the median of each thermogram in the time sequence, and this 

vector was utilized in the calculation of 𝐹𝛽
𝑠𝑠[𝑛] for all pixels. 

This section will consider a local windowing strategy to deter-

mine an adaptive 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡] for each thermogram. This can be 

promising because; although the various areas of the specimen 

are usually exposed by slightly non-uniform radiation from the 

excitation source, local regions are usually affected by uniform 

radiations. The idea is that in each thermogram, a local window 

is considered around each pixel, and then 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡] is calcu-

lated using the median of all pixels within the window during 

its time sequence (in the 3rd dimension of the dataset). Of 

course, the unideal allocation of the defective areas' pixels is a 

challenge in this local strategy that can negatively affect the 

𝑇𝑟𝑒𝑓[𝑘𝛥𝑡] of such areas, which reduces the accuracy of 𝐹𝛽
𝑠𝑠[𝑛]. 

To overcome this problem, a new methodology based on the 

 

Fig. 5. Schematic of how to obtain 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡] for each pixel in the proposed 

PTR-LPRV method. 
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use of a more advanced windowing procedure is presented, 

which is schematically presented in Fig. 5. The main idea is 

quite simple: defective areas have a higher temperature in com-

parison to their neighbors. The procedure is as follows: firstly, 

the whole thermal data is normalized into the [0 1] interval and 

then, for each pixel in the thermograms, a large 𝐿 × 𝐿 window 

and also a small 𝑆 × 𝑆 window are chosen. Next, in the thermo-

gram under investigation (𝑗th thermogram), these small and 

large windows firstly unfold to two vectors, which are called 𝑉𝑆
𝑗
 

and 𝑉𝐿
𝑗
 respectively and afterwards the mean of them are calcu-

lated and named 𝜇𝑉𝑆
𝑗

 and 𝜇𝑉𝐿
𝑗

, respectively.  

Then, for better estimation of 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡], the following ine-

quality with a constant parameter 𝜉 is used to eliminate such 

areas which potentially belong to defective areas from the cal-

culation of  𝑇𝑟𝑒𝑓[𝑘𝛥𝑡]: 

    𝜇𝑉𝑆 𝜇𝑉𝐿⁄ > 1 + 𝜉.                                   (7) 

If this condition is met, there is a high possibility that the pixel 

under investigation belongs to the defective area. In fact, in such 

areas, high temperatures result in some high mean values as 

well. Therefore, this condition can provide a proper insight 

about the sound areas to determine 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡].  Also 𝑉𝐿
𝑗
 is sorted 

in a descending manner and the median of the top 𝛼-percent and 

the bottom 𝛼-percent of this vector are calculated and named 

ℳ𝑡
𝑗
and ℳ𝑏

𝑗
, respectively. For defective area, the bottom of 

vector 𝑉𝐿
𝑗
, due to the lower temperature values, is a good 

candidate for surrounding sound areas of the defect, thus, the 

ℳ𝑏
𝑗
 can be selected as the 𝑗th element of 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡]. On the 

other hand, if (7) does not hold, there is a high possibility of the 

pixel belongs to the sound area, that in such situations, the ℳ𝑡
𝑗
 

can be selected as the 𝑗th element of 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡]. By repeating 

this procedure for all thermograms, the vector 𝑇𝑟𝑒𝑓[𝑘𝛥𝑡] can be 

determined for the pixel under processing. Then, φ𝛽
𝑡𝑟[𝑛] is 

calculated using (6) and then (5), and finally the 𝛽𝑜𝑝𝑡 can be 

subsequently determined. Hereafter, this method is called the 

phase of transient response using the local reference pixel 

vector (PTR-LRPV).  

The constant parameter 𝜉 depends on the thermal data 

specifications and corresponding processing parameters. To 

achieve an optimal value, a relation is set based on the following 

reasonable assumptions:  

1) Assume 𝜇𝑡𝑜𝑡 be the mean of the entire normalized thermal 

data, thus, by increasing 𝜇𝑡𝑜𝑡, it can be stated that the ratio of 

𝜇𝑉𝑆 𝜇𝑉𝐿⁄ in (7) will also be increased, which results 𝜉 ∝ 𝜇𝑡𝑜𝑡.  

