Advanced search
2 files | 1.20 MB Add to list

Convolutors of translation-modulation invariant Banach spaces of ultradistributions

Lenny Neyt (UGent)
Author
Organization
Abstract
We study the space of tempered ultradistributions whose convolutions with test functions are all contained in a given translation-modulation invariant Banach space of ultradistributions. Our main result will be the first structural theorem for the aforementioned space. As an application we consider several extensions of convolution.
Keywords
Analysis, Functional Analysis, Ultradistributions, Gelfand-Shilov spaces, Convolution, Translationmodulation invariant Banach spaces of ultradistributions, the first structure theorem, INTEGRABLE GROUP-REPRESENTATIONS

Downloads

  • ConvolutorSpacesinTMIB.pdf
    • full text (Accepted manuscript)
    • |
    • open access
    • |
    • PDF
    • |
    • 496.99 KB
  • (...).pdf
    • full text (Published version)
    • |
    • UGent only
    • |
    • PDF
    • |
    • 704.80 KB

Citation

Please use this url to cite or link to this publication:

MLA
Neyt, Lenny. “Convolutors of Translation-Modulation Invariant Banach Spaces of Ultradistributions.” JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, vol. 507, no. 1, 2022, doi:10.1016/j.jmaa.2021.125759.
APA
Neyt, L. (2022). Convolutors of translation-modulation invariant Banach spaces of ultradistributions. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 507(1). https://doi.org/10.1016/j.jmaa.2021.125759
Chicago author-date
Neyt, Lenny. 2022. “Convolutors of Translation-Modulation Invariant Banach Spaces of Ultradistributions.” JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 507 (1). https://doi.org/10.1016/j.jmaa.2021.125759.
Chicago author-date (all authors)
Neyt, Lenny. 2022. “Convolutors of Translation-Modulation Invariant Banach Spaces of Ultradistributions.” JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 507 (1). doi:10.1016/j.jmaa.2021.125759.
Vancouver
1.
Neyt L. Convolutors of translation-modulation invariant Banach spaces of ultradistributions. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. 2022;507(1).
IEEE
[1]
L. Neyt, “Convolutors of translation-modulation invariant Banach spaces of ultradistributions,” JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, vol. 507, no. 1, 2022.
@article{8727989,
  abstract     = {{We study the space of tempered ultradistributions whose convolutions with test functions are all contained in a given translation-modulation invariant Banach space of ultradistributions. Our main result will be the first structural theorem for the aforementioned space. As an application we consider several extensions of convolution.}},
  articleno    = {{125759}},
  author       = {{Neyt, Lenny}},
  issn         = {{0022-247X}},
  journal      = {{JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS}},
  keywords     = {{Analysis,Functional Analysis,Ultradistributions,Gelfand-Shilov spaces,Convolution,Translationmodulation invariant Banach spaces of ultradistributions,the first structure theorem,INTEGRABLE GROUP-REPRESENTATIONS}},
  language     = {{eng}},
  number       = {{1}},
  pages        = {{36}},
  title        = {{Convolutors of translation-modulation invariant Banach spaces of ultradistributions}},
  url          = {{http://dx.doi.org/10.1016/j.jmaa.2021.125759}},
  volume       = {{507}},
  year         = {{2022}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: