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Abstract

■ Cognitive control can be adaptive along several dimensions, in-
cluding intensity (how intensely do control signals influence
bottom–up processing) and selectivity (what information is
selected for further processing). Furthermore, control can be
exerted along slow or fast time scales. Whereas control on a slow
time scale is used to proactively prepare for upcoming challenges,
control can also be used on a faster time scale to react to unexpected
events that require control. Importantly, a systematic compari-
son of these dimensions and time scales remains lacking.
Moreover, most current models of adaptive control allow

predictions only at a behavioral, not neurophysiological, level, thus
seriously reducing the range of available empirical restrictions for
informing model formulation. The current article addresses this is-
sue by implementing a control loop in an earlier model of neural
synchrony. The resulting model is tested on a Stroop task. We ob-
serve that only the model that exerts cognitive control on intensity
and selectivity dimensions, as well as on two time scales, can ac-
count for relevant behavioral and neurophysiological data. Our
findings hold important implications for both cognitive control
andhowcomputationalmodels can be empirically constrained. ■

INTRODUCTION

While driving a car, it is important to focus on the road
ahead and not on any interesting events that might be hap-
pening on the sidewalk. This ability to efficiently select and
process relevant information is generally referred to as cog-
nitive control (e.g., Norman& Shallice, 1986). According to
theoretical work (e.g., Verguts & Notebaert, 2008;
Botvinick, Braver, Barch, Carter, & Cohen, 2001; Cohen,
Dunbar, & McClelland, 1990), cognitive control is imple-
mented by a top–down biasing signal that excites neural
processing pathways carrying relevant information.

Importantly, human cognitive control is also highly
adaptive. For instance, a driver’s focus on the road might
be more intense when driving in a big city during rush
hour than when it is the only car on a deserted highway.
This adaptive nature of control is also observed in experi-
mental settings. The most well-known illustration of adap-
tive control is probably the conflict-adaptation effect
(Gratton, Coles, & Donchin, 1992). This effect can be ob-
served in congruency tasks where a stimulus consists of
two or more (conflicting) features. For example, in a
Stroop task, on each trial, a color word (e.g., “blue”) is pre-
sented in a particular font color (e.g., red). The participant
then has to respond to one feature of the stimulus (font
color) and ignore the other feature (word). If all features
of the stimulus provide evidence for the same response
(e.g., “blue” presented in blue), then this trial is consid-
ered congruent; when the stimulus features provide con-
flicting evidence (e.g., “blue” presented in red), this is
considered an incongruent trial. Participants perform

better (faster and more accurate responses) on congruent
trials than on incongruent trials. The conflict-adaptation
effect entails that performance depends not only on the
congruency of the current trial (n) but also on the congru-
ency of the previous trial (n − 1). Specifically, perfor-
mance improves when the congruency of the current
trial matches the congruency of the previous trial (i.e., in-
teraction between congruency on trial n and trial n − 1).
Usually, the conflict-adaptation effect is explained by the

hypothesis that participants increase the “intensity” of
control after incongruent trials. More generally, an emerg-
ing consensus suggests that the brain computes a quantity
that evaluates the required intensity of control. The origi-
nal instantiation of this idea proposed response conflict as
the quantity that an agent may compute for that purpose
(Botvinick et al., 2001). Under this explanation, incongru-
ent trials evoke considerable response conflict, which re-
sults in an increase of control intensity and an increased
performance on the next (incongruent) trial.
Importantly, besides intensity, “selectivity”may also con-

stitute an adaptive dimension of control. For instance, while
driving a car, events on the sidewalk are usually unimpor-
tant, but it might be good to also consider pedestrians on
the sidewalk when one is approaching a crosswalk. In addi-
tion, in a congruent Stroop trial, it is efficient to use both
task-relevant (color) and task-irrelevant (word) dimensions
for responding (Melara & Algom, 2003). Hence, in cases
where conflict is low, an agent might consider using both
task-relevant and task-irrelevant information. This would
result in faster responses when the next trial is congruent
but slower responses when the next trial is incongruent.
Furthermore, the time scale at which the conflict signal

is applied has been scrutinized (Braver, 2012; Scherbaum,Ghent University
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Dshemuchadse, Ruge, & Goschke, 2012; Scherbaum,
Fischer, Dshemuchadse, & Goschke, 2011). In most ac-
counts, control is adapted across trials (slow time scale).
In these accounts (Botvinick et al., 2001), if conflict on
the current trial was high, the model would exert more in-
tensive control on the next trial. Typically, slow control ad-
aptation is considered in the literature as an instance of
proactive control; it is used to prepare for situations that
might require control in the (near) future, such as when ap-
proaching a crosswalk by car, or the potential incongruency
on the next trial of a Stroop task. However, in some situa-
tions, proactive control might not suffice and a faster, more
urgent control adaptation might be required (fast time
scale). For example, a pedestrian may unexpectedly decide
to cross the road, or an incongruent Stroop trial may be pre-
sented when the participant instead anticipated a congru-
ent one. Such fast control adaptation is defined as an
instance of reactive control.
Unfortunately, how cognitive control is mechanistically

