
A Parallel Genetic Algorithm for Multi-objective
Flexible Flowshop Scheduling in Pasta Manufacturing

Ke Shena,∗, Toon De Pessemiera, Luc Martensa, Wout Josepha

aDepartment of Information Technology, Ghent University/IMEC, Technologiepark 126,
Ghent, Belgium

Abstract

Among the potential road maps to sustainable production, efficient manufac-
turing scheduling is a promising direction. This paper addresses the lack of
knowledge in the scheduling theory by introducing a generalized flexible flow
shop model with unrelated parallel machines in each stage. A mixed-integer
programming formulation is proposed for such model, solved by a two-phase
genetic algorithm (GA), tackling job sequencing and machine allocation in each
phase. The algorithm is parallelized with a specialized island model, where
the evaluated chromosomes of all generations are preserved to provide the fi-
nal Pareto-Optimal solutions. The feasibility of our method is demonstrated
with a small example from literature, followed with the investigation of the pre-
mature convergence issue. Afterwards, the algorithm is applied to a real-sized
instance from a Belgium pasta manufacturer. We illustrate how the algorithm
converges over iterations to trade-off near-optimal solutions (with 8.50% shorter
makespan, 5.24% cheaper energy cost and 6.02% lower labor cost), and how the
evaluated candidates distribute in the objective space. A comparison with a
NSGA-II implementation is further performed using hypothesis testing, having
5.43%, 0.95% and 2.07% improvement in three sub-objectives mentioned above.
Although this paper focuses on scheduling issues, the proposed GA can serve as
an efficient method for other multi-objective optimization problems.

Keywords: genetic algorithm, flexible flowshop, production scheduling,
multi-objective optimization

1. Introduction

The flexible flow shop (FFS) is one of the most common production systems
for manufacturing discrete parts. This model also plays a prominent role in the
scheduling theory. A classical FFS (CFFS) is a generalization of the flow shop
(FS) and the parallel machine (PM), its definition is as follows: considering a5

∗Corresponding author
Email address: ke.shen@ugent.be (Ke Shen)

Preprint submitted to Journal of LATEX Templates September 1, 2021

FFS problem P , a sequence of n independent jobs are to be processed by c
stages of machines in series. Each job must be processed by one machine at
each stage, where a number of identical machines are in parallel [1]. Although
the CFFS is often studied in the scheduling literature, the gap between theory
and practice makes the CFFS model having limited applicability in real oper-10

ations [2]. As an example, the investigated pasta manufacturing case in this
paper has unrelated parallel machines (with different processing speeds) in each
stage. More specifically, this work investigates a variant of the continuous (or
no-wait) FS scheduling problem. In manufacturing scheduling, continuous FS is
among the most studied problems, reported in textile [3], construction [4], steel15

[5], plastic[6], food [7], and many other industries [8]. With the initiatives in
Information Technologies such as Smart Factory or Industry 4.0, efficient man-
ufacturing scheduling is facing new opportunities and challenges [9], especially
in energy-sensitive and labor-intensive industries.

Table 1 summarizes and compares the recent studies on FS scheduling (since20

2019), in terms of shop floor category, objective function and solution methodol-
ogy. The listed articles are ordered by the complexity of the production system
model. In permutation FS (PFS) the processing order of jobs remains the same
on machines in different steps. Hybrid FS (HFS) is a synonym of FFS. In hy-
brid FFS (HFFS), each job might skip some stages. In distributed flow shop25

(DFS, or flexible flow line in [10]), there are parallel production lines in the
plant for different job flows. In Table 1, all the investigated problems are solved
using heuristics. Case-specific knowledge determines processing constraints and
scheduling objectives (criterions). Different from these works, this paper studies
a FFS problem with non-identical machines in each stage, whose objectives are30

to minimize the makespan (the completion time of the last job leaving the sys-
tem), the energy cost under time-sensitive electricity price, and the labor cost
with variable workload shifts.

Table 1: Recent literature on FS scheduling.

Article Category Objective function Solution methodology

[11] no-wait FS Makespan Greedy algorithm
[12] no-wait PFS Tardiness & Energy Artificial bee colony & GA
[13] HFS Total flowtime & Makespan Particle swarm optimization
[14] HFS Makespan & Energy Artificial bee colony
[15] HFS Inventory holding & Setup Fruit fly algorithm
[16] HFFS Makespan Iterated greedy algorithm
[10] DFS Makespan Artificial bee colony
[17] no-wait DFS Makespan Artificial bee colony
[18] DPFS Total flowtime Iterated greedy algorithm
[19] DHFS Makespan Artificial bee colony

The NP-hardness of a FS problem minimizing the makespan is proved in [20,
21]. According to the complexity hierarchy [1], our investigated FFS problem35

2

is NP-hard. Among the heuristics, the genetic algorithm (GA) is suitable for
the NP-hard problems because of the adaptive global optimization ability [22],
and the acceptable converging time. Over several decades, variants of multi-
objective GAs (MOGA) [23] with different search policies have been studied and
applied to the FS scheduling [24]. Recent studies also introduce new mechanisms40

for diversity preservation and convergence enhancement of GA applications in
FFS [8].

In this paper a generalized FFS (GFFS) model is proposed, which is beyond
the literature in the scheduling theory. We focus on a realistic multi-objective
GFFS problem derived from the plant of a Belgium pasta manufacturer and45

formulate it using a mixed-integer programming (MIP) model. The novelties of
this work are as follows: (1) The GFFS model has extended the CFFS model for
the general applicability. (2) A two-phase GA is developed to solve the GFFS
model by searching for the trade-off front (TF) in the objective space. The
inner phase of GA handles machine assignment in each stage while the outer50

phase performs job sequencing. The GA is parallelized with a specialized island
model preserving evaluated candidates from all generations on each island. The
final near-optimal solution with trade-off sub-objectives are derived from those
candidates using Pareto dominance. Evolving mechanisms to prevent the pre-
mature convergence are also discussed. (3)The method is further verified with55

a small instance from literature and a real-sized problem from industry. (4) In
addition, a comparative analysis is performed with NSGA-II, a state-of-the-art
MOGA in literature.

The rest of the paper is organized as follows. The next section gives a brief
overview of related works, highlighting the similarity and difference between our60

work and the literature. Section 3 gives a MIP formulation of the GFFS model.
The proposed GA is introduced and developed in Section 4. Computational
results of the algorithm on a small example from literature and a real-sized in-
stance are reported in Section 5, further compared with another implementation
using NSGA-II. Finally, Section 6 gives the concluding remarks.65

2. Literature review

Over several decades, many researches have studied the FFS problems with
different objectives and constraints. Traditional mathematical programming
methods like branch and bound are feasible and efficient for small instances
with single objective by providing the exact optimal solution [25, 26]. However,70

for large instances or multi-objective problems the boundary of the exploration
area in the objective space is too large to tackle. This phenomenon enforces
the traditional methods to work with evolutionary algorithms (EA) that can
reduce the search space [27]. In most cases, EAs are applied for the acceptable
near-optimal solutions with a relatively fast search process. A bi-level heuris-75

tic algorithm is proposed in [28] to tackle large industrial-sized instances of a
complicated steel production scheduling problem. A GA with fuzzy parameters
is presented in [29], for instances with uncertain properties. A method com-
bining GA and discrete event simulation is introduced in [30] for short-term

