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abstract: Nesting in dense aggregations is common in central
place foragers, such as group-living birds and insects. Both environ-
mental heterogeneity and behavioral interactions are known to induce
clustering of nests, but their relative importance remains unclear. We
developed an individual-basedmodel that simulated the spatial organi-
zation of nest building in a gregarious digger wasp, Bembix rostrata.
This process-based model integrates environmental suitability, as de-
rived from a microhabitat model, and relevant behavioral mechanisms
related to local site fidelity and conspecific attraction. The drivers be-
hind the nesting were determined by means of inverse modeling in
which the emerging spatial and network patterns from simulations
were comparedwith those observed in the field.Models with individual
differences in behavior that include the simultaneous effect of a weak
environmental cue and strong behavioral mechanisms yielded the best
fit to the field data. The nest pattern formation of a central place forag-
ing insect cannot be considered as the sum of environmental and be-
havioral mechanisms. We demonstrate the use of inverse modeling
to understand complex processes that underlie nest aggregation in
nature.

Keywords: approximate Bayesian computation, habitat selection, inte-
grated nested Laplace approximation (INLA), spatial self-organization,
Crabronidae, Hymenoptera.
Introduction

The ideal free distribution predicts that organisms opti-
mally distribute themselves across resource patches to min-
imize resource competition (Kacelnik et al. 1992). This pro-
cess leads to the sorting of individuals according to their
niche (Hutchinson 1957; Holt 2009) and induces spatial pat-
terns of high densities where the environment is most suit-
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able (e.g., in shorebirds; Swift et al. 2017). Animal aggregations
are also widely documented in species inhabiting homog-
enous environments, not only in social species but also in
nonsocial central place foraging wasps, lizards, and birds
(Stamps 1988; Tarof and Ratcliffe 2004; Evans and O’Neill
2007). These inherent spatial patterns can emerge from be-
havioral and internal dynamics, such as the interplay be-
tween positive and negative density dependence, and are an
example of spatial self-organization (Fortin and Dale 2005;
Rietkerk and van de Koppel 2008; Bayard and Elphick 2010;
Bradbury and Vehrencamp 2014). The spatial clustering of
group-living animals—and more specifically nest cluster-
ing—has been explained through several behavioral hypoth-
eses that are intrinsically linked with benefits related to group
size (KrauseandRuxton2002).Groupscanprovideprotection
against predation or parasitism (e.g., via a selfish herd; Ham-
ilton 1971; Larsson 1986; supplement S1; supplements S1–
S9 are available online) or against climatic extremes (Gilbert
et al. 2008), or they can simply increase foraging efficiency
(Clark and Mangel 1986). Both environmental and behav-
ioral mechanisms can result in the spatial clustering of in-
dividuals or their nests. However, their relative importance
remains elusive, especially for invertebrates. Moreover, it is
unclear at which level these processes can vary: can mecha-
nisms vary among individuals or even during an individual’s
lifetime? The relative strengths of environmental and behav-
ioral mechanisms for spatial clustering are expected to vary
among systems (e.g., in analogy to bottom-up and top-down
regulation of communities; Hunter and Price 1992).
Information use is central to any decision-making and,

thus, also to settlement. Information can be personal when
individuals directly use cues from the environment or inad-
vertently social when information is generated by the behav-
ior (e.g., foraging, fighting, mating) of other conspecific in-
dividuals (Danchin et al. 2004; Dall et al. 2005). Personal
Chicago. All rights reserved. Published by The University of Chicago Press for
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information, in addition to self-assessment of the environ-
ment, can consist of a female’s experience with previous
nesting locations, which results in local site fidelity (Hoi
et al. 2012; Asís et al. 2014). Variation in information use
among individuals may arise from heterogeneity in these
strategies, where “producers” rely on personal information
and “scroungers” rely on (inadvertent) social information, or
from individuals switching between these sources of infor-
mation (Barnard and Sibly 1981; Coolen et al. 2007).
The spatial clustering of nests is often regarded as a clearly

separated and stepwise process where individuals first col-
lectively select suitable environments at larger spatial scales,
after which internal dynamics (e.g., competition, attraction,
individual and social learning) come into play (Melles et al.
2009; Swift et al. 2017). The prevailing insights are acquired
by the analysis of complex spatial patterns and/or from be-
havioral experiments (e.g., Polidori et al. 2008; Melles et al.
2009; Asís et al. 2014). However, environmental heterogene-
ity and internal dynamics are anticipated to act simultaneously
or even synergistically. Since the emergent patterns of a com-
plex system cannot be predicted from the sum of the under-
lying components (Bradbury and Vehrencamp 2014), more
integrated approaches are needed. Inverse modeling, which
can identify the processes that reproduce a set of observed
patterns, has been extremely useful from this perspective
(Banks et al. 2014; Curtsdotter et al. 2019; Stouffer 2019).
Here, we apply such an inverse approach to understand