implemented at a neurophysiological level remains am-
biguous. Relatedly, current models of cognitive control
typically do not formulate hypotheses about the underly-
ing neurophysiology. One prominent idea, however, con-
siders the role of neural oscillations and, in particular,
neural synchrony. More specifically, the binding-by-
synchrony (BBS) theory (Fries, 2005, 2015) argues that
neural groups with synchronized oscillations can commu-
nicate efficiently, whereas neural groups that are desyn-
chronized cannot, or at least less efficiently. Hence,
processing in synchronized pathways is prioritized over
that in other pathways. In addition, it has been suggested
that oscillations in medial frontal cortex (MFC) at theta
frequency (∼4–8 Hz) function as a conductor, orchestrat-
ing synchrony in more posterior task-relevant networks
where activity oscillates at faster (gamma [>40 Hz])
frequencies (for reviews, see Helfrich & Knight, 2016;
Cavanagh & Frank, 2014). These hypotheses are supported
by a broad range of research describing prefrontal theta
activity and/or theta–gamma cross-frequency coupling
during tasks requiring cognitive control (van Driel, Swart,
Egner, Ridderinkhof, & Cohen, 2015; Voloh, Valiante,
Everling, & Womelsdorf, 2015; Voytek et al., 2015; Nigbur,
Cohen, Ridderinkhof, & Stürmer, 2011; Cavanagh, Frank,
Klein, & Allen, 2010; Hanslmayr et al., 2008; Engel, Fries, &
Singer, 2001). Critically, also midfrontal theta power shows a
conflict-adaptation effect (Pastötter, Dreisbach, & Bäuml,
2013). Specifically, theta power was influenced by the
congruency of trial n as well as the congruency of trial
n − 1. In summary, the human brain might implement
cognitive control via prefrontal, top–down theta signals
that prioritize task-relevant processing by synchronizing
gamma activity in posterior processing areas.
Besides behavioral measures, these electrophysiologi-

cal signatures provide useful empirical constraints to in-
form our understanding of several aspects of cognitive
control, such as its intensity, selectivity, and time scale.
To achieve this goal, we need the right conceptual tools,

however, and so we implement a conflict monitoring
loop (Botvinick et al., 2001) in a recently proposed com-
putational model of neural synchrony (Verguts, 2017). In
line with previous suggestions, the measure of conflict is
evaluated on slow and fast time scales (Braver, 2012) and
is used to adapt the intensity (Botvinick et al., 2001)
and/or selectivity (Melara & Algom, 2003) of control.
More specifically, in the current model (further referred
to as sync model), a control unit uses top–down biasing
signals at theta frequency to synchronize task-relevant
gamma activity in the model processing unit. Hence, it
implements control via BBS. This allows the model to
make empirical contact with neurophysiological data.
The control unit of the sync model consists of two parts.
Here, the MFC sends bursts at theta frequency. The in-
tensity of control is determined by the number of bursts
that are sent by the MFC. Eligible task-specific neural
areas that oscillate at gamma frequency become synchro-
nized by the bursts. Which areas are eligible to receive
the bursts is determined by the lateral frontal cortex
(LFC), which holds task demands (Miller & Cohen,
2001) and sends an eligibility trace to task-relevant areas.
In summary, the MFC determines the intensity of control,
and the LFC determines the selectivity of control.

To summarize, the current work aims to evaluate rele-
vant dimensions and time scales for adaptive cognitive
control. For this purpose, a novel sync model is proposed
in which a conflict monitoring unit evaluates response
conflict. This measure of conflict is then used by the con-
trol unit of the sync model to adapt the intensity (in the
model MFC) and/or selectivity (in the model LFC) of con-
trol. In addition, we implement two time scales for adap-
tive control. On the slow time scale, control is adapted
between trials and used proactively to prepare for the
next trial (proactive control). On the fast time scale, con-
trol is employed in a reactive way to quickly respond to
conflict upon stimulus appearance (reactive control). The
resulting model allows us to study the role of intensity,
selectivity, and time scale in cognitive control, at both
behavioral and neurophysiological levels.

METHODS

The Model

Overview

A general overview of the model is given in Figure 1. This
model consists of four units. One of these units is a con-
flict monitoring unit that we adapted from Botvinick et al.
(2001). Here, we implemented this conflict monitoring
unit in a previously proposed model (Verguts, 2017),
which contains a processing unit, a control unit, and an
integrator unit. The processing unit contains stimulus
and response modules. Each module holds nodes related
to one stimulus or response feature (e.g., color or word
in a Stroop task). The integrator unit has one node cor-
responding to each node in the response module. These
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integrator unit nodes integrate evidence over time for
the corresponding node in the response module. When
this evidence reaches a “threshold” value, the model will
give a response. In addition, the conflict monitoring unit
measures conflict in the integrator unit. This measure of
conflict is then transformed into two values of control.
The proactive control node evaluates conflict on a slow
(trial-by-trial) time scale. The reactive control node eval-
uates conflict on a faster (within-trial) time scale, to
which the measure of proactive control is added (see
Figure 1). Thus, proactive control determines a baseline
level of control before every trial. During the trial, if this
control was not sufficient to eliminate conflict, the con-
flict signal will further increase reactive control.

On every time step within a trial, the reactive control
signal is transferred to the control unit. This control unit
consists of an MFC node and an LFC node, which jointly
implement control by sending synchronizing bursts to
the modules in the processing unit. Here, the MFC deter-
mines the intensity of the bursts. The stronger the con-
trol signal it receives from the conflict monitoring unit,
the more bursts it will send. The LFC determines the
selectivity of the bursts. When the control signal is strong,
the LFC node will indicate that only the relevant stimulus
module and response module should receive bursts (se-
lective control). If the control signal is weaker, indicating
that there was little conflict, the LFC will make all modules
eligible to receive bursts (nonselective control). In this
way, we implement earlier suggestions that, in cases of
low conflict, task-irrelevant information might be pro-
cessed as well (Melara & Algom, 2003). Below, and in
Figure 2, we elaborate on the computational implementa-
tion of the model.