2) Let the size of 𝐿 be fixed; by increasing the size of 𝑆, two 

windows become closer together, which consequently gets 

closer 𝜇𝑉𝑆 and 𝜇𝑉𝐿  as well. Therefore, in this condition, a 

smaller 𝜉 is needed for proper separation of the defect and 

sound areas, thus 𝜉 ∝ 1/𝑆.  

3) Assume a fixed size for 𝑆, by increasing the size of 𝐿, the 

windows diverge further from each other. This can lead to 

more different mean values as well, and subsequently this 

implies the need for a bigger 𝜉, thus 𝜉 ∝ 𝐿. 

Based on the abovementioned issues, the parameter 𝜉  is 

empirically obtained as below, 

𝜉 = 𝐶1𝜇𝑡𝑜𝑡√𝐿 𝑆⁄ .                                (8) 

where 𝐶1 is a constant and empirically set to 1.50. Based on 

many experiments and by considering the signal to noise (SNR) 

ratio and a reasonable computational cost, the windows sizes 

are determined as 𝐿 = 51 and 𝑆 = 17. 

To determine the value of 𝛼, the images obtained from the 

PTR-LRPV are shown in Fig. 6, where the FBHs 1 to 4 are de-

tected well for different values of 𝛼. As can be seen, a lower 𝛼 

values lead to a higher contrast for output images that motivate 

us to use 𝛼 = 5 hereafter (notice the high contrast of the deep 

FBH4). However, very deep FBH5 could even not be detected 

by this method. In Fig. 7(a) the curves of φ𝛽
𝑡𝑟[𝑛 = 2] for 𝛽 =

[0: 𝑁 − 1] are shown by the PTR-LRPV method. As can be 

seen in this figure, the curves of the FBHs 1 to 4 are well-

separated from the curve of the sound area, especially, notice to 

the behavior of FBH4, which formerly in Fig. 3, was quite 

similar to the sound areas, and now, the PTR-LPV approach 

detects it very well via highlighting this defect’s poor thermal 

sequence variations. In Fig. 7(b), φ𝛽𝑜𝑝𝑡
𝑡𝑟 [𝑛 = 2] is illustrated for 

all pixels as a function of 𝛽𝑜𝑝𝑡. It can be seen that except for 

 
(a) 𝛼 = 50  

 
(b) 𝛼 = 30  

 
(c) 𝛼 = 10  

 
(d) 𝛼 = 5  

Fig. 6. Output images of the proposed PRT-LRPV method for the frequency 

corresponding to 𝑛 = 2, with (a) 𝛼 = 50 , (b) 𝛼 = 30 , (c) 𝛼 = 10 , and 

(d) 𝛼 = 5 . 

 

 

 

Fig. 7. (a) Comparison of the φ𝛽
𝑡𝑟[𝑛 = 2] curves for 𝛽 in the range of [0: 𝑁 −

1] in the proposed PRT-LRPV method for the defects’ centers and a sample 

sound area. Also, a magnified version of the beginning part of (a), for 𝛽 in the 

range of [0: 500] is illustrated. (b) φ𝛽𝑜𝑝𝑡
𝑡𝑟 [𝑛 = 2] as a function of 𝛽𝑜𝑝𝑡 for all 

pixels. 
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𝛽𝑜𝑝𝑡 = 0, belonging to the sound area, there is a linear relation 

with a negative slope between φ𝛽𝑜𝑝𝑡
𝑡𝑟 [𝑛 = 2] and 𝛽𝑜𝑝𝑡, which is 

similar to Fig. 2(g). In most pixels of sound areas, despite the 

different φ𝛽𝑜𝑝𝑡
𝑡𝑟 [𝑛 = 2] values, the 𝛽𝑜𝑝𝑡 = 0, resulting in fairly 

smooth sound areas. Since the PTR-LRPV method uses 𝛽𝑜𝑝𝑡 

instead of φ𝛽𝑜𝑝𝑡
𝑡𝑟 [𝑛], it offers this smoothness, leading to the 

high contrast between the defect and sound areas. 
 