the contribution of environmental and behavioral mech-
anisms in nest aggregations of the ground-nesting digger
wasp Bembix rostrata. We combine amicrohabitat suitabil-
ity model with an individual-based model (IBM) to inves-
tigate the processes underlying the spatial dynamics of nest
pattern formation as observed in the field.We include three
mechanisms in the IBM: (i) environmental suitability, (ii) lo-
cal site fidelity, and (iii) social cues. The direction and strength
of these mechanisms can vary at the population level (uni-
form for all) aswell as between individuals (individuallyfixed)
and within individuals (individually flexible). The simulated
spatial point and network patterns are compared with those
recorded in the field using approximate Bayesian computa-
tion (ABC) to select the most likely combination of envi-
ronmental and behavioral mechanisms that underlie the ob-
served nesting patterns.
Material and Methods

Study Species

Bembix rostrata (Linnaeus, 1758; Hymenoptera, Crabroni-
dae, Bembicinae) is a specialized, highly philopatric, gregari-
ously nesting digger wasp found in sandy regions of Europe.
They inhabit sun-exposed sand dunes with sparse vegetation
(Larsson 1986) and are sensitive to trampling (Bonte 2005).
Adults are active from June to August; females construct
one nest burrow at a time in which a single larva is progres-
sively provisioned with flies (Nielsen 1945; Field 2005). A
female can make a maximum of five nests, each with one
offspring (Larsson and Tengö 1989). Several kleptoparasitic
fly species (Sarcophagidae) lay their larvae (ovi-larviposition;
Piwczyński et al. 2017) on the prey provided by females of
Bembix species (Nielsen 1945; Evans and O’Neill 2007). A
selfish herd pattern has been observed in B. rostrata with re-
gard to such brood parasites (Larsson 1986), where the inci-
dence of brood parasitismper nest decreasedwith higher nest
densities (we found a similar pattern in our field data between
B. rostrata and Senotainia albifrons; supplement S1).
Study Site and Sampling

Field data were collected in the summer of 2016 in the
De Westhoek nature reserve in De Panne (5170403800N,
273303700E; Belgium), in a study plot of approximately 40#
90 m2. Surveys took place on 30 days of favorable (sunny
and warm) weather conditions for B. rostrata (Schöne and
Tengö 1991), between June 28 andAugust 15. Female wasps
were individually tagged with a colored and numbered plas-
tic plate on the thorax (Opalith Zeichenplättchen), and nests
were marked with small handcrafted flags. We recorded vi-
sually when an individual started a nest or entered the nest
with a prey and if the prey was “infected” by kleptoparasitic
flies (Senotainia albifrons; Miltogramminae, Sarcophagidae).
The study area was covered several times per day, to sample
eachnest aggregate as equally as possible. Thepositionof each
nest was measured with a Trimble GPS device (accuracy,
2 cm). Remote-sensing imagery was collected using a drone
(Rpaswork.com and Didex.be) equipped with a multispec-
tral camera (red, green, blue, and near infrared bands) at the
end of the flight season. These images were processed to
create a digital elevation model (pixel size, 2.4# 2.4 cm2)
and to calculate the normalized difference vegetation index
(NDVI; pixel size, 1.1#1.1 cm2; Pettorelli 2013). The pa-
rameter insolation (as an indicator of the microclimate; pixel
size, 7.2#7.2 cm2) was calculated from the digital eleva-
tion model using the solar radiation tool and slope (pixel size,
7.2#7.2 cm2) with the surface toolset, both extensions of
spatial analyst in ArcGIS (ESRI 2011).
Statistical Analyses

The workflow of the analyses is shown in figure 1.