Processing Unit

In the context of a Stroop task, the processing unit con-
sists of three modules; two stimulus modules (color and

word) and one response module. Each module contains
four nodes (one for each color in the Stroop task) that
each hold one neuronal triplet. In the sync model, each
neuronal triplet contains one excitatory–inhibitory pair of
phase code neurons (E, I), which appears in combination
with a rate code neuron (x; see Verguts, 2017, for
details). In line with previous work (Verguts, 2017), excit-
atory neurons are updated by

ΔEi tð Þ ¼ CIi tð Þ−D� J r > rminð Þ � Ei tð Þ þ Bi tð Þ (1)

where ΔE(t) = E(t + Δt) – E(t), and inhibitory neurons
are updated by

ΔIi tð Þ ¼ −CEi tð Þ−D� J r > rminð Þ � Ii tð Þ (2)

Hence, activation in both neurons is updated on every
time step (Δt = 2 msec). This update crucially relies on
the coupling parameter C. More specifically, phase code
neurons will oscillate at a frequency of C/2π. Here, C was
chosen such that oscillations in the two stimulus modules
were at a frequency of 40 Hz, whereas oscillations in the
response module were at 39 Hz. Thus, there was a small
frequency difference of 2.5% between stimulus and re-
sponse modules; as a result, oscillations would drift apart
(desynchronize) in the absence of control. The termsD×
J (r> rmin) × E(t) in Equation 1 andD× J (r> rmin) × I(t)
in Equation 2 attract the radius of oscillations toward a
value of rmin = 1 (see also Verbeke & Verguts, 2019;
Verguts, 2017). In the Appendix, we present results for
different frequencies in both the control and processing
units.
Excitatory (E) neurons in the processing unit addition-

ally receive a burst B (see also Figure 2). These bursts are
described by

Bi tð Þ ¼ LFCi tð Þ �MFCi tð Þ � U tð Þ (3)

As described in previous work (Springer & Paulsson,
2006; Verguts, 2017; Zhou, Chen, & Aihara, 2005),

Figure 1. Model architecture.
The model consists of four
units (dashed boxes). The
processing unit holds three
task modules. Each task
module contains four color
nodes that consist of neuronal
triplets (square nodes) such
as presented in B. In addition,
the MFC node in the control
module holds a neuronal
triplet. Other model nodes
(circles and ellipses) only
contain rate code neurons.
The integrator unit integrates
evidence for each response
option over time until it
reaches a threshold and gives
a response. Here, weights
implement lateral inhibition. The conflict monitoring unit evaluates conflict in the integrator unit. The control unit uses this evaluation to adapt
when and where to synchronize in the processing unit. Here, the MFC sends synchronizing bursts (dashed line), and the LFC sends eligibility
traces (dotted lines) that indicate which modules should be synchronized.
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oscillators that receive positively correlated noise (or in-
put signals, more generally) will become synchronized.
Hence, the sync model will synchronize modules (and
hence nodes) that receive the same LFC and MFC signal.
Here, U represents standardized Gaussian noise.
The rate code neurons in the processing unit are up-

dated by

Δxi tð Þ ¼ −xi tð Þ þ Zi þWT
i x tð Þ þ S tð Þ� �� G Ei tð Þð Þ (4)

The term −xi(t) will cause fast decay of activation in the
absence of input. The variable Zi represents external input
that is received by rate code neuron i. On every trial, two
input nodes, one in each stimulus module, receive an
input of 1, whereas all other nodes receive external input 0.

The termWi
T x(t) represents internal input to xi. Here,Wi

is a (column) vector representing the weight (strength)
between xi and all other rate code neurons (represented
in vector x). Each node in the stimulus modules projects
to one node in the response module (weight different
from zero) that represents the same color. Hence, every
color node in the response module receives (nonzero) in-
put from two input nodes (one from the color module and
one from the word module). To implement the empirically
observed imbalance in the tendency to respond to theword
rather than the color dimension (Cohen et al., 1990),
weights (W) between the word and response modules
have a strength of 1, whereas weights between the color
and response modules have a smaller strength of .9. As a
manipulation check, we performed simulations of the

Figure 2. Model implementation. We show activity in the MFC, the excitatory neurons of the processing unit, the rate code neurons of the
processing unit, and the integrator unit (rows) for three types of trials (columns) from 50 msec before stimulus onset until 50 msec after RT. Notice
that this means that the x limits are different for each column. In the first column (A, D, G, and J), activity is shown for a trial in which selective
control is applied with high intensity. Here (A), EMFC has a high amplitude that leads to more bursts (xMFC = 1). This results in synchrony and more
efficient communication between the color and correct response neurons. Therefore, the correct response wins the competition in the integrator
unit. When the intensity of control is lower (second column; B, E, H, and K), less bursts are provided (E), which leads to less efficient communication
(H) and slower RTs (K). When control is nonselective (C, F, I, and L), all nodes in the processing unit (word, color, and response) get synchronized
(F), which leads to faster RTs in congruent trials (L). Note that for control to be nonselective, the intensity should always be low.
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nine model versions (see Simulations). As we expected,
this unbalanced weight matrix led to faster RTs when
the models were required to respond to the word (M =
382.5 msec) than to the color (M = 418 msec). In what
follows, we only report simulations in which the model
was required to respond to color. In addition, on each
time step, some Gaussian noise (S(t)) is fed to the rate
code neuron with a mean of 0 and a standard deviation
of 0.1. The sum of noise, external, and internal input is
multiplied in Equation 4 by a function of the excitatory
phase code neuron:

G Ei tð Þð Þ ¼ 1
1þ e −5� Ei tð Þ− :6ð Þð Þ (5)

Because of this gating function (G(Ei(t))), activation of
the rate code neurons is strongest when the excitatory
neuron is near its top. When the excitatory neuron is at
its trough, G(E(t)) is close to zero and activation in the rate
code neurons is suppressed.