3

batch plant scheduling in the semiconductor industry. A swarm optimization80

approach is presented in [31] for multi-processors tasks. These works illustrate
the feasibility of EA applications to different FFS problems, and report attrac-
tive results for realistic instances. In this paper, we also tackle a scheduling
problem from the manufacturing plant with realistic production objectives, by
extending the scheduling literature with a more generalized FFS model, and85

propose an efficient multi-objective GA.
In the past, evolutionary algorithm (EA) heuristics were introduced to solve

multi-objective optimization(MOO) problems [32], and suggested by many re-
searchers as better alternatives than other blind search strategies [33]. Early
EAs for MOO applied aggregation methods combining multiple objectives as a90

higher scalar function to reduce the problem into single objective [34]. How-
ever, in most cases the required domain knowledge for such combination is not
available and the EAs have to perform a multi-modal search. Among them,
multi-objective genetic algorithms (MOGA) have received much attention be-
cause of the comprehensible design and the flexible implementation for realistic95

applications. The vector evaluated genetic algorithm (VEGA) [35] applies par-
allel selection on sub-populations to reproduce the next generation according
to each of the objectives. Extended by the variable objective weighting fit-
ness assignment, a variant of VEGA is proposed in [36] enriching the search
direction. Pareto dominance is another popular choice in MOGAs: the niched100

pareto genetic algorithms [37, 38] combine it with fitness sharing strategy [39]
when choosing competing individuals, and the nondominated sorting genetic
algorithms (NSGAs) [40, 41] apply it in several steps during the evolution.
Comparisons of different MOGAs are reported in [34, 42], explaining how these
algorithms work with benchmarks or realistic cases, also confirming the advan-105

tages brought by the specialized designs. Inspired by them, this paper proposes
a customized MOGA with the island model, where a specific search direction is
forced on each island. A different usage of Pareto dominance is also introduced
with our method.

The main disadvantage of the standard GA is the premature convergence110

[43]. In recent years, there is significant advancement in the GA literature to
tackle this issue by providing a more diverged exploration in the objective space.
Applied in the multi-population GAs [44], the distributed GAs [45], and the par-
allel GAs [46], one common method is to divide the population of a standard GA
into sub-populations during the process of evolution. In this paper we denote115

those GAs with parallelization designs or implementations as parallel genetic al-
gorithms (PGA). The development of software, hardware and computing power
brings impressive convenience and time decrease for PGA applications to dif-
ficult scheduling problems. For example, implemented with GPUs, a PGAs is
presented to solve an energy efficient dynamic FFS problem in [47]; an island-120

based PGA for FS problems is introduced in [48]; a PGA with the advanced
cellular structure for independent tasks scheduling problem is proposed in [49];
a PGA for FS scheduling with fuzzy processing times and fuzzy due dates is in-
vestigated in [50]. In these works, the topology (structure) of the parallelization
flows and corresponding evolution strategies have significant influences on the125

4

algorithm’s performance, and their implementations are tightly coupled with
the GPU computing platform. In this paper, using a fully connected network
structure [51], we propose a PGA with a specialized island model, not requiring
the GPU toolkits for the implementation. Meanwhile, the PGA has a novel
evolving mechanism to prevent the premature convergence.130

3. Problem Formulation

We define the research problem as a generalized FFS (GFFS) model, where
each stage has unrelated machines, whether identical or not. All jobs are avail-
able at the beginning of scheduling with no precedence relations. All machines
are ready for execution with no setup times. There are enough intermediate135

buffer between stages. Once the processing starts, preemption is not allowed.
The notations used for the mixed-integer programming (MIP) formulation of
the problem are given in the following:

Input parameters

• n, number of jobs140

• c, number of stages

• J , set of jobs {j1, j2, ..., jn}

• Mc, set of machines in stage c

• Pmj , j ∈ J , m ∈Mc, processing time of job j on machine m

• Em, m ∈Mc, power of machine m145

• e, energy cost per unit time

• Lm, m ∈Mc, number of required operators on machine m

• l, operator’s salary per unit time

Decision variables

• H, time horizon (last time period)150

• T = {1, 2, ...,H}, set of time periods

• wj[i] ∈ {0, 1}, j ∈ J , i ∈ {1, 2, ..., n}, wj[i] = 1 denotes the ith job per-
formed is job j

• JS , a sequence of job

• Cj , j ∈ JS , completion time of job j155

• ymj ∈ {0, 1}, j ∈ JS , m ∈ Mc , ymj = 1 denotes that job j is assigned to
machine m

5

• zmjt ∈ {0, 1}, j ∈ JS , m ∈ Mc, t ∈ T , zmjt = 1 denotes that job j starts on
machine m at period t

• xmjt ∈ {0, 1}, j ∈ JS , m ∈Mc, t ∈ T , xmjt = 1 denotes that job j is executed160

on machine m during period t

• Cmax, makespan

• CE , energy cost

• CL, labor cost

MIP formulation
min{Cmax, CE , CL} (1)

JS =

n∑
i=1

jwj[i], j ∈ J (2)

n∑
i=1

wj[i] = 1, j ∈ J (3)

∑
j∈J

wj[i] = 1, i ∈ {1, 2, ..., n} (4)

∑
t∈T

xmjt = ymj P
m
j , j ∈ JS , m ∈Mc (5)

zmjt ≤ xmjt , j ∈ JS , m ∈Mc, t ∈ T (6)

zmjt ≥ xmjt − xmjt−1, j ∈ JS , m ∈Mc, t ∈ T (7)

∑
t∈T

∑
m∈Mc

zmjt = ymj , j ∈ JS (8)

∑
j∈JS

xmjt ≤ 1, m ∈Mc, t ∈ T (9)

Cj ≥ txmjt , j ∈ JS , m ∈Mc, t ∈ T (10)

Cmax ≥ Cj , j ∈ JS (11)

CE ≥ xmjtEme, j ∈ JS , m ∈Mc, t ∈ T (12)

CL ≥ xmjtLml, j ∈ JS , m ∈Mc, t ∈ T (13)

6

The MIP formulation is constructed at the unit-processing level of a time165

period, where the time horizon is divided into H units. Equation 1 gives the
objectives of scheduling: makespan, energy cost, and labor cost. The trade-off
front (TF) is calculated using these objectives. Constraint 2 defines a sequence
of jobs from the waiting job set using a sequencing decision variable. Constraints
3 and 4 ensure the sequence is a permutation of the waiting jobs. Constraint 5170

shows that the total job processing time depends on the machine assignment.
Constraints 6 and 7 define the time period in which a job starts using two related
decision variables. Constraint 8 ensures that a job can start only on one machine
in one time period. Constraint 9 ensures that at most one job can be processed
on each stage in one time period. Constraints 10 defines the completion time of175

a job. Constraints 11, 12, and 13 define the makespan, the energy cost and the
labor cost of a schedule, respectively.

4. GA Implementation

Due to the NP-hardness, no polynomial time algorithm has been found to
solve the GFFS by finding an optimal schedule. For the multi-objective GFFS,180

the decision space (or design space) consists of all permutations of waiting jobs,
and the corresponding possible assignments of jobs to machines. The objective
space is not known, and the trade-off front (TF) is neither available. Although
calculating the objectives of a candidate schedule is not difficult (in polynomial
time), no verification method is available to accept a given candidate schedule185

as an optimal (or near-optimal) solution. In this paper, a customized two-phase
genetic algorithm (CTGA) is proposed, looking for TF values of all objectives.
The obtained TF in the objective space can also be used to decide the acceptance
of candidate schedules.