TheMicrohabitat SuitabilityMap.We used integrated nested
Laplace approximation (INLA; Rue et al. 2009; Lindgren
andRue 2011;Martins et al. 2013) to build themicrohabitat
suitability model. INLA is a Bayesian approach that allows
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for spatially autocorrelated residuals of the environmen-
tal data related to nest location (Zuur et al. 2017; supple-
ment S6). We used a generalized linear mixed model with
a binomial distribution with logit link for the response var-
iable and a spatial dependency structure modeled with the
Matérn covariance function (see the code available on Zen-
odoathttps://doi.org/10.5281/zenodo.5212680).NDVI (veg-
etation) and insolation (microclimate) were used as (normal-
ized) explanatory variables. Every nest was considered as a
presence point, and absence/zero data points were generated
by selecting an equal number of random points that were at
least 1 m from any nest within the study plot. As the study
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Figure 1: Conceptual figure of the workflow of the analyses. The relation between the nest positions and the environment is investigated by
building a microhabitat suitability model with integrated nested Laplace approximation (INLA; panel 1). Because the clustering is much
higher than expected based solely on the microhabitat model, the environment and behavioral mechanisms (i.e., local site fidelity and con-
specific attraction) are simultaneously modeled with an individual-based model (IBM; panel 2). The simulations differ in strength of the
mechanisms. This is implemented through the strength parameters, which represent the probability of the mechanisms being present.
The presence of the mechanisms can vary on three different levels: population, interindividual, and intraindividual. The simulations from
the IBM are compared with the spatial pattern of the field data using approximate Bayesian computation (ABC) to infer which submodels
best approach the field data (panel 3).
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plot was searched intensely, we considered the generated
points to be true absences. Models were compared using
the Watanabe-Akaike information criterion (WAIC; Wata-
nabe 2010; Gelman et al. 2014), computed with the inla
function (Rue and Held 2005; Rue et al. 2009). To confirm
our a priori choice of a simple linear model, we considered
interactions between both variables and an additional covar-
iate, local slope. WAIC differences for these models with a
linear model only including the NDVI and insolation pa-
rameters were less than 3, so the simple linear model was
preferred. The data were split into 70% training and 30%
evaluation data. As a cross validation, the final model
was run 10 times using different randomly chosen train-
ing and evaluation sets each time. To assess the predictive
power of the models, the area under the curve (AUC) was
calculated using the R package ROCR (Sing et al. 2005).
Sensitivity (true positive rate; predictive performance of
presences), specificity (true negative rate; predictive per-
formance of absences), and balanced accuracy (overall true
rate) were calculated using the R package caret (Kuhn 2008).
To calculate the latter three performance measures, pre-
dictions were transformed into 0/1 using the prevalence
criterion (Manel et al. 2001; Liu et al. 2005): predictions
that are larger than the prevalence threshold (proportion
of presences/absences in the evaluation data sets;50.5 in
our case) are classified as 1, and the other predictions are
classified as 0. The plotting of the spatial field, the spatial
residuals that INLA corrects for, shows whether the degree
of clustering was higher (hot spots) or lower (cold spots)
than expected on the basis of the covariates (NDVI and inso-
lation) in the microhabitat model. Different models that
considered different spatial scales were compared (each with
cross-validation included): buffers between 0.1 and 10mwere
drawn around each nest at nine different radii, and the mean
of each variable was calculated inside those buffers (QGIS
Development Team 2020). The models with buffer scales 0.1,
0.2, 0.5, 1, and 2 m had similar WAIC, AUC, sensitivity,
specificity, and spatial field plots. We proceeded with the
1-m scale, as the suitability predictions of this buffer scale
were detailed but also smooth, to balance overfitting and
poorer estimates (supplement S7). Within each cross vali-
dation, predictions of the final model were projected back
onto the field study plot within a grid of 0.5#0.5 m2. A de-
tailed habitat suitability map was created with the average
of these predictions (with a 0–1 scale of probability of nest
presence). This map was used as an input for the IBM (fig. 1;
see also “Inverse Modeling with IBM and ABC” below) to
be used as the environmental cue for habitat selection. We
did not include the uncertainties of the probabilities in the
IBM,as we deem this extra level of stochasticity negligible.

Spatial Point Pattern and Network Analyses. A point pat-
tern analysis was carried out with the R package Spatstat
(Baddeley et al. 2015). Spatial clustering of nests was in-
vestigated using Ripley’s K at scales between 0 and 40 m,
where a higher K than the calculated expected random
distribution at a certain scale or radius is indicative of a
clustered pattern within that radius and a lower K is indic-
ative of a regular pattern within the radius (Baddeley et al.
2015). Ripley’s K values were transformed to represent the
relative change compared with complete spatial random-
ness (CSR) at a scale r with the formula K rel(r) p (K(r) 2
CSR(r))=(CSR(r)).
To assign the nests to different nest aggregates, a k-means

cluster analysis was implemented. The optimal number of
nest aggregates was 11, considering an elbow plot (Kassam-
bara and Mundt 2020), visualization of the clusters, and to-
pography of the area (supplement S8).
A network analysis was carried out with the R package