Integrator Unit

In addition, the integrator unit contains four color nodes.
For simplicity, nodes in the integrator unit contain only
rate code neurons. These neurons integrate evidence
from the output layer of the processing unit over time
by implementing a competitive accumulator model
(Usher & McClelland, 2001) via

Δyi tð Þ ¼ AT
i x tð Þ þ LTi y tð Þ þ S tð Þ (6)

Here, Ai is a column vector, representing connections
between nodes in the processing unit and node i of the
integrator unit. Each node in the response module of
the processing unit is connected to one node in the inte-
grator unit with a strength of .5; all other weights are set to
zero. Li corresponds to column i of Matrix L, which has a
diagonal of zero with off-diagonal elements, −.015. This
implements lateral inhibition between integrator nodes
(y). S(t) again implements Gaussian noise with a mean
of 0 and a standard deviation of 0.1. When one of the
integrator nodes reaches a threshold of 20, the model
will respond. An illustration of the integrator dynamics is
provided in Figure 2.

Conflict Monitoring Unit

The conflict monitoring unit evaluates conflict in the in-
tegrator unit. In line with previous work (Botvinick et al.,
2001), conflict is defined as energy of activity in the inte-
grator unit.

Conflict tð Þ ¼ 1
threshold

�
XI−1

i¼1

XI

j¼iþ1

yi tð Þ � yj tð Þ (7)

Here, multiplied activation in each integrator pair is
added. Hence, if only one integrator neuron is active,

Conflict = 0. For standardization, activation is divided
by the threshold parameter.
In addition, in line with previous work (Botvinick et al.,

2001), Conflict is employed to adjust control by the fol-
lowing rule

ΔControlts Tð Þ ¼ γts � β� εts þ ηtsð Þ− 1−γtsð Þ
� Controlts Tð Þ (8)

Asmentioned before,Control is adapted on two time scales
(ts 2 {reactive, proactive}), by computing a weighted inte-
gration of the time-scale-specific conflict signal εts. First, for
proactive control (slow time scale; t = trial (n)), max
(Conflict(n)) is used as the conflict signal εproactive to deter-
mine a baseline control intensity on the next trial (n + 1).
Here, ηproactive = .25. Second, reactive control is adjusted
on a fast time scale (T = time steps (t)), where εreactive =
Conflict(t). Crucially, reactive control uses proactive con-
trol as a baseline, in particular, ηreactive = Controlproactive
(n). The parameter β is the same for both time scales and
is set to 10. Values for γproactive and γreactive differed
across model versions (see below). Note that, when γts =
0, control does not change on that time scale.

Control Unit

The control unit consists of an LFC node and an MFC
node. Both nodes use the conflict signal on the fast time
scale to adjust how they will exert top–down modulation
to pathways in the processing unit. As in the processing
unit, the MFC contains a neuronal triplet. Here, phase
code neurons oscillate at a 6-Hz (theta) frequency and
BMFC(t) = 0. In addition, the power (rmin) of the oscilla-
tion is adjusted on every time step by

rmin tð Þ ¼ 1þ θintense � Controlreactive tð Þ−1ð Þ (9)

The (binary) parameter θintense determines whether power
intensity changes across time; if θintense = 0, then rmin (and
hence MFC power) remains fixed at 1; otherwise, rmin (and
henceMFCpower) increaseswhenControlreactive increases.
The MFC rate code neuron obeys a Bernoulli process,

which is 1 with probability p(t). The probability

p tð Þ ¼ 1
1þ e −10� EMFC tð Þ− :8ð Þð Þ (10)

is a sigmoid function that attains its highest value when
EMFC is at its top. Hence, every time the oscillation of the
EMFC neuron reaches its top, the probability of a burst
becomes high. Moreover, this top itself increases with
increasing power; thus, when power in the MFC is high,
the probability for bursts remains high for a longer
period. Hence, with higher power, the MFC will send
more bursts to the processing unit and accomplish
better synchronization. In summary, as in previous work
(Botvinick et al., 2001), the intensity of control is in-
creased when more conflict is detected. We provide ex-
amples of simulated trials in Figure 2. Figure 2A illustrates
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MFC activity during a high-conflict (see Equation 7) trial.
As can be observed, MFC theta power increases after
stimulus onset. When power is high (Figure 2A), more
bursts (xMFC = 1) are sent than when power is low
(Figure 2B and C). Bursts are observed in the excitatory
neurons of the processing unit (Figure 2D) where the
color stimulus (but not the word stimulus) and correct
response become synchronized. This leads to efficient
communication between the color and response rate
code neurons (Figure 2G). Hence, despite competition
from incorrect response nodes, the integrator node for
the correct response reaches the decision threshold
first (Figure 2J). When the intensity of control is lower
(Figure 2B), less bursts are provided (Figure 2E), which
leads to less efficient communication (Figure 2H) and
slower RT (Figure 2K). Important to note is that we refer
to the bursts as noise, in the sense that the input
signal (from MFC) should not contain any information;
receiving the signal does not lead to noisier (less efficient)
communication between nodes that receive the bursts. In
fact, we observe in Figure 2J a faster evidence accumula-
tion during the bursts (Figure 2G) than before or after
the bursts.
In the context of a Stroop task, the model holds three

LFC nodes (only rate code neurons) that each project to
one task module in the processing unit. The model
always had to respond to the font color. Therefore, acti-
vation of LFCColor and LFCResponse is fixed to 1. Hence, the
color and response modules are always selected to
receive bursts and therefore always become synchro-
nized. In contrast,