4.1. The Island model190

The proposed CTGA is implemented with a specialized island model shown
in Figure 1. Each island has a sequential implementation of a single-objective
GA containing the initialization, evaluation, selection, crossover and mutation
stages. In most times, the sequential branch of the algorithm on each island is
converged [52] when the stop condition is achieved, which could be a specific195

execution time, iteration number or fitness value. According to the migration
condition (e.g. no improvements in all islands for ten successive generations),
worst individuals from each island are selected as migrants. They will replace
some randomly chosen individuals on other islands, and the evolution restarts
afterwards.200

Our specialized island model has the following characteristics. As in Figure
1, the unrestricted (fully connected) structure is adopted for direct and easy
migration between fully connected islands. Different self-adaptation methods
and objectives can be performed on the islands simulating divergent environ-
ments. Individuals least adapted to the local region are selected as migrants to205

other islands, since individuals well-adapted to the environments usually do not

7

Start

Initialization of
island 1

Initialization of
island 2

Initialization of
island N

Evaluation Evaluation Evaluation

Selection Selection Selection

Crossover Crossover Crossover

Mutation Mutation Mutation

Stop
Condition

Stop
Condition

End

Stop
Condition

No No

YesYes

No

Trade-off Front
Calculation

Migration
No

Yes

Yes

Figure 1: Flowchart of CTGA with the island model.

tend to migrate in nature [51]. Unlike other methods [35, 36, 37, 38, 39, 40, 41]
choosing a solution from the final chromosomes in the last generation of each
island (the final non-dominated set), the proposed model derive the TF from all
evaluated candidates in the objective space. These checked chromosomes in all210

generations of each island (in each iteration, these chromosomes are at the end
of the evaluation stage) are preserved in the memory and finally compared for
the TF solution. Such mechanism prevents the algorithm from missing potential
good solutions.

Although the investigated research problem in this paper is multi-objective215

8

and the final solutions are potentially on a TF front, the intrinsic parallelism
in CTGA are well adapted to tackle the premature convergence issue [43] in
single-objective optimization problems, whose purpose is to search for the global
optimum of the objective function. In such case, all islands handle the same
objective with customized implementations. Suppose that the global optimum220

of the objective function is known (which is the case for many test functions
[53], however in complicated engineering optimization problems like the inves-
tigated multi-objective GFFS problem, the global optimum does exist but not
known for each sub-objective), the algorithm’s success rate (SR) is defined as
the percentage of trials (e.g., out of 100 tests) that managed to reach the global225

optimum within the search. The following equation can be used to estimate the
success rate of CTGA:

PSR(CTGA) =

N∑
k=1

PSR(Ik) (14)

The index of island is k. The total number of islands is N . With a certain
parameter setting, finding the global optimum by the algorithm’s branch on
island k has the probability PSR(Ik). Since the islands are independent to each230

other, such parallelism accumulates the SRs of all islands as the SR of the
algorithm.

4.2. Encoding and Fitness Function

The proposed CTGA has two phases. The outer phase encodes the sequence
(a permutation) of jobs. A chromosome (or individual) is an array representa-235

tion of JS in constraint 2, whose elements are index of jobs in the waiting set. As
an example, for a candidate sequence JS1 = {j1, j5, j10, j6, j3, j9, j7, j4, j8, j2},
the array representation is [1, 5, 10, 6, 3, 9, 7, 4, 8, 2].

The inner phase encodes the machine assignment using a c× n matrix:

A =

a11 a12 . . . a1n
a21 a22 . . . a2n
.
ac1 ac2 . . . acn

 (15)

For an element aci in row c, its value can be any integer in interval [1, |Mc|],240

representing job ji is processed on machine aci in stage c. In a practical schedule,
job ji can not start on aci until its previous stage is finished on ac−1i, and the
previous job on machine aci is finished.

For a candidate schedule with the encoding mentioned above, objectives in
constraints 11, 12, and 13 are calculated. Therefore, candidate schedules from245

the decision space are mapped to data points in the objective space. The fitness
values of all evaluated chromosomes are denoted as F . The TF is derived as
follows, where � is a relation of strictly dominating (e.g. in GFFS we use <):

T (F) = {f
′
∈ F : {f

′′
∈ F : f

′′
� f

′
, f

′
6= f

′′
} = ∅} (16)

9

This equation indicates that there is no chromosome having better values in any
of the objectives than the TF points.250

4.3. Genetic Operations

Each island of CTGA has a separate fitness function for a sub-objective, and
can perform different genetic operations. In this section, an example of genetic
operations on one island of CTGA is presented.

To get an offspring population with good quality, we apply elitism strategy255

in the evaluation stage: in the beginning of each generation (or iteration) and
before a possible migration, controlled by a replacement ratio, low-quality chro-
mosomes in current population are replaced by the best chromosome. At the
end of each generation, after genetic operations are performed, all of the old
and the generated (or new) chromosomes are ranked by their fitnesses, where260

the elitists are selected for the offspring population. Such strategy prevents the
best chromosome being damaged by genetic operations during evolution, and
ensures the global convergence of the algorithm.

In each generation, parent chromosomes are chosen for genetic operations us-
ing fitness proportionate selection (roulette wheel selection). The order crossover265

[54] (OX), a variation of partial-mapped crossover (PMX), is applied in the outer
phase. An example of OX is given as follows:

Parent 1 : [2, 1, 8, 5, 10, 3, 6, 9, 7, 4]

Parent 2 : [2, 3,4, 8,7, 6, 10, 1, 5, 9]

Child 1 : [2,4, 8, 5, 10, 3, 6,7, 1, 9]

Child 2 : [2, 1, 4, 8, 7, 6, 10, 5, 3, 9]

A strip of consecutive genes is marked out from Parent 1 (underline). These
genes are deleted in Parent 2 (strikethrough). Child 1 is generated based on
the remaining parts of Parent 2, where the genes whose positions to be changed270

is in bold. The strip from Parent 1 is preserved at the same position in Child
1. Genes from Parent 2 are sequentially filled in other positions. Child 2 is
generated in the same way by flipping Parent 1 and Parent 2. The (1, 2 or K)
point corssover [55] is performed in the inner phase, on rows of the matrices in
parents.275

The mutation operation maintains the diversity of current population, es-
pecially when children have worse fitness values than parents, they are likely
to be mutated before elitism selection at the end of the generation. The in-
version mutation is applied in the outer phase. As an example, a chromosome
[1, |5, 10, 6, 3|, 9, 7, 4, 8, 2] with the inversion segment indexed by the interval [2, 4]280

results in [1, |3, 6, 10, 5|, 9, 7, 4, 8, 2]. The swap mutation is performed in the in-
ner phase: for each row in A, swap two randomly chosen elements. With our
proposed genetic operations, the legitimacy of the chromosomes is guaranteed.
When the stop conditions of all islands are achieved, the migration condition
is checked for the further operations: whether to transport migrants between285

islands for a new evolution, or to stop the algorithm by calculating the TF from
evaluated chromosomes of all generations in each island.