igraph (Csardi and Nepusz 2006). Nest aggregates from the
k-means cluster analysis were considered network nodes in
the network analysis, and the consecutive nests of individ-
uals were considered links (or edges) between network nodes.
As such, the network nodes are aggregates that are spatially
grouped nests, and the individuals moving among (and
within) the aggregates to a consecutive nest are the links of
the network. Five network metrics were calculated for this
directed network, defined according to Farine and White-
head (2015): (i) the number of loops, which is the total num-
ber of links or subsequent nests of individuals; (ii) the num-
ber of internal loops, which is the relative number of links
that return to the same node, thus signifying individuals
that make consecutive nests in the same aggregate;
(iii) transitivity (or clustering coefficient), which quantifies
how densely nodes are connected (high transitivity indicates
that triads [trios of nodes] have a high degree of being mutu-
ally linked); (iv) density (or connectance), which is the num-
ber of links divided by the total number of possible links
between all clusters; and (v) reciprocity, which is the relative
number of reciprocal links between nodes.

Inverse Modeling with IBM and ABC. We developed an
IBM to simulate and eventually identify the potential drivers
behind the species’ nesting dynamics using a pattern-oriented
approach (Grimm et al. 2005). Individual wasps, with their
different sets of behaviors, are the entities of simulation
within a spatially explicit environment. The ODD (overview,
design concepts, details) protocol (Grimm et al. 2006, 2010)
is added in supplement S2, where a detailed explanation is
given and assumptions and parameters are described. Here
we briefly discuss the general setup.
The three mechanisms—environment, local site fidel-

ity, and conspecific attraction—were combined in the model
using the strength parameters: the probabilities of themecha-
nisms being present. Variation in the presence of the mech-
anisms was possible at three levels, as modeled in different
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submodels or strategies (fig. 1): (1) population level (the
mechanisms used are uniform across all of the individuals
in the same population); (2) interindividual (the mecha-
nisms can vary among individuals in a population but are
fixed for an individual); and (3) intraindividual (the mecha-
nisms can vary within an individual’s lifetime and are thus
flexible). The null model, in which random locations were
chosen within the study area, was used as the fourth sub-
model. The flow for an individual Bembix female when
selecting a nesting site was as follows: first, a random po-
sition in the area is sampled; then the average suitability
according to the focal mechanisms is assessed, after which
that position can be stochastically selected according to the
calculated suitability (or probability). When the position is
not selected, a new one is sampled according to the same
procedure (see the ODD protocol in supplement S2).
The habitat suitability map serves as a baseline for the en-

vironmental cue: the suitability values are used as probabilities
for settling. Local site fidelity is implemented as a Gaussian
distribution centered around the previous nest, with one pa-
rameter, jlsf, defining the width of the distribution. As such,
positions closer to the previous nest have a higher probability
of being chosen. Conspecific attraction is coded in two steps.
First, the parameter rangeca defines the radius of the circle in
which the number of other nests are counted. Second, settle-
ment probability is implemented with a sigmoid function
(Kun and Scheuring 2006; Broly et al. 2016), with the number
of nests counted in the first step as the dependent variable.
Two parameters define the sigmoid curve: mindensca is the
intercept, and jca is the scale parameter of the function. The
Boolean parameter beh-excl defines whether conspecific at-
traction and local site fidelity are mutually exclusive: both
mechanisms could be strongly present while not jointly
determining an individual’s nest site selection. To optimize
convergence time and remain within reasonable ecological
boundaries, we applied uniform priors in a valid parame-
ter space (supplement S2, table S2.1).
To initialize the model and to define boundary condi-

tions, the following properties derived from the field study
were used: total number of individuals sampled in the study
site (432), total number of days to run a simulation (30),
distribution of the number of nests initiated each day,
distribution of the number of nests per individual, and dis-
tribution of time between subsequent nests. The latter
three are used as probability distributions when initial-
izing the Bembix population (supplement S1, sec. 3.1; code
available on Zenodo at https://doi.org/10.5281/zenodo
.5212680).
We verified that the priors were not biasing the analy-

sis toward one of the submodels by setting them widely for
100,000 simulations (prior predictive check; supplement S3).
Following this analysis, we restricted prior ranges by ex-
cluding those ranges where parameters covaried. This step
ensures that certain parameter values are not redundant and
improves convergence of the actual simulations.
Each of the four submodels was run 250,000 times with

parameters randomly sampled in the prior parameter ranges
(supplement S2, table S2.1). Summary statistics for each model
simulation were calculated as described above in “Spatial
Point Pattern and Network Analyses.”
The model was evaluated using ABC (Beaumont 2010;