LFCword tð Þ ¼ J Controlreactive tð Þ < θselectiveð Þ (11)

in which J(.) is an indicator function returning 1 when
Controlreactive(t) < θselective and 0 otherwise. Thus, when
the conflict monitoring unit judges that not a lot of con-
trol is necessary, all three modules in the processing unit
are synchronized. This corresponds to applying control
to all task modules (nonselective control). In these trials,
the model will also use information from the task-
irrelevant (word) dimensions to reach a faster response.
When Controlreactive is high, LFCWord = 0 and control is
only applied to the response and relevant stimulus

module (selective control). In these trials, the model
aims to avoid interference from the color dimension
and only considers information from the word dimen-
sion. Hence, when more conflict is experienced, control
will be applied more selectively. Whereas higher values of
θselective will result in a higher probability of nonselective
control, lower values will reduce the probability of non-
selective control. When θselective < ηproactive, LFCWord can
never be 1. As a result, only selective control will be
employed. Again, we provide in Figure 2 examples of
simulated trials in which either selective or nonselective
control was applied. This figure illustrates how for selec-
tive control only the task-relevant (color) neuron is syn-
chronized with the response node (Figure 2E), whereas
for nonselective control, all oscillations in the processing
unit are synchronized (Figure 2F). For congruent trials,
nonselective control will lead to faster RT (Figure 2I).

Simulations

Nine versions of the model were simulated. Here, we
evaluated the intensity and selectivity dimensions as well
as the proactive and reactive time scales of adaptive
cognitive control. More specifically, adaptive control
was explored for three possibilities of adaptive dimen-
sions (intensity, selectivity, or both) and three possibili-
ties of time scale (fast, slow, or both), resulting in nine
possible combinations. Parameter values that defined
each model version are presented in Table 1. We per-
formed extra simulations for every model version with
different parameter settings. Although conflict-adaptation
effects might quantitatively differ across these parameter
values (see also the Appendix), effects that are presented
in the Results section as not significant were nonsignifi-
cant across all parameter settings for that model version,
thus attesting to the robustness of our simulations.

For each model version, 30 simulations were per-
formed of 600 trials (300 congruent) each. Each trial con-
sisted of an intertrial interval (ITI) of 500 msec in which
no external input was provided to the model and a trial
period of 2000 msec in which external input was presented
until the model gave a response. After this response, all
activation in the integrator unit was reset to 0.

Table 1. Parameter Settings for the Nine Different Model Versions (Columns)

Proactive Proactive Proactive Reactive Reactive Reactive Both Both Both

Intensity Selectivity Both Intensity Selectivity Both Intensity Selectivity Both

γproactive .25 .25 .25 0 0 0 .75 .75 .75

γreactive 0 0 0 1 1 1 1 1 1

θintense 1 0 1 1 0 1 1 0 1

θselective 0 .75 .75 0 .75 .75 0 .75 .75

Column headings indicate time scale (proactive, reactive, or both) and control dimension (intensity, selectivity, or both).
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Analyses

For all trials across all simulations, the model reached a
response threshold within the 2000-msec deadline.
However, before analyses, the first trial of every simula-
tion was removed because we could not evaluate this trial
with respect to the congruency on trial n − 1. In addi-
tion, to deal with the skewed RT distributions, the natural
log of RT was used in all analyses.

Behavioral

For behavioral analyses, we employed linear mixed
models to analyze RT data and generalized linear mixed
models to analyze accuracy. For each model version, a
random intercept across simulations was fitted together
with fixed slopes for the congruency on trial n and con-
gruency on trial n − 1 as well as the interaction between
congruency on trial n and trial n − 1.

To link the simulated data of our model to previous em-
pirical findings, we reanalyzed data from Experiment 1 in
Schmidt and Weissman (2014). This article provided an
open access data set that allowed us to compute the mean
behavioral performance (accuracy and RT) for all four
combinations of congruency on trial n and trial n − 1.
Similar as for the simulations, we removed the first trial
of every experimental run and trials for which the RT
was slower than 2000 msec. In addition, we used the
natural log of RT for the analyses.

Power

Although in typical EEG studies, power is analyzed by
baselining it with respect to activation in the ITI, themodel
does not have to deal with noise in the data and therefore
also allows us to analyze raw (unbaselined) power. We dis-
tinguish between three measures of power in the MFC.
First, we analyze power during the ITI. In this period, there
is no conflict (measured via response energy). Hence,
power is only determined by proactive control. Second,
there is power during the trial itself. This corresponds to
the reactive control signal. Third, we investigate baselined
power. Here, we adopt the classical approach of EEG
studies by baselining trial power with respect to the ITI.
Note that, although power is most often baselined with
respect to the power within a pretrial period averaged
across all trials, the current work adopted the approach
of Pastötter et al. (2013) to baseline power with respect
to pretrial power of only one trial. This allows us to inves-
tigate baselined reactive control, isolated from the proac-
tive control signal that is present in unbaselined reactive
control. We analyze baselined power to connect to empir-
ical data but use unbaselined power to provide additional
insights into the model dynamics.

Power was decibel transformed by

Power ¼ 10� log10 Pperiod
� �

(12)

in which for the trial and ITI period,

Pperiod ¼
XR

t¼s
EMFC tð Þj j2= R−sð Þ (13)

with s = 1 and R = 500 (500 msec; end of ITI) in the ITI
period and with s = 501 and R = RT in the trial period.
For the baselined power, Pbaselined = Ptrial /PITI.
To connect to empirical data, we also ran linear mixed

model regressions with baselined power as the depen-
dent variable and with congruency on trial n and congru-
ency on trial n − 1 as the independent variables. Again, a
random intercept was fitted across simulations.