10

When handling multi-objective problems (MOP) using CTGA, there are also
concerns that on each island the sequential branch of the algorithm has the issue
of premature convergence. Although the final solutions to the MOP are likely290

to be on a TF front, and the global optimum of one single objective might not
be on that front, resolving the premature convergence on each island is worth
investigating. Trying to avoid the (branch) algorithm getting trapped in local
optima helps to provide a broader exploration in the search space, possibly
for better candidates. In Section 5 genetic operations to tackle the premature295

convergence on each island are presented with numerical examples.
The pseudo-code of CTGA is given in Algorithm 1. The inner phase finds a

near-optimal machine allocation A for a candidate JS in the outer phase, with
all objective values Cmax, CE , CL. Each island takes one of them as the fitness
value, holding an evolution direction. In each iteration, the CTGA evaluates300

two new candidates (children) on each island, whose fitness values are derived
in the inner phase. Best candidates from all iterations are preserved for the
calculation of TF solutions.

11

Algorithm 1 Customized Two-phase Genetic Algorithm (CTGA)

Require: Input parameters of GFFS and GA
Return: Trade-off (Cmax, CE , CL) and corresponding (JS , A)

// Initialize N islands.
for k ≤ N do
individual outer ← random permutation(J)
islands pop[k]← pop size outer × individual outer

end for
i← 0 // Indicator of iteration number.
while not Migration Condition do

// Parallelized evolution on each island.
for k ≤ N do

// Fitness ranking using Algorithm 2.
islands pop[k]← rank(fitness(islands pop[k]))
while not Stop Condition do

// Preserve the best candidate of each iteration.
i← i+ 1
res[i]← (islands pop[k][1], A,Cmax, CE , CL)
// Truncation replacement in the population.
islands pop[k]← replace by top(islands pop[k], ratio)
// Selection.
parents← selection outer(islands pop[k])
// Crossover.
children← crossover outer(parents)
// Mutation.
children← mutation outer(children)
// Fitness ranking using Algorithm 2.
elites← rank(fitness(parents, children))
islands pop[k]← update(islands pop[k], elites)

end while
end for

end while
// Trade-off Front Calculation.
tf ← pareto(res)
return tf

12

Algorithm 2 Inner phase of CTGA.

Require: JS
Return: A,Cmax, CE , CL

// Initialization.
pop← pop size inner × random initialize(A)
while not Stop Condition do

// Selection.
parents← selection inner(pop)
// Crossover.
children← crossover inner(parents)
// Mutation.
children← mutation inner(children)
// Fitness ranking and population update.
elites← rank(fitness(parents, children))
pop← update(pop, elites)
// Get Cmax, CE , CL and sort pop by fitness.
pop← rank(fitness(pop))

end while
return pop[1], Cmax, CE , CL

5. Computational Results

5.1. Case Study of A Small Example305

The application of CTGA on a small FFS problem from [56] is illustrated
in this section. The scheduling objective is to minimize the makespan. This
example has a set of 10 jobs to be processed through two main stages, with four
machines in the first stage, and three in the second. According to our notation,
J = {j1, j2, ..., j10}, M1 = {m11,m12,m13,m14}, M2 = {m21,m22,m23}. Each310

machine has different processing capacity, shown in Table 2 as Pmj . A candidate
solution (machine allocation with a user-specified job sequence) is provided in
[56] (shown in Table 3) using a standard GA (SGA) with binary encoding.

The following parameter settings is adopted in CTGA: in both phases the
crossover rate is 0.9, the mutation rate is 0.15, the population size (number of315

chromosomes in one generation) is 10. Termination condition is the number of
iterations: 10 in the outer phase and 20 in the inner phase. In this example the
optimization problem is single-objective, therefore the algorithm is set with two
islands, each has the same objective of minimizing the makespan. Migration
condition is that both islands do not converge to new points over 5 iterations320

(in the outer phase). The problem is also tackled by the NSGA-II (implemented
using pymoo [57] which is recommended for official benchmarks) with the same
settings. Table 3 summarizes the results: each candidate schedule contains the
job sequence JS (found by the outer phase) and the corresponding assignment
matrix A (found by the inner phase). In this example, with 20 trials for each325

algorithm and considering the best solution found, the CTGA achieves lower

13

Table 2: The job processing time on each machine.

M1 M2

m11 m12 m13 m14 m21 m22 m23

j1 6 5 4 7 7 8 7
j2 2 4 2 5 8 9 6
j3 4 5 3 5 8 7 9
j4 4 6 7 4 6 6 8
j5 4 4 5 6 5 7 9
j6 6 5 5 4 7 5 6
j7 3 4 3 7 8 9 7
j8 5 6 7 6 5 6 8
j9 7 6 5 5 9 7 8
j10 4 6 3 5 6 7 7

objective values (28) than the NSGA-II (29) and the SGA (30). Gantt charts of
these candidate schedules (derived from JS and A, pseudo-code in Algorithm 3)
generated by different algorithms are provided in Figure 2. In the first stage, the
CTGA solution has a relatively long finishing time (longer than SGA but shorter330

than NSGA-II) among three algorithms to make full use of idle machines in this
stage, when the second (final) stage has started processing. It also schedules
short jobs (e.g., job 2 on machine 1 and job 7 on machine 3) first to trigger an
early start of the second (final) stage.

To our knowledge, GA parameters are problem dependent. There should be335

a balance between exploitation and exploration, e.g., higher population size and
iteration number often require more execution time but are probable to achieve
a better solution. The above mentioned parameter settings are tuned from
different attempts, ensuring the CTGA to converge to an acceptable solution in
a relatively fast speed. Another point to note is that the sequence JS is generated340

by CTGA in the outer phase, not representing the actual processing order of
jobs. Instead, the gantt chart provides the planning for actual production.

14

Algorithm 3 Making Gantt Chart

Require: JS , A, c, n,Mc, P
m
j

Return: On each machine, start and end timestamp of all jobs
for m in Mc do

// Gantt chart information on all machines are idle at the beginning.
gantt chart[m]← ∅
machine occu[m]← 0 // Finishing time of the current task on machine m.

end for
for j in JS do
job occu[j]← 0 // Finishing time of the previous stage of job j.

end for
n← 0 // Number of machines in the previous stage.
// Loop over each stage and each job.
for i ≤ c do

for j ≤ n do
if gantt chart[A[i][j] + n] = ∅ then
start← job occu[j]

else
start← max(job occu[j],machine occu[A[i][j] + n])

end if
machine occu[A[i][j] + n], job occu[j], end← start+ P

A[i][j]+n
j

// Update Gantt chart information on the current machine.
gantt chart[A[i][j] + n]

⋃
(j, start, end)

end for
n← n+ |Mc[i]|

end for
return gantt chart

15

� � �� �� �� �� ��
���������������

���

���

���

���

���

���

���

� 	 �

� � ��

� �

�

� � 	 ��

�
 �

� � �

(a) Gantt chart of the CTGA solution.

� � �� �� �� �� ��
���������������

���

���

���

���

���

���

���

� � �

�

	 �

 � �� �

� 	 �� �

�
 � �

� �

(b) Gantt chart of the NSGA-II solution.