Csilléry et al. 2010; van der Vaart et al. 2016); more spe-
cifically, it was evaluated using rejection ABC following
van der Vaart et al. (2015) with the R package abc (Csilléry
et al. 2012). This method is based on the difference be-
tween each simulation and the observed field data in the
summary statistics of the patterns of interest. As this method
cannot compare summary statistics that are continuous
functions, such as Ripley’s K, values of Ripley’s K at a dis-
crete set of distances were chosen as part of the summary
statistics. The complete set of summary statistics were six
Ripley’s K values transformed as described in the previous
section (at distances between 2 and 40 m) and five network
metrics (number of total loops, number of internal loops,
transitivity, density, and reciprocity), also as described in
the previous section. The sum of the differences between
normalized summary statistics of field and simulation data
was calculated. The summation was weighted with the com-
plement of the average Pearson’s correlations (12 r) for
each summary statistic, calculated from all simulations. As
such, the summary statistics are corrected for their depen-
dence structure. Minimizing this distance, the 1,000 simula-
tions (0.1%) closest to the observed field data were retained.
We calculated the percentage of accepted simulations for
each of the three submodels. Pairwise Bayes factors were
calculated for each submodel. A Bayes factor of more than
3 for a model comparison implies that the first model is
more substantially supported by the data (Kass and Raftery
1995). Since ABC model selection may be vulnerable to bias
(van der Vaart et al. 2015), we scrutinized submodel per-
formance via cross validation of the model selection (sup-
plement S4).
The prior and posterior distributions of the summary

statistics and parameters were compared as part of the pos-
terior predictive inspection. This allowed us to evaluate how
similar the patterns produced by the IBM are to the patterns
in the field, estimate parameters, and derive which processes
are important to reproduce these patterns.
We derived data from the same data set at the three dif-

ferent steps in our analysis. Generally, using the same data
set for parameterization and model evaluation risks overfit-
ting and overconfidence in the focal model (termed “adap-
tive overfitting” in machine learning; Roelofs et al. 2019).
Therefore, independent data sets should ideally be used for
input on the one hand and evaluation of the model on the
other hand. We argue that the use of complementary or

https://doi.org/10.5281/zenodo.5212680
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auxiliary data in the different components of the analysis
minimizes the risk of overfitting for the following reasons.
First, as the microhabitat model is adjusted for spatial auto-
correlation with the use of INLA, the data used here are
independent of the clustering of the nests, causing the model
predictions to fundamentally represent the effect of envi-
ronment on nest presence. Second, initialization of the IBM
is carried out using auxiliary data or probability distribu-
tions from the field data, to have comparable boundary con-
ditions for the simulations. Parameters in the IBM are not
derived from the field data and are implemented using wide
priors. Third, the ABC compares simulations with field data
on the basis of larger-scale emergent patterns of the point
pattern: clustering and network metrics.
Results

Field Study

A total of 432 individual digger wasps were tagged, and
561 nests weremarkedwith flags. Test-digging holes (Nielsen
1945) and tagged individuals that were not observed at a nest
were excluded. Of those 432 wasps, 330 had one nest, 78 had
two, 21 had three, and 3 had four (supplement S9). A total
of 150 nests (26.7%) were parasitized by the kleptoparasitic
fly Senotainia albifrons (supplement S1). Data have been de-
posited in the Dryad Digital Repository (https://doi.org/10.5061
/dryad.g79cnp5q8; Batsleer et al. 2021).
Microhabitat Suitability Model

The microhabitat suitability model has a high predictive per-
formance: AUC5SD of the cross-validated final model was
96:0%51:3%. The sensitivity5 SD (true positive rate)
was 73:9%54:1%, the specificity5SD (true negative rate)
was 96:7%52:1%, and the balanced accuracy5SD (over-
all true rate) was 85:3%51:9%. The model therefore per-
formed better in predicting nest absences than nest presences.
Nevertheless, predictive performance was overall high. High
NDVI values decreased and high insolation values increased
nesting suitability. Thus, sunny sites with a low vegetation
cover have a higher probability of containing nests (supple-
ment S6). For every run, zero was excluded from the 95%
credibility intervals of the effect sizes, indicating that the signs
of the effect sizes were clearly determined (this is a Bayesian
approach to evaluating statistical significance at a specified
level). The predictions (ranging from0 to 1) for nest suitabil-
ity in the whole study plot are shown in figure 2a.
Figure 2b shows the spatial random components (spatial

field or “residuals,”which INLA corrects for in the analysis;
supplement S6) that had clear hot and cold areas, indicat-
ing higher and lower clustering, respectively, than expected
based on the NDVI and insolation parameters. Such cold
and hot spots indicate unmeasured variables that vary in
space or other underlying mechanisms that cannot be at-
tributed to the environment, such as behavior.
Spatial Point Pattern and Network Analyses