F. Depth estimation 

This section focuses on estimating the depth of the defect. To 

this, the classical equation in the frequency domain, using in 

PPT method is considered, and then, it will be modified with 

the PTR-LPV. The depth of the defect is inversely proportional 

to the square root of the blind frequency [11], [28] and [29]:  

𝑧 = 𝐶2√𝛼/𝜋𝑓𝑏                                   (9) 

where z is the defect depth, 𝛼 is the thermal diffusivity of the 

specimen under investigation, 𝑏 ∈ 0,1,2, … , 𝑁 − 1, and 𝑓𝑏 =
𝑏 𝑁∆𝑡⁄  is the blind frequency, i.e. the frequency at which the 

defect has no contrast compared to the sound areas. 𝐶2 ∈
[1.5 2] is an empirical constant for phase transform and usually 

set to 1.82. Based on what is mentioned in [30] and according 

to Fig. 7(a), the phase values at 𝛽 =  0 for different defects 

have a direct relation with their depths (i.e. 𝑧 ∝ φ, where φ is 

the phase). Our experimental results confirm a direct but 

monotonic relationship between the defect depth and transient 

response phase. Therefore, inspired by (9) and by using the 

transient response phase, the following equation is suggested to 

estimate the defect depth:  

𝑧 = 𝐶3√𝛼 |φ̅0
𝑡𝑟|/𝜋 𝑓𝑏                             (10) 

where 𝐶3 is a constant parameter, fixing to 1.45, and φ̅0
𝑡𝑟 is 

expressed as: 

φ̅0
𝑡𝑟 =

1

𝑁𝑑
∑  φ0

𝑡𝑟|
max (Δφ) 

                      (11) 

in the above equation, φ0
𝑡𝑟 is the transient response phase at 𝛽 =

0 and 𝑁𝑑 is the total number of the defective area's pixels. Since 

the defective area usually consists of more than one pixel, 

therefore, in (11), the value of  φ̅0
𝑡𝑟 is determined by averaging 

the φ0
𝑡𝑟 values of those pixels which are detected as the 

defective area pixels by the proposed PTR-LRPV approach. In 

addition, max (Δφ) expression means that φ0
𝑡𝑟 is determined at 

the frequency that leads to the highest phase contrast between 

the defect and sound areas, which is the same as frequency that 

led to proper defect detection. 

IV. DISCUSSION AND COMPARATIVE STUDIES 

In this section, the proposed PRT-LRPV method is compared 

with raw data as well as with some well-known thermography 

processing methods, such as TSR [13], PCT [14], and PPT [15]. 
For numerical assessments, the signal-to-noise ratio (SNR) 

index is used, which is defined in dB as follows  

𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10|(𝜇𝑅𝑑  −   𝜇𝑅𝑆) 𝜎𝑅𝑠⁄ |                  (12) 

𝜇𝑅𝑑 is the mean of pixels in the defect area, 𝜇𝑅𝑆 and 𝜎𝑅𝑠  are the 

mean and standard deviation of the pixels in the sound area, and 

it is assumed that the sound area is the whole specimen except 

the defective regions.  
 

A. Comparative Study– CFRPFBH 

The results for CFRPFBH are shown in Fig. 8. In all cases, the 

best possible result of each method is provided. Table I provides 

a comparison of the SNR values obtained for four defects of 

CFRPFBH specimen by different algorithms. Fig. 8 and Table I 

show that for all four defects, the PRT-LRPV method offers 

good results and yields the highest SNR. More notably, in the 

case of the deep defect FBH4, it does not appear in the raw data 
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Fig. 8. Output results of the different processing methods for the CFRPFBH.  