� � �� �� �� �� ��
���������������

���

���

���

���

���

���

���

� � ��

� 	

� � �

�

� � � 	

� �

� � ��

(c) Gantt chart of the SGA solution.

Figure 2: Gantt charts of candidate schedules provided by CTGA, NSGA-II and SGA.16

Table 3: Summary of CTGA, NSGA-II and SGA results.

JS A

CTGA {j2, j4, j5, j1, j7, j8, j9, j10, j3, j6}
[
1 4 2 2 3 1 4 2 3 1
3 3 1 1 2 1 2 1 2 3

]
NSGA-II {j5, j9, j7, j3, j6, j8, j10, j1, j4, j2}

[
2 4 1 4 1 3 4 4 3 1
2 2 1 3 2 1 1 1 2 3

]
SGA {j1, j2, j3, j4, j5, j6, j8, j7, j9, j10}

[
2 1 3 1 4 3 3 2 4 1
1 3 2 2 1 3 1 1 2 3

]
Cmax Gantt chart

CTGA 27 Figure 2a

NSGA-II 29 Figure 2b

SGA 30 Figure 2c

5.2. Improvement Fighting Premature Convergence

This section investigates the premature convergence issue of CTGA with
the previous small example from literature [56]. In such case, a user-specified345

job sequence is already determined (JS for SGA in Table 3), not required to
be found by the algorithm. Therefore, we focus on the inner phase of CTGA,
which handles the machine allocation.

Figure 3 shows the search trend of CTGA in a random trial, visualizing
the maximal, mean and minimal fitness values of all individuals in each gen-350

eration. The parameter settings are the same as in the previous experiment:
population size is 20, crossover rate is 0.9, mutation rate is 0.15. In Figure 3,
after a few iterations (generations) of the algorithm, the population tends to
be too homogeneous since all curves converge to a constant value. In case the
global optimum is not found, the algorithm is trapped in the local optimum. To355

avoid this phenomenon, inspired by the usage of a scale factor [58] tuning the
crossover rate, we implement a fluctuating selection policy (in the evaluation
stage in Figure 1) over iterations: in the early generations the good individuals
have a lower probability to be selected as parents than they should, and the bad
individuals have an increased probability to be chosen. In the final generations,360

the selection probability of good individuals are increased to ensure the conver-
gence of the algorithm. The fluctuating probability pi of an individual i to be
selected in iteration k is defined as follows:

pi =
fi∑
j∈P fj

(17)

where fi = |minj∈PFj + (maxj∈PFj −minj∈PFj) · n−kn−1 − Fi|+ ε, P is the
set of individuals in the current population, Fj is the fitness value of individual365

j, n is the number of iterations, and ε is a low positive value ensuring no null

17

probability. The algorithm with such improvement to tackle the premature
convergence is denoted as CTGA FS (fluctuating selection).

0 5 10 15 20

Generations

30

35

40

45

50

55

60

M
a

k
e

s
p

a
n

 (
h

)

Max

Mean

Min

Figure 3: Convergence plot of CTGA in one random trial.

For performance testing of CTGA and CTGA FC, 100 tests are carried
out with the same small case mentioned above to make the findings reliable370

[59]. Since the global optimum of the investigated case is unknown, we cannot
calculate the SRs of both algorithms in these tests. Instead, the fitness values
(Makespan) of candidate solutions proposed by the algorithms are compared to
verify whether CTGA FS can find a better optimum than CTGA. The boxplots
of both algorithms’ candidate solutions’ fitness values are shown in Figure 4.375

The average fitness value of CTGA FS candidates is better than that of CTGA
(32.52h versus 33.03h as Makespan), and have a smaller standard deviation (1.82
versus 1.99). Also, the obtained optimum by CTGA FS is better than that of
the CTGA (28h versus 29h as Makespan). This phenomenon indicates that the
fluctuating selection policy can improve the performance of the algorithm, and380

tackle the issue of premature convergence.
The time complexity of CTGA FS is larger than CTGA according to the

calculation of fi in (17). Therefore there is a trade-off between a potentially
better optimum and longer execution time when choosing the algorithm applied
to the complicated engineering optimization problems. For the following multi-385

objective pasta manufacturing case, we are more interested in finding the TF
solution of all objectives (Makespan, energy cost, and labor cost) rather than
an extreme optimum for a single objective. Therefore, the CTGA is the choice
in the following experiment.

18

CTGA CTGA_FS

28

30

32

34

36

38
M

a
k
e

s
p

a
n

 (
h

)

Figure 4: Boxplot of CTGA and CTGA FS candidates’ fitness values out of 100 trials.

5.3. Case Study of Pasta Manufacturing390

Pasta is an essential food source for a large population and also a crucial
merchandise in the world market. Its production process requires four steps:
(1) The flour is mixed with water and other ingredients. (2) The dough is
formed into particular shapes through extrusion. (3) Semi-finished product is
dried to a desired moisture. (4) Finished pasta is packaged for sale. As shown395

in Figure 5, in a highly automated plant, the above-mentioned process can be
managed by two types of integrated processing lines, namely the production line
covering the first three steps and the packaging line handling the last. Each line
contains multiple component machines, belonging to different processing steps.
Pasta manufacturing strictly follows a FS process, being quality-and-energy-400

sensitive. When a job (e.g., 1500kg of macaroni) is continuously processed on
the production line, blockage or transmission to other lines is not allowed until
all semi-finished products are dried to a firm shape. Also on the packaging
line, it must be processed without disruption until the packages are ready for
transport. Therefore, this problem has the characteristic of no-wait constraint:405

in the flow of any job, no holding up is allowed between two sequential machines
on a processing line.

The investigated case form a Belgium pasta manufacturer is a two-stage
GFFS scheduling problem according to the notations in Section 3. It can
also be formulated using an adapted DFS model, which is more complicated410

and not discussed in this paper. In the plant, there are 7 production lines
in the first stage and 2 packaging lines in the second stage. There are also
enough buffer stocks between two stages, therefore the output of a production

19

Productioin Line Packaging Line

Mixing Extrusion Drying Packaging

... ...
Plant

Productioin Line Packaging Line

Mixing Extrusion Drying Packaging

Flow

...

...

Figure 5: Plant view of pasta manufacturing.

line can be linked to any packaging line. Peak-and-valley energy price (peak
hour 7 − 22h) policy is applied on each processing line. Operators work three415

shifts (5 − 13h, 13 − 21h, 21 − 5h) per day. The size of waiting job set is 100.
A start timestamp H0 is also set as the beginning of schedule. The input
parameters for the corresponding MIP model are given as follows: n = 100,
c = 2, M1 = 7, M2 = 2, Em = {104, 132, 118, 143, 139, 113, 119, 87, 99}(kW),
Lm = {2, 1, 1, 1, 2, 2, 1, 3, 2}, Pmj is a matrix of size 100 × 9. The parameters e420

and l in constraints 12 and 13 are replaced by new decision variables: et and
it, whose definitions are in constraints 18 and 19. In this example, randomly
generated data from a reasonable range are used for Em, Lm, Pmj , et, and lt
according to the confidentiality agreement.