Clustering of nests was present up to 10 m (blue circles in
fig. 3). Sixty percent of consecutive nests were made in the
same aggregate (fig. 3, internal loops, blue line). The network
was not densely connected internally (fig. 3, transitivity, blue
line), had a low ratio of possible links present (fig. 3, density,
blue line), and had a low level of reciprocal connections (fig. 3,
reciprocity, blue line). The distances among consecutive
nests had amedian of 4.30m, a mean of 11.01m, and amaxi-
mum of 81.53 m (see the histogram in supplement S9).
Inverse Modeling with IBM and ABC

The prior predictive check made it possible to restrict two pa-
rameters’ prior ranges for the actual simulations (supple-
ment S3). Data from simulations have been deposited in
the Dryad Digital Repository (https://doi.org/10.5061/dryad
.g79cnp5q8; Batsleer et al. 2021).
The submodel with fixed (interindividual) strategies was

substantially better supported than the uniform strategy.
ABC analysis showed to a lesser extent the superior perfor-
mance of the flexible strategy (intraindividual) compared
with the uniform one. The fixed and flexible (inter- and in-
traindividual) submodels perform equally well based on
the cross validation of model selection (supplement S4) and
Bayes factors (table 1). Similar results were obtained with
the 10,000 (1%), 500 (0.05%), and 100 (0.01%) best simula-
tions (supplement S5), indicating that the ABC analysis con-
verged for the number of simulations run.
Both Ripley’s K values and network metrics calculated

from the selected simulations matched the field data well
(fig. 3), despite Ripley’s K having a large range at small
distances.
The strength parameters for conspecific attraction and

local site fidelity were on average 0.739 (median p 0:760,
Q1 p 0:617, Q3 p 0:895) and 0.674 (median p 0:716,
Q1 p 0:535, Q3 p 0:853; both distributions skewed to-
ward 1; fig. 4a), respectively, whichmeans that these behav-
ioral mechanisms are strongly present in the population.
The strength parameter for environment was on average
0.209 (median p 0:174, Q1 p 0:079, Q3 p 0:305; distri-
bution skewed toward 0; fig 4a), which means that the en-
vironmental cue is less strongly present—3.5 and 3.2 times
weaker on average than conspecific attraction and local site
fidelity, respectively.
The estimated range of the conspecific attraction was on

average 2.29 m (median p 1:98 m, Q1 p 1:29 m, Q3 p
3:05 m; fig. 4a). The two parameters for the sigmoid response
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function for conspecific attraction were both low (mindensca:
mean p 28:13, median p 28:29, Q1 p 29:25, Q3 p
27:27; jca: mean p 3:16, median p 1:74, Q1 p 0:69,
Q3 p 4:28; for detailed information about parameter ranges,
see supplement 2), indicating that the response function had
an intercept very close to zero and a steep slope (fig. 4b)—
the probability of nest site selection becomes large at low
densities of conspecific nests. The parameter jlsf, for local
site fidelity, tended toward a narrow Gaussian distribution,
with a scale up to 10m (fig. 4b). Of the accepted simulations,
76.5% included the parameter beh-excl, indicating that the
two behavioral mechanisms are mutually exclusive.
Discussion

We used an inverse modeling approach to study the pro-
cesses underlying the aggregative nest pattern formation
in the digger wasp Bembix rostrata. The observed patterns
Figure 2: a, Predictions for microhabitat suitability (0–1) on the field study plot based on vegetation (the normalized difference vegetation
index [NDVI] parameter) and sun irradiance (the insolation parameter), mean of all 10 iterations. b, Posterior mean values of the spatial
field from one of the iterations (others were similar). The spatial field shows where the spatial autocorrelation, corrected for using integrated
nested Laplace approximation (INLA), deviated from zero, indicating higher clustering (hot spots; dark orange) or lower clustering (cold
spots; dark purple) than expected based on the NDVI and insolation parameters. This indicates that other mechanisms must be involved in
the clustering of the nests. Black circles indicate nest locations. Pixel size is 50#50 cm2 on the ground. The Cartesian coordinate reference
system used is Belgian Lambert 72, epsg:31370.
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in nature were best predicted by simultaneously considering
the effects of the environment, conspecific attraction, and lo-
cal sitefidelity.We found that nest pattern formation cannot
be decomposed into a stepwise process of environmental fil-
tering and behavioral effects. Rather, it represents a complex
system with varying nest choice strategies that rely on the
simultaneous integration of environmental and behavioral
mechanisms with differing strengths. The spatial patterns of
nesting are primarily explained by models with individual
differences in behavior, including that an individual uses ei-
ther personal information or inadvertent social information.
Conspecific attraction is widespread in digger wasps (Evans

and O’Neill 2007). Individuals can be attracted to conspe-
cifics, as their presence provides an honest cue for habitat
suitability. In such situations, the use of social informa-
tion may have adaptive payoffs by reducing the investment
RS
C/)