TABLE I 

SNR (DB) RESULTS OF THE PROPOSED PRT-LRPV COMPARED TO SEVERAL 

WELL-KNOWN SIGNAL PROCESSING METHODS FOR THE CFRPFBH. THE BEST 

RESULTS ARE SHOWN IN BOLDFACE. 

FBHs Raw PPT PCT TSR PRT-LRPV 

FBH1 29.18 61.98 54.64 63.68 68.53 

FBH2 14.61 47.15 43.89 43.29 66.24 

FBH3 10.83 27.06 27.90 31.51 55.15 

FBH4 − 2.78 15.34 13.93 54.11 

      

 
TABLE II 

DEFECT DEPTH ESTIMATION RESULTS USING PPT (9) AND PTR-LRPV (10) 

METHODS FOR THE CFRPFBH. IN EACH ROW, THE CLOSEST ESTIMATE TO THE 

ACTUAL DEPTH VALUE IS SHOWN IN BOLDFACE. 

FBHs Actual depth PPT PTR-LRPV  

FBH1 1.15 1.26 1.15 

FBH2 2.06 2.02 2.10 

FBH3 3.10 2.68 3.13 

FBH4 3.95 3.10 3.99 
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and even is not detectable in the comparative methods or is 

poorly detected. Thus, this defect is considered very challeng-

ing, and provides a good indication of the performance of the 

different methods. As can be seen, our proposed PRT-LRPV 

method gives a fairly high contrast output image (high qualita-

tive performance) for it and also has an 𝑆𝑁𝑅 = 54.40 dB (high 

quantitative performance). The very deep defect FBH5 could 

not be detected by any of the methods, not even by our proposed 

PRT-LRPV approach. Considering that FBH5 is a circular 

defect with diameter 10 mm, and located at a depth of 4.85 mm 

in a CFRP sample having high in-plane thermal diffusion, this 

might not come as a surprise.  Table II presents the defect depth 

estimation results for CFRPFBH specimen using the PPT (9) and 

PTR-LRPV (10) methods. Both methods have yielded 

acceptable results for shallow defects (FBHs 1 and 2). 

However, the advantage of the proposed method over the 

classical one is more evident in the case of deep defects (FBHs 

3 and 4). For these deep defects, the accuracy of the PPT 

method has significantly decreased, but the proposed PTR-

LRPV still yields reliable estimates of the defect depth. 
 

B. Comparative study – CFRPINSERT 

Fig. 9 shows the results of the different methods for 

CFRPINSERT specimen. Table III also gives the SNR values. 

Most defects in raw data are difficult to detect or not detectable 

at all. However, different processing methods, in some cases, 

provide good results and show good defect detection 

performance. In the proposed PRT-LRPV method, almost all 

defects are fairly detectable, and it offers some promising 

results, which is also numerically confirmed by Table III. Alt-

hough for Insert B2, the PPT method has the highest SNR, this 

defect is simply detectable by all methods, and meanwhile, the 

result of PRT-LRPV is very close to the PPT’s one in this case. 

To summarize, it can be stated that the proposed PRT-LRPV 

method can reasonably compete with other well-known defect 

detection methods. Also, the proposed method provides high 

contrast output images. This high contrast property can be suit-

able for machine vision purposes, where the good separation 

between defects and sound areas is very demanding. Due to the 

fact that the resin was injected from the middle of the plate dur-

ing the resin transfer molding process. This resulted in an unin-

tentional manufacturing defect at the injection location. But as 

can be seen in Fig. 9, the PRT-LRPV method was also able to 

detect this unintentional defect relatively well.  

Table IV presents the results of defect depth estimation for 

the CFRPINSERT specimen using PPT (9) and PRT-LRPV (10). 

As can be seen, for both shallow (A1, A2, B1, and B2) and deep 

(E1, E2, F1, and F2) defects, the results of the PRT-LRPV are 
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Fig. 9. Output results of the different processing methods for the CFRPINSERT. 