Neural Synchrony

The current model allows us to test the selectivity of con-
trol by measuring neural synchrony between the stimulus
and response modules in the processing unit. However, in
contrast to power, the critical neural synchrony tests for
our model have not been reported yet in the literature.
Indeed, in contrast to previous work (Hanslmayr et al.,
2008), we analyzed neural synchrony between task-related
posterior processing areas. We do not consider synchrony
between frontal control areas, because only one of our
frontal areas exhibited oscillations. In the model, selective
control would entail that only the color module is synchro-
nized with the response module, whereas nonselective
control would result in synchrony between both stimulus
modules and the response module. Synchrony between
two nodes is measured as the correlation over time of ac-
tivation in both excitatory neurons. This results in a value
of synchrony for each input–output pair on each trial. To
increase testability of the model predictions with EEG,
which typically has a low spatial resolution, we averaged
synchrony over all stimulus–response pairs. This results
in one value of synchrony between stimulus modules
(e.g., posterior visual regions) and the response module
(e.g., lateral motor regions) on every trial. When nonselec-
tive control is applied, the average synchrony should be
higher than when selective control is applied.
Again, a linear mixed model was tested with neural syn-

chrony as the dependent variable, congruency on trial n
and congruency on trial n − 1 as the independent vari-
ables, and a random intercept across simulations.

Relations between Neural and Behavioral Data

To link behavioral data to the underlying neural mecha-
nisms, we again employed linear mixed models.
Specifically, we tested three mixed models for both RT
and accuracy (six models altogether). Because accuracy
data are binary, generalized linear mixed models were used
in this case. In each model, a random intercept across
simulations was included together with one of three neural
measures (proactive and reactive power and one of
synchrony). In addition, the interaction between the neural
measure and congruency on trial n was tested.
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RESULTS

Reproducing Empirical Conflict-Adaptation Effects

As described before, the main interest of the current study
is the conflict-adaptation effect. This effect is typically rep-
resented as an interaction between congruency on trial n
and congruency on trial n − 1 (but see also Braem et al.,
2019). More specifically, previous work has observed that
performance improves (higher accuracy and faster RT)
when the congruency of trial n matches the congruency
of trial n − 1 (see Figures 4J and 5G; e.g., Schmidt &
Weissman, 2014; Gratton et al., 1992). In addition, at the
neurophysiological level, previous work illustrated that
midfrontal theta power is lower when the congruency of
trial n matches the congruency of trial n − 1 (Figure 6E;
Pastötter et al., 2013). We evaluated nine model versions
that explored different dimensions and time scales of con-
trol adaptation. Conflict-adaptation effects for all nine
model versions (see Table 1) and all three data modalities
(accuracy, RT, and power) were expressed as χ2 statistics
for the interaction of congruency on trial n and trial n− 1.
Raw statistics ranged from 0.05 to 1776 for accuracy, from
0.014 to 3477 for RT, and from 0.009 to 1958 for power. To
compare the model versions, statistics were z scored
across model versions, for each data modality separately.
The resulting normalized fit measures (i.e., evidence for a
conflict-adaptation effect) are summarized in Figure 3 (see
also van den Berg, Awh, & Ma, 2012, for a similar approach).
Below, we explore the model results in more detail. We

start by evaluating conflict-adaptation effects in accuracy
for all nine model versions. To avoid redundancy of pre-
senting results from unsuited model versions, we consis-
tently eliminate model versions that could not reproduce
conflict-adaptation effects in one data modality before
moving on to the next modality. We aim to define the min-
imal requirements for control adaptation to reproduce
empirical conflict-adaptation effects in all threemodalities.

Accuracy

Accuracy results for all nine versions of all model versions
are shown in Figure 4. All ninemodels showed a significant

effect of congruency on trial n [all ps < .001, all χ2(1, n=
30) > 158]. Six of the nine model versions exhibited
significant effects of congruency on trial n − 1 [all ps <
.001, all χ2(1, n = 30) > 18] and significant interactions
between congruency on trial n and congruency on trial
n− 1 [all ps < .001, all χ2(1, n= 30) > 18]. As illustrated
in Figure 4, models that only employed reactive control
(Figure 4D–F; fast time scale) could not account for
conflict-adaptation effects from empirical studies
(Figure 4J). Hence, these models were disregarded for
further evaluations (but see Figure 3). In summary, a
minimal requirement for reproducing conflict-adaptation
effects in accuracy is employing proactive control (slow
time scale).

RT

The results of all nine model versions are summarized in
Figure 3. For illustrative purposes, we only evaluated results
of RT analyses for the sixmodels that illustrated a significant
conflict-adaptation effect in accuracy (see Figure 5). Also
here, all models showed a significant effect of congruency
on trial n [all ps < .001, all χ2(1, n = 30) > 13,974].
Moreover, all remaining models had a main effect of con-
gruency on trial n − 1 [all ps < .0025, all χ2(1, n = 30) >
9.19]. Importantly, although also the interaction between
congruency on trial n and trial n − 1 reached statistical
significance in these six models [all ps < .002, all χ2(1,
n = 30) > 9.71], only four versions (Figure 5B, C, E, and
F) of the model reproduced the qualitative pattern that is
typically found in empirical data (Figure 5G), where there
are performance benefits on congruent–congruent trial se-
quences. In summary, according tomodel simulations,min-
imal requirements for producing a conflict-adaptation effect
in RT are proactive control (slow time scale) and adaptivity
at the selectivity dimension.When this is combined with re-
active control or with adaptivity at the intensity dimension,
the conflict-adaptation effect remains intact. Although the
intensity dimension (Figure 5A and D) was sufficient to
explain performance improvements for incongruent–
incongruent trial sequences, these models were not able

Figure 3. Conflict-adaptation effects for each data modality and each model. Columns represent model versions (same order as in Table 1), and rows
present the three data types that were used to compare models. Colors represent the statistic (χ2) values for the interaction effect between
congruency on trial n and congruency on trial n − 1. These values were z scored with respect to the other models.
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to reproduce the performance benefit of having a
congruent–congruent trial sequence that is observed in em-
pirical research (Figure 5G; see also Figure 3 for a sum-
mary that these models do not perform well). Hence,
four model versions remained for further evaluation.