RS
C-K(

Ripley's K

Network metrics
all loops internal loops transitivity density reciprocity

distance (m)

eulav

Figure 3: Violin plots of the distribution of prior summary statistics of all 1,000,000 simulations (gray), the distribution of the posterior
summary statistics of the 1,000 (0.1%) best models (green), and field data (blue circles or lines). Yellow distributions are from the null model
(submodel random). Summary statistics are of two types: spatial clustering (Ripley’s K; relative change compared with complete spatial ran-
domness [CSR]) and network metrics (all and internal loops, transitivity, density, and reciprocity).
Table 1: Bayes factors (BFs) and proportions of accepted models for model selection with approximate Bayesian computation
(ABC) analysis
Random
 Population
 Interindividual
 Intraindividual
 % accepted simulation
Random
 –
 .00
 .00
 .00
 0

Population
 ∞
 1.00
 .31
 .36
 14.3

Interindividual
 ∞
 3.20
 1.00
 1.14
 45.7

Intraindividual
 ∞
 2.80
 .88
 1.00
 40.0
Note: The ABC analysis retained the 1,000 best simulations of 1,000,000 (0.1%). The submodels represent at which level the mechanisms can vary: pop-
ulation, interindividual, or intraindividual. BFs are the ratios of the posterior probabilities of two models, indicating the strength of evidence for model M1

(rows) relative to model M0 (columns), given the data. Evidence categories according to Kass and Raftery (1995) are as follows: BF ! 1 indicates more evidence
for M0 than M1, 1 ! BF ! 3 indicates weak evidence for M1 compared with M0, and 3 ! BF ! 10 indicates substantial evidence for M1 compared with M0.



Behavior and Nest Spatial Pattern E000
of time and energy in sampling of the environment (Dall
et al. 2005). Conspecific attraction strongly affects nest site
selection in the studied population (Buxton et al. 2020),
while environmental cues appear to have a weaker effect.
While the use of social information is best known in ver-
tebrates and social insects, nonsocial insects also possess
individual and even social learning abilities that eventually
contribute to higher fitness (Coolen et al. 2005). Bembix
rostrata is known to perform test-digging behavior, in which
individuals seem to sample the environment by digging shal-
low burrows in the sand across the nesting area before
starting to dig an actual nest (Nielsen 1945). The use of so-
cial cues for habitat suitability is therefore likely adaptive,
as it reduces the time and energy spent on this behavior.
The large contribution of social attraction in predicting
nest patterning likely explains the high levels of philopatry
in B. rostrata (Nielsen 1945; Larsson 1986; Blösch 2000),
that is, their tendency to remain in the same nesting area
for several consecutive generations.
The selfish herd hypothesis states that individuals within

a population attempt to reduce their predation or parasitism
rate by putting other conspecifics between themselves and
rangeca mindensca σca

strength ENV strength LSF strength CA beh-excl

σlsf

density (# nests/m²)

ytilibaborP
)

%(
ycneuqerF

distance (m)

a)

b)
parameter value

Figure 4: a, Priors (transparent red) and posteriors (dark gray) of the strength parameters (of the mechanisms: ENV p environment; LSF p
local site fidelity; CA p conspecific attraction) and parameters of the behavioral mechanisms. The parameter beh-excl defines whether con-
specific attraction and local site fidelity are mutually exclusive (1) or not (0). b, Effect of the posteriors on the response functions, defined by
the bottom four parameters, plotted for the median (50% quantile), the 20% quantile, and the 80% quantile of the corresponding parameter.
Parameters other than the focal are held constant at the median of the posterior distributions. Local site fidelity (first graph in b) is im-
plemented with a Gaussian curve with the center at the previous nest. Conspecific attraction is implemented with a sigmoid curve (three graphs
on the right in b), with the dependent variable the density of nests (number of nests within rangeca). See the main text and supplement S2 for
further details on parameter definitions and ranges.
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predators or parasites (Mooring andHart 1992). This theory
has been invoked to explain the aggregation of B. rostrata
(Larsson 1986) and another closely related diggerwasp,Crabro
cribrellifer (Wcislo 1984). These studies, along with our data
(supplement S1), show that the incidence of parasitism per
nest decreases with nest density. In our system, the presence
of Senotainia albifrons brood parasites is anticipated to con-
vey information to the wasps and to induce conspecific at-
traction. However, how much the actual presence of these
brood parasites contributes to the overall conspecific attrac-
tion is uncertain. Since we lack more information on the
dynamics of these parasites, such mechanisms were not di-
rectly incorporated in the model but were instead included
as part of the primary process of attraction. Several nests
nevertheless occurred at quite low densities, where the para-
sitism rate, and especially its variation, is higher (supple-
ment S1, fig. S1.2). Potential reasons for this more risky be-
havior could include, nonexhaustively, spatial bet hedging
(Philippi and Seger 1989), imperfect information on parasit-
ism risk (Koops and Abrahams 1998), or avoidance of per-
ceived intraspecific competition (Polidori et al. 2008). Re-
garding the last mechanism, conspecific kleptoparasitism
(wasps that steal prey from neighboring individuals) has been
observed in five other Bembix species but not (yet) in B.
rostrata (Evans and O’Neill 2007).
The most likely nest selection strategy identified by our