  

 

TABLE III 

SNR (DB) RESULTS OF THE PROPOSED PRT-LRPV FOR THE CFRPINSERT 

SPECIMEN COMPARED TO SEVERAL WELL-KNOWN SIGNAL PROCESSING 

METHODS. THE BEST RESULTS ARE SHOWN IN BOLDFACE. 

Inserts Raw PPT PCT TSR PRT-LRPV 

A1 2.56 31.71 24.91 26.26 33.67 

B1 1.24 26.18 12.93 27.44 32.96 

C1 0.86 27.02 13.76 27.57 35.23 

D1 − 29.19 20.25 25.22 35.91 

E1 − 7.18 13.24 11.25 32.44 

F1 − 3.82 9.99 14.57 22.48 

A2 3.45 42.17 34.78 41.61 42.71 

B2 3.65 47.81 41.75 45.43 46.83 

C2 2.61 28.58 14.01 31.45 37.29 

D2 − 32.74 23.39 34.12 47.04 

E2 − 22.71 24.87 26.89 43.37 

F2 − 24.45 27.59 33.51 43.28 

 

TABLE IV 

DEFECT DEPTH ESTIMATION RESULTS USING PPT AND PTR-LRPV 

METHODS FOR THE CFRPINSERT. IN EACH ROW, THE CLOSEST ESTIMATE TO 

THE ACTUAL DEPTH VALUE IS SHOWN IN BOLDFACE 

Inserts Actual depth PPT PTR-LRPV 

A1 0.25 0.34 0.25 

B1 0.50 0.56 0.48 

C1 0.75 0.79 0.71 

D1 1.00 0.95 0.95 

E1 1.25 1.21 1.27 

F1 1.50 1.21 1.48 

A2 0.25 0.40 0.26 

B2 0.50 0.61 0.57 

C2 0.75 0.76 0.72 

D2 1.00 1.16 0.92 

E2 1.25 1.21 1.26 

F2 1.50 1.42 1.51 
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more suitable. In the case of relatively deep defects (C1, C2, 

D1, and D2), the performances of the two methods are close to 

each other. Generally, the results of the proposed PRT-LRPV 

method are more accurate than the PPT ones, which indicates 

that this method is more reliable for estimating the depth of de-

fects for the CFRPINSERT specimen.  

C. Comparative study – CFRPBVID 

This is one of the common defect types that may take place 

in composites. The complex nature of BVIDs makes their 

proper detection quite challenging. Thus, this third specimen 

can consider as a major test for judging the quality of different 

algorithms. As a benchmark for further comparisons, the 

ultrasonic pulse-echo C-scans, obtaining from both impact and 

back sides using a 5 MHz focused transducer are shown in Fig. 

10. This figure consists of the corresponding relative amplitude 

and time-of-flight images. To have a meaningful comparison 

with thermographic results, the defect borders are highlighted 

on the C-scan images. Also, for both sides, the output images 

from the raw data, PPT, PCT, TSR, and PTR-LRPV methods 

are shown in Fig. 10. Those images have been selected such that 

to provide the best indication of the defect according to the C-

scan results. As can be seen, the results of the PTR-LRPV 

method are closer to the C-scan images, and this method can 

reasonably separate the defect area from the sound area. 

V. CONCLUSIONS 

In this paper, it has been shown that due to the nature of pulse 

thermography, considering the suddenly applied input condi-

tion can properly address the defect detection and depth estima-

tion problems. In this regard, the transient response phase is 

separated from the intrinsic characteristics of the received sig-

nal. Accordingly, a novel method based on phase of transient 

response using the local reference pixel vector (PTR-LRPV) 

has been proposed. To evaluate its effectiveness, this algorithm 

has been applied on three CFRP specimens with different defect 

types (FBHs, Inserts, and BVID).  The results showed that the 

proposed method is competitive with the well-known existing 

methods. The high contrast output images (as can be seen in 

Section IV) can be considered as one of the main advantages of 

our algorithm. Further, due to the high sensitivity of the 

proposed method to the poor thermal variations, it also provided 

acceptable results in detecting deep defects as well as 

estimating their depths. 
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