Power

Here, we investigated baselined theta power in theMFC of
the model. A summary of results for all nine model
versions is presented in Figure 3, but for more detailed
analyses, only the four versions of the model that could
qualitatively reproduce the empirically observed conflict-
adaptation effect in both accuracy (Figure 4J) and RT
(Figure 5G) were considered in our comparison of power
results. As presented in Figure 6, only one of the four
remaining model versions was able to reproduce the
conflict-adaptation effect in midfrontal theta power
(Figure 6E; Pastötter et al., 2013). The model that was
adaptive on both the intensity and selectivity dimensions

and on both time scales (Figure 6D; full adaptive model)
illustrated a significant effect in power for congruency on
trial n [p < .001, χ2(1, n = 30) = 8072], congruency on
trial n − 1 [p < .001, χ2(1, n = 30) = 814], and the
interaction of the two [p < .001, χ2(1, n = 30) = 1958].
Apart from the effect of congruency on trial n − 1 in the
proactive model that was adaptive on both dimensions
[Figure 6B; p < .001, χ2(1, n = 30) = 201], no other
effects reached significance. Thus, only the full adaptive
model, employing adaptivity on both time scales and on
both the intensity and selectivity dimensions, survived
qualitative comparison to previous empirical data.

Summary

To summarize, six models showed conflict adaptation in
behavior, illustrated by a significant interaction between
congruency on trial n and trial n − 1. These were the
models that used control on a slow (proactive) time scale
or on both time scales. Importantly, only four of these

Figure 4. Accuracy results. Lines connect the means for all trials and all simulations; dots represent the mean of one simulation. For A–I, the three
rows represent the time scales of adaptive control; the three columns represent the three adaptive dimensions of control. In J, reanalyzed empirical
data from Schmidt and Weissman (2014) are shown.
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models could actually reproduce the performance benefits
found in congruent–congruent trial sequences (Figure 5G;
Egner, 2007). Thus, four models survived comparison to
behavioral empirical data. Only one of the four remaining

models illustrated a significant conflict adaptation in theta
power. Hence, only this model that was adaptive on
both time scales and on both intensity and selectivity di-
mensions could reproduce empirical (behavioral and

Figure 5. RT results. Lines connect the means for all trials and all simulations; dots represent the mean of one simulation. For A–F, the two rows
represent the remaining time scales of adaptive control, and the three columns represent the three adaptive dimensions of control. In G, reanalyzed
empirical data from Schmidt and Weissman (2014) are shown.

Figure 6. Power results. Lines connect the means of baselined power for all trials and all simulations; dots represent the mean of one simulation. The
two rows of A–D represent the remaining time scales of adaptive control; the two columns represent the two remaining adaptive dimensions of
control. In E, the reported means from Pastötter et al. (2013) are shown. These values were transformed from percentage change to a decibel scale.
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neurophysiological) conflict-adaptation effects. Therefore,
only this full adaptive model is used for consecutive analy-
ses. In the remainder of the Results section, wewill increase
insight into the model dynamics and provide predictions
for future empirical (neurophysiological) work.

Model Dynamics and Predictions

Power

To present additional insight in the model dynamics that
drove the conflict-adaptation effect in power, Figure 7A
and B shows unbaselined power from the (winning)
model MFC during the ITI (Figure 7A) and during the trial
period (Figure 7B). Note that power in the MFC repre-
sents activation of the Controlreactive node in the conflict
monitoring unit (Equation 9). During the ITI, there is no
conflict-related activity at response level. As follows from
Equation 8, Controlreactive = Controlproactive during this
ITI period (Figure 7A; proactive power). Hence, MFC
power during the ITI represents the proactive control signal
that varies on a slow time scale. As a result, Figure 7A only
shows an effect of congruency on the previous trial. More
specifically, it increases after incongruent trials because the
model experiencedmore conflict during these trials. As can
be observed, fast conflict-related activity is added to the
Controlreactive activity during the trial period (Figure 7B;
reactive power). Here, activity does not change relative to
proactive power (Figure 7A) when the current trial (n) is
congruent but does increase when the current trial is
incongruent. This fast, conflict-related activity can be
isolated by baselining power during the trial period with
respect to power in the ITI (see Figure 6E).

Neural Synchrony

Figure 7C shows results from the neural synchrony
analyses. Again, these results provide predictions for syn-
chrony between posterior task-related processing areas,
not between frontal control areas (see also Methods
and Discussion). All effects reached significance. We
found a main effect of congruency on trial n [χ2(1,

n = 30) = 2246, p < .001], a main effect of congruency
on trial n − 1 [χ2(1, n = 30) = 1475, p < .001], and a
significant interaction [χ2(1, n = 30) = 1503, p < .001].
As follows from Equation 11, synchrony is strongest
when there is least conflict-related activity, which is the
case when trial n − 1 and trial n are both congruent.
When conflict exceeds a threshold value (θselective; see
Equation 11), only one stimulus dimension is synchronized
and synchrony baselines around 0.5. Thus, the model
predicts an inverse conflict-adaptation effect in neural
synchrony between task-related processing areas.