model is one with individually consistent but mutually ex-
clusive behaviors (parameter beh-excl): when local sitefidelity
is used, conspecific attraction is not used simultaneously for
nest site selection. Consistent individual variation in move-
ment behavior, with individuals relying on either personal
or social information, can be responsible for the emergence
of ecological patterns at larger spatial scales (Spiegel et al.
2017). Such heterogeneity in behavior due to individual
specializationmay be especially relevant in populations expe-
riencing high levels of intraspecific competition (Araújo et al.
2011). The second-most probable but slightly less supported
model considered individual behavioral flexibility during an
individual’s lifetime. Shifts in individual behavior have been
found across taxa in, for example, foraging in heterogeneous
environments (Newlands et al. 2004; Webber et al. 2020),
mating (Perrill et al. 1982), migration (Eggeman et al. 2016),
and seasonal aggregation (Bonar et al. 2020). These shifts
arise from plasticity in response to environmental and de-
mographic changes (e.g., density, competition, predation).
We modeled behavioral shifts as a stochastic process, since
any information on the potential conditionality of such shifts
was lacking. Explicitly considering thresholds that under-
liemovement changes is nevertheless important to explain
larger-scale patterns (Morales and Ellner 2002; Newlands
et al. 2004; Goossens et al. 2020). In our study, a flexible
strategy is not clearly distinguishable from a consistent one
in explaining the spatial nest pattern. Therefore, our results
show that there are clear behavioral differences between
individuals, but it is not conclusive if these behaviors vary
over time. Moreover, in some species (e.g., caribou [Rangifer
tarandus]), both consistent and flexible strategies can be pres-
ent in a population depending on the sociospatial position
of individuals (Bonar et al. 2020). The relative importance
of different strategies can change within and among pop-
ulations or seasons or with different levels of parasitic pres-
sure (Spiegel et al. 2017). More fine-scaled individual studies
or experiments are therefore required to explore the impor-
tance of consistent and flexible strategies.
The joint contributions of the environment and internal

dynamics to predict spatial nest patterns in our system sug-
gest synergism among multiple processes underlying spatial
pattern formation. These mechanisms are often studied in
isolation, as behavioral and landscape ecologists traditionally
work on very different scales and units of research (Lima and
Zollner 1996). These research fields have accordingly devel-
oped their specific analytical methods that can be regarded
as separate approaches to explain spatial pattern formation
of nests in a stepwise manner (Melles et al. 2009). Such com-
bined approaches have been applied in insect (Polidori et al.
2008; Asís et al. 2014) and bird-oriented (Brown and Brown
2000; Perry and Andersen 2003; Melles et al. 2009) research,
most often from a conservation perspective (Etterson 2003;
Ward and Schlossberg 2004; Bayard and Elphick 2010; Swift
et al. 2017). Spatial pattern analysis of point data from homo-
geneous landscapes allows inference of putative feedbacks
that eventually lead to spatial self-organization (Rietkerk and
van de Koppel 2008). The assumption of environmental
homogeneity is not always valid. We likewise first decoupled
environment from behavior by building the microhabitat
model with INLA but integrated both types of mechanisms
again in the IBM. IBMs are ideal for bridging and integrat-
ing these seemingly separate processes at different scales and
enable quantifying their relative importance and synergism.
This inverse approach has much to offer for understanding
behavioral mechanisms underlying spatial organization, in-
cluding identifying its own methodological limits. Spatial or-
ganization processes are inherently stochastic, and replica-
tions are hard to obtain as the strength or shape of processes
are likely to change with space and time (Wagner and Fortin
2005). The general approach we illustrate here could thus
be applicable in teasing apart coexisting, context-dependent
processes, which are pervasive in ecological systems.
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