• et, energy cost at period t (e/mWh)425

• lt, labor cost at period t (e/h)

et =

{
60 if 7 ≤ (H0 + t) (mod 24) < 22

30 otherwise
(18)

lt =

12 if 5 ≤ (H0 + t) (mod 24) < 13

10 if 13 ≤ (H0 + t) (mod 24) < 21

20 otherwise

(19)

The CTGA with the following settings is implemented to tackle this case:
in both phases the crossover rate is 0.9, the mutation rate is 0.15, and the
population size is 10. The number of iterations in the outer phase is 20, and
in the inner phase is 30, respectively. Such setting ensures the convergence of430

the inner phase (shown in Figure 7d, 7e and 7f). On a normal PC (CPU Intel

20

I5-5257U, RAM 8G), we initialize the CTGA with 3 processes representing 3
islands, each dealing with a sub-objective. If there is no improvement in each
island for 10 successive generations, migration is further performed.

We present the best near-optimal solution found by CTGA from 20 attempts,435

where the average time consumption of an attempt is 120.75s, with a standard
deviation of 5.51s. All evaluated chromosomes from each generation in the objec-
tive space are shown in Figure 6. The generations are distinguished by different
colors (from a color gradient). TF points are marked using red squares. Corre-
sponding objective values of all evaluated chromosomes (all points in Figure 6)440

are summarized in Table 4, where the best (Vbest) and worst (Vworst) values of
each sub-objective are noted. The optimization potential (OP) is defined in 20.

60066000
9400

67000

580

68000

9200

Makespan (h)

69000

9000 560

70000

8800

71000

5408600

2 4 6 8 10 12 14 16 18 20

Trade-off Front

Generations:

Figure 6: Evaluated chromosomes of CTGA in the objective space over generations.

Table 4: Summary of evaluated chromosomes in the objective space by CTGA.

Vworst Vbest OP

Cmax(h) 600 549 8.50%
CE(e) 9244 8760 5.24%
CL(e) 70278 66048 6.02%

OP =
Vworst − Vbest

Vworst
× 100% (20)

21

To further investigate the search trend of CTGA, the TFs on a pairwise view
of the three sub-objectives are given in Figure 7a, 7b and 7c. Most of the TF
points have a low Cmax. In Figure 7c, where CL and CE are comparable in445

euros, evaluated chromosomes from later generations (points with darker color)
are more likely to have lower CL. The reason for this phenomenon is that unlike
other MOGAs applying non-dominated (ND) sorting [40, 41] during evolution,
the CTGA does not return a ND set in each generation. Instead, the algorithm
tends to search along the sub-objectives with higher OP . We think that the450

CTGA performs well for many multi-objective problems because it provides a
better exploitation of the objective space, especially along the more sensitive
sub-objectives. Besides, the algorithm does not ignore other sub-objectives by
providing a TF from all evaluated chromosomes in each generation. A proof is
that in Figure 6, TF points containing chromosomes from different generations.455

The convergence plots of Cmax, CE , and CL during evolution are shown in
Figure 7d, 7e and 7f. The mean sub-objective value of evaluated chromosomes
in each generation is noted, on the view of all islands (in the blue curve) and the
specific island dealing with the sub-objective (in the pink curve). In the plots,
chromosomes on each island converges to a near-optimal value of the corre-460

sponding sub-objective before calculating the TF, and the migration condition
(no improvement in all islands for 10 successive generations) is not achieved.
Since each island has a specific search direction of one sub-objective, chromo-
somes on all islands have a floating mean over generations. This phenomenon
indicates that there are optimization conflicts between the sub-objectives, also465

the TF should be derived from all evaluated chromosomes without ignoring a
potential near-optimal solution.

22

540 550 560 570 580 590 600

Makespan (h)

8700

8800

8900

9000

9100

9200

9300

(a) Trade-off of Cmax and CE .

540 550 560 570 580 590 600

Makespan (h)

66000

67000

68000

69000

70000

71000

(b) Trade-off of Cmax and CL.

8700 8800 8900 9000 9100 9200 9300

66000

67000

68000

69000

70000

71000

(c) Trade-off of CE and CL.

0 5 10 15 20

Generations

555

560

565

570

M
a
k
e
s
p
a
n
 (

h
)

All Islands

Islands 1

(d) Mean of Cmax.

0 5 10 15 20

Generations

8850

8900

8950

9000

9050

9100

All Islands

Islands 2

(e) Mean of CE .

0 5 10 15 20

Generations

66500

67000

67500

68000

68500

69000
All Islands

Islands 3

(f) Mean of CL.

Figure 7: Trade-off and convergence plots of CTGA on makespan (Cmax), energy cost (CE),
and labor cost (CL).

5.4. Performance Analyses of CTGA

In this section, the performance of CTGA is further investigated by the
comparison with NSGA-II [41]. The two-phase NSGA-II implementation for470

the pasta manufacturing case with the same settings (parallelization with 3
processes because the CTGA has 3 islands in the pasta manufacturing example,
no migration) is developed using pymoo. The number of evaluated chromosomes
by the two algorithms are ensured to be same.

Both CTGA and NSGA-II are stochastic algorithms, whose results vary in475

23

different attempts. We perform a greater-than hypothesis test to investigate the
results of the two algorithms, where µi, Ni , xi, and si denote the ith (i = 1
indicates CTGA and i = 2 indicates NSGA-II) population mean, sample size,
sample mean, and sample standard deviation, respectively:

H0 : µ1 ≥ µ2

Hα : µ1 < µ2

t =
x1 − x2√
s21
N1

+
s22
N2

(21)

In the experiment the two algorithms are executed 20 times on the pasta480

manufacturing case to generate result samples. The sample size N indicates
the total number of candidate schedules (TF chromosomes of CTGA and non-
dominated chromosomes in the final generation of NSGA-II) proposed by the
algorithm from all executions. A summary of the two-sample one-tailed t-test
is given in Table 5. The CTGA has a lower sample mean in all sub-objectives485

(32.11 (5.43%) in Cmax, 86.50 (0.95%) in CE , 1415.68 (2.07%) in CL), also a
lower standard deviation than NSGA-II. Since the p-values are much smaller
than α = 0.01, we reject the null hypothesis of the greater-than test, concluding
that CTGA could provide schedules with lower sub-objective values than NSGA-
II.490

Table 5: Summary of a two-sample one-tailed t-test for CTGA and NSGA-II results.

Cmax (h) CE (e) CL (e)

N1(CTGA) 380 380 380
x1 559.11 8983.45 66950.84
s1 12.49 73.09 1089.06

N2(NSGA− II) 175 175 175
x2 591.22 9069.95 68366.52
s2 42.72 103.01 1092.38

x2 − x1 32.11 86.50 1415.68
(x2 − x1)/x2 5.43% 0.95% 2.07%

t− statistic 9.73 9.98 14.17
p− value 1.15× 10−18 2.37× 10−20 2.32× 10−36

On the PC, all executions of CTGA in our samples have a mean execu-
tion time of 120.75s, which is 59.77% shorter than that (300.12s) of NSGA-II
samples. However, the time consumption is platform specific and influenced by
many uncontrollable factors, e.g., allocation of CPU cores to processes by the
operation system. Therefore, we do not perform a hypothesis test of the time495

consumption of the execution samples, but we infer that the proposed CTGA
is faster than NSGA-II.

24

6. Conclusion

This paper presents a customized two-phase genetic algorithm (CTGA) and
its application to a generalized flexible flowshop (GFFS) problem in pasta man-500

ufacturing. A multi-objective mixed-integer programming (MIP) formulation
is introduced for GFFS, inspiring the encoding of CTGA. We also propose a
specialized island model to parallelize the algorithm, where the calculation of
near-optimal solutions with trade-off sub-objective values makes use of evalu-
ated chromosomes from all generations on each island. Computational results505

on a real-sized pasta manufacturing case indicate the feasibility and effectiveness
of CTGA , by demonstrating the algorithm’s convergence ability (with 8.50%,
5.24%, and 6.02% improvement in makespan, energy cost, and labor cost) and
the variety of evaluated candidates in the objective space. A comparison with a
NSGA-II implementation is also performed, for both 20 attempts, CTGA pro-510

posed the solution with 5.43% shorter makespan, 0.95% lower energy cost, and
2.07% lower labor cost.

We believe that the CTGA and the proposed island model has great poten-
tial and general applicability for multi-objective optimization problems because
of the flexibility brought by the GA algorithm and the parallelization design.515

An illustrative example is given in this work on a FFS scheduling problem
from literature, and a fluctuating selection strategy is introduced to tackle the
premature convergence. Further research and development include more inves-
tigations to make the algorithm converge faster to better solutions, and to make
the method applicable to more complicated realistic problems: e.g., considering520

limited intermediate buffer and maintenance planning in scheduling.

7. Acknowledgements

This work was executed within the imec.icon project ELITE, a research
project bringing together academic researchers and industry partners. The
ELITE project was co-financed by imec and received project support from Flan-525

ders Innovation & Entrepreneurship (project nr. HBC. 2017.0149).

[1] M. Pinedo, Scheduling, Vol. 29, Springer, 2012.

[2] V. Portougal, D. J. Robb, Production scheduling theory: just where is it
applicable?, Interfaces 30 (6) (2000) 64–76.

[3] L. Zhou, K. Xu, X. Cheng, Y. Xu, Q. Jia, Study on optimizing production530

scheduling for water-saving in textile dyeing industry, Journal of cleaner
production 141 (2017) 721–727.

[4] Z. Wang, H. Hu, J. Gong, Framework for modeling operational uncertainty
to optimize offsite production scheduling of precast components, Automa-
tion in Construction 86 (2018) 69–80.535

25

[5] K. Mao, Q.-K. Pan, T. Chai, P. B. Luh, An effective subgradient method
for scheduling a steelmaking-continuous casting process, IEEE Transactions
on Automation Science and Engineering 12 (3) (2014) 1140–1152.

[6] X. Gong, M. Van der Wee, T. De Pessemier, S. Verbrugge, D. Colle,
L. Martens, W. Joseph, Energy-and labor-aware production scheduling for540

sustainable manufacturing: A case study on plastic bottle manufacturing,
Procedia CIRP 61 (2017) 387–392.

[7] K. Shen, T. De Pessemier, X. Gong, L. Martens, W. Joseph, Genetic opti-
mization of energy-and failure-aware continuous production scheduling in
pasta manufacturing, Sensors 19 (2) (2019) 297.545

[8] T. Lee, Y. Loong, A review of scheduling problem and resolution meth-
ods in flexible flow shop, International Journal of Industrial Engineering
Computations 10 (1) (2019) 67–88.

[9] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, M. Gidlund, Industrial inter-
net of things: Challenges, opportunities, and directions, IEEE Transactions550

on Industrial Informatics 14 (11) (2018) 4724–4734.

[10] L. Yue, Z. Guan, L. Zhang, S. Ullah, Y. Cui, Multi objective lotsizing
and scheduling with material constraints in flexible parallel lines using a
pareto based guided artificial bee colony algorithm, Computers & Industrial
Engineering 128 (2019) 659–680.555

[11] J. Dong, H. Pan, C. Ye, W. Tong, J. Hu, No-wait two-stage flowshop prob-
lem with multi-task flexibility of the first machine, Information Sciences
544 (2020) 25–38.

[12] D. Yüksel, M. F. Taşgetiren, L. Kandiller, L. Gao, An energy-efficient bi-
objective no-wait permutation flowshop scheduling problem to minimize560

total tardiness and total energy consumption, Computers & Industrial En-
gineering (2020) 106431.

[13] M. Marichelvam, M. Geetha, Ö. Tosun, An improved particle swarm opti-
mization algorithm to solve hybrid flowshop scheduling problems with the
effect of human factors–a case study, Computers & Operations Research565

114 (2020) 104812.

[14] B. Zhang, Q.-k. Pan, L. Gao, X.-y. Li, L.-l. Meng, K.-k. Peng, A multiob-
jective evolutionary algorithm based on decomposition for hybrid flowshop
green scheduling problem, Computers & Industrial Engineering 136 (2019)
325–344.570

[15] H. Zohali, B. Naderi, M. Mohammadi, The economic lot scheduling problem
in limited-buffer flexible flow shops: mathematical models and a discrete
fruit fly algorithm, Applied Soft Computing 80 (2019) 904–919.

26

[16] F. B. Ozsoydan, M. Sağir, Iterated greedy algorithms enhanced by hyper-
heuristic based learning for hybrid flexible flowshop scheduling problem575

with sequence dependent setup times: a case study at a manufacturing
plant, Computers & Operations Research 125 (2021) 105044.

[17] H. Li, X. Li, L. Gao, A discrete artificial bee colony algorithm for the
distributed heterogeneous no-wait flowshop scheduling problem, Applied
Soft Computing (2020) 106946.580

[18] Y.-Y. Huang, Q.-K. Pan, J.-P. Huang, P. Suganthan, L. Gao, An im-
proved iterated greedy algorithm for the distributed assembly permutation
flowshop scheduling problem, Computers & Industrial Engineering (2020)
107021.

[19] Y. Li, X. Li, L. Gao, L. Meng, An improved artificial bee colony algo-585

rithm for distributed heterogeneous hybrid flowshop scheduling problem
with sequence-dependent setup times, Computers & Industrial Engineer-
ing 147 (2020) 106638.

[20] J. N. Gupta, Two-stage, hybrid flowshop scheduling problem, Journal of
the operational Research Society 39 (4) (1988) 359–364.590

[21] W. Yu, H. Hoogeveen, J. K. Lenstra, Minimizing makespan in a two-
machine flow shop with delays and unit-time operations is np-hard, Journal
of Scheduling 7 (5) (2004) 333–348.

[22] D. E. Goldberg, Genetic algorithms, Pearson Education India, 2006.

[23] H. Tamaki, H. Kita, S. Kobayashi, Multi-objective optimization by genetic595

algorithms: A review, in: Proceedings of IEEE international conference on
evolutionary computation, IEEE, 1996, pp. 517–522.

[24] T. Murata, H. Ishibuchi, H. Tanaka, Multi-objective genetic algorithm and
its applications to flowshop scheduling, Computers & industrial engineering
30 (4) (1996) 957–968.600

[25] S. A. Brah, J. L. Hunsucker, Branch and bound algorithm for the flow shop
with multiple processors, European journal of operational research 51 (1)
(1991) 88–99.

[26] M. Azizoğlu, E. Çakmak, S. Kondakci, A flexible flowshop problem with
total flow time minimization, European Journal of Operational Research605

132 (3) (2001) 528–538.

[27] H. Morita, N. Shio, Hybrid branch and bound method with genetic algo-
rithm for flexible flowshop scheduling problem, JSME International Journal
Series C Mechanical Systems, Machine Elements and Manufacturing 48 (1)
(2005) 46–52.610

27

[28] H. Hadera, I. Harjunkoski, G. Sand, I. E. Grossmann, S. Engell, Optimiza-
tion of steel production scheduling with complex time-sensitive electricity
cost, Computers & Chemical Engineering 76 (2015) 117–136.

[29] H. K. Zare, M. B. Fakhrzad, Solving flexible flow-shop problem with a hy-
brid genetic algorithm and data mining: A fuzzy approach, Expert systems615

with applications 38 (6) (2011) 7609–7615.

[30] C. Azzaro-Pantel, L. Bernal-Haro, P. Baudet, S. Domenech, L. Pibouleau,
A two-stage methodology for short-term batch plant scheduling: discrete-
event simulation and genetic algorithm, Computers & chemical engineering
22 (10) (1998) 1461–1481.620

[31] M. R. Singh, S. Mahapatra, A swarm optimization approach for flexible
flow shop scheduling with multiprocessor tasks, The International Journal
of Advanced Manufacturing Technology 62 (1-4) (2012) 267–277.

[32] G. Rudolph, On a multi-objective evolutionary algorithm and its conver-
gence to the pareto set, in: 1998 IEEE International Conference on Evo-625

lutionary Computation Proceedings. IEEE World Congress on Computa-
tional Intelligence (Cat. No. 98TH8360), IEEE, 1998, pp. 511–516.

[33] C. M. Fonseca, P. J. Fleming, An overview of evolutionary algorithms in
multiobjective optimization, Evolutionary computation 3 (1) (1995) 1–16.

[34] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a compara-630

tive case study and the strength pareto approach, IEEE transactions on
Evolutionary Computation 3 (4) (1999) 257–271.

[35] J. D. Schaffer, Multiple objective optimization with vector evaluated ge-
netic algorithms, in: Proceedings of the first international conference on
genetic algorithms and their applications, 1985, Lawrence Erlbaum Asso-635

ciates. Inc., Publishers, 1985.

[36] T. Murata, H. Ishibuchi, Moga: multi-objective genetic algorithms, in:
IEEE international conference on evolutionary computation, Vol. 1, 1995,
pp. 289–294.

[37] J. rey Horn, N. Nafpliotis, D. E. Goldberg, Multiobjective optimization640

using the niched pareto genetic algorithm, IlliGAL report 93005.

[38] J. Horn, N. Nafpliotis, D. E. Goldberg, A niched pareto genetic algorithm
for multiobjective optimization, in: Proceedings of the first IEEE confer-
ence on evolutionary computation. IEEE world congress on computational
intelligence, Ieee, 1994, pp. 82–87.645

[39] D. E. Goldberg, J. Richardson, et al., Genetic algorithms with sharing for
multimodal function optimization, in: Genetic algorithms and their appli-
cations: Proceedings of the Second International Conference on Genetic
Algorithms, Hillsdale, NJ: Lawrence Erlbaum, 1987, pp. 41–49.

28

[40] N. Srinivas, K. Deb, Muiltiobjective optimization using nondominated sort-650

ing in genetic algorithms, Evolutionary computation 2 (3) (1994) 221–248.

[41] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii, in: In-
ternational conference on parallel problem solving from nature, Springer,
2000, pp. 849–858.655

[42] Y. Gao, L. Shi, P. Yao, Study on multi-objective genetic algorithm, in: Pro-
ceedings of the 3rd World Congress on Intelligent Control and Automation
(Cat. No. 00EX393), Vol. 1, IEEE, 2000, pp. 646–650.

[43] X. Shi, W. Long, Y. Li, D. Deng, Multi-population genetic algorithm with
er network for solving flexible job shop scheduling problems, PloS one 15 (5)660

(2020) e0233759.

[44] J. K. Cochran, S.-M. Horng, J. W. Fowler, A multi-population genetic al-
gorithm to solve multi-objective scheduling problems for parallel machines,
Computers & Operations Research 30 (7) (2003) 1087–1102.

[45] F. Herrera, M. Lozano, Gradual distributed real-coded genetic algorithms,665

IEEE transactions on evolutionary computation 4 (1) (2000) 43–63.

[46] E. Cantú-Paz, Markov chain models of parallel genetic algorithms, IEEE
Transactions on evolutionary computation 4 (3) (2000) 216–226.

[47] J. Luo, S. Fujimura, D. El Baz, B. Plazolles, Gpu based parallel genetic al-
gorithm for solving an energy efficient dynamic flexible flow shop scheduling670

problem, Journal of Parallel and Distributed Computing 133 (2019) 244–
257.

[48] T. Zajıcek, P. Šucha, Accelerating a flow shop scheduling algorithm on the
gpu, eraerts (2011) 143.

[49] F. Pinel, B. Dorronsoro, P. Bouvry, Solving very large instances of the675

scheduling of independent tasks problem on the gpu, Journal of Parallel
and Distributed Computing 73 (1) (2013) 101–110.

[50] C.-S. Huang, Y.-C. Huang, P.-J. Lai, Modified genetic algorithms for solv-
ing fuzzy flow shop scheduling problems and their implementation with
cuda, Expert Systems with Applications 39 (5) (2012) 4999–5005.680

[51] M. Kurdi, An effective new island model genetic algorithm for job shop
scheduling problem, Computers & operations research 67 (2016) 132–142.

[52] A. P. Engelbrecht, Computational intelligence: an introduction, John Wi-
ley & Sons, 2007.

[53] H.-Y. Fan, J. W.-Z. Lu, Z.-B. Xu, An empirical comparison of three novel685

genetic algorithms, Engineering Computations.

29

[54] V. A. Cicirello, Non-wrapping order crossover: An order preserving
crossover operator that respects absolute position, in: Proceedings of the
8th annual conference on Genetic and evolutionary computation, 2006, pp.
1125–1132.690

[55] K. Deb, K. Sindhya, T. Okabe, Self-adaptive simulated binary crossover for
real-parameter optimization, in: Proceedings of the 9th annual conference
on Genetic and evolutionary computation, 2007, pp. 1187–1194.

[56] X. Wang, Q. Dai, Scheduling for flexible flow-shop problem based on an
improved genetic algorithm, in: 2014 IEEE International Conference on695

Consumer Electronics-China, IEEE, 2014, pp. 1–3.

[57] J. Blank, K. Deb, pymoo: Multi-objective optimization in python, IEEE
Access 8 (2020) 89497–89509.

[58] K. De Jong, Adaptive system design: a genetic approach, IEEE Transac-
tions on Systems, Man, and Cybernetics 10 (9) (1980) 566–574.700

[59] J. Andre, P. Siarry, T. Dognon, An improvement of the standard genetic
algorithm fighting premature convergence in continuous optimization, Ad-
vances in engineering software 32 (1) (2001) 49–60.

30

	Introduction
	Literature review
	Problem Formulation
	GA Implementation
	The Island model
	Encoding and Fitness Function
	Genetic Operations

	Computational Results
	Case Study of A Small Example
	Improvement Fighting Premature Convergence
	Case Study of Pasta Manufacturing
	Performance Analyses of CTGA

	Conclusion