Relations between Neural and Behavioral Data

To shed further light onto the model dynamics and pro-
vide additional predictions for future electrophysiological
studies, we performed regressions with congruency (on
trialN) and neurophysiological data (power or synchrony)
as the independent variables and behavioral data as the
dependent variable (accuracy or RT). Results are shown
in Figure 8.
When we investigate the relation between proactive

power and behavior (Figure 8B and F), all effects reached
significance: There was a main effect of proactive power
[RT: χ2(1, n= 30) = 1221, p < .001; accuracy: χ2(1, n=
30) = 555, p < .001] and an interaction between proac-
tive power and congruency on trial n [RT:χ2(1, n= 30) =
2805, p< .001; accuracy: χ2(1, n= 30) = 81.3, p< .001].
Importantly, for incongruent trials, accuracy increased
(Figure 8B) and RT decreased (Figure 8F), with stronger
power in incongruent trials. In contrast, for congruent
trials, RT still increased with higher power values. This
was caused by adaptation in the selectivity dimension.
When power was low in congruent trials, the model would
synchronize all stimulus modules and respond faster (see
also Figure 8H).
In addition, we analyzed reactive power. Note, however,

that reactive power is strongly influenced by proactive
power (see Equation 8), as is demonstrated by the fact
that reactive power results (Figure 8C and G) mimic
those of proactive power analyses (Figure 8B and F).

Figure 7. Model dynamics. A illustrates power in the model MFC during the ITI. In B, MFC unbaselined power is presented during the trial (stimulus
onset until response). C illustrates neural synchrony between task-related processing areas. Lines represent the mean for all trials and all simulations;
dots represent the mean of one simulation.
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Hence, also here, there was a significant effect in accuracy
[χ2(1, n= 30) = 669, p< .001; Figure 7C] and RT [χ2(1,
n = 30) = 311, p < .001; Figure 8G]. Moreover, also the
interaction between reactive control and congruency on
trial n reached significance for both accuracy [χ2(1, n =
30) = 117, p < .001] and RT [χ2(1, n = 30) = 24,458,
p < .001]. These two effects (in reactive and proactive
power) potentially explain the conflict-adaptation effect,
but this hypothesis remains to be tested.
Neural synchrony was able to significantly predict both

accuracy [χ2(1, n = 30) = 16.95, p < .001; Figure 8D]
and RT [χ2(1, n = 30) = 9104, p < .001; Figure 8H].
Moreover, also the interaction of synchrony with congru-
ency on trial n reached significance in RT [χ2(1, n= 30) =
18,272, p < .001] and in accuracy [χ2(1, n = 30) = 95,
p < .001]. However, a linear model is clearly not appro-
priate for these data (see Figure 8D and H). To remedy
this, a mixed quadratic regression was fitted for both
RT and accuracy. To guarantee model convergence,
we did not implement the interaction of synchrony

with congruency in this model but fitted the model
for congruent and incongruent trials separately. For
RT analyses, we found a significant effect of synchrony
in congruent [χ2(1, n = 30) = 465, p < .001] as well as
incongruent [χ2(1, n = 30) = 369, p < .001] trials. In
addition, also the quadratic effect of synchrony was sig-
nificant in both congruent [χ2(1, n = 30) = 51.62, p <
.001] and incongruent [χ2(1, n = 30) = 297, p < .001]
trials. For the analyses of accuracy, only an intercept
could be estimated in congruent trials, because accuracy
was always 100% in this case. For incongruent trials, there
was a significant linear [χ2(1, n = 30) = 192, p < .001]
and quadratic [χ2(1, n = 30) = 217, p < .001] effect of
synchrony. Hence, performance for incongruent trials
was best at intermediate levels of synchrony. This is be-
cause, when synchrony was around 0.5, only the relevant
stimulus modules were synchronized with the response
module. Instead, when synchrony is much lower, neither
module is synchronized, and if synchrony is much higher,
both modules are synchronized. In summary, whereas

Figure 8. Relation between neural and behavioral data. Lines represent the fitted regression models. Dots represent the mean values for all trials and
all simulations. Bars (in the accuracy plots) indicate 95% confidence intervals. Because there are not as many trials for each value of power or
synchrony, the width of the confidence intervals varies.
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for incongruent trials, an intermediate level of synchrony
(selective control) is optimal, congruent trials do benefit
from higher levels of synchrony, as is observed by a faster
RT at higher synchrony levels (Figure 8H). This prediction
also remains to be tested empirically.

DISCUSSION

Current work employed a computational modeling ap-
proach to gain insight in the underlying mechanisms that
drive human adaptive cognitive control. For this purpose,
we combined and extended previous modeling work on
conflict monitoring (Botvinick et al., 2001) and neural
synchrony (Verguts, 2017). Nine versions of the model
were explored, which differed in the dimension (intensity
or selectivity) or the time scale (slow or fast) (Braver,
2012; Scherbaum et al., 2012) for which control was
adapted. Only the model that was adaptive on both the
intensity and selectivity dimensions and on both time
scales could account for human behavioral (Gratton
et al., 1992) and neurophysiological (Pastötter et al.,
2013) findings. In addition, this full adaptive model ver-
sion provides predictions for empirical behavioral and
neurophysiological data.

The current study relied on response level energy to
evaluate the required intensity of control. By using this
approach, the model ignored several features that might
also play an important role in evaluating when to use con-
trol. In the current model, all information for control
adaptation originates from internal (conflict) sources.
However, control adaptation might also rely on other
sources such as reward or contextual information in the
environment. Learning from more sources of information
would allow the model to better estimate the costs and
benefits of control (Shenhav, Botvinick, & Cohen, 2013),
allowing control adaptation to be even more efficient.

For the selectivity dimension, the model also relied on
energy as a measure of conflict. More specifically, as in
previous work (Verguts & Notebaert, 2008), we used a
multiplication of bottom–up, top–down, and conflict sig-
nals to evaluate where control should be employed. In
line with previous work (Melara & Algom, 2003), it was
argued that when conflict is low, an agent might benefit
from additionally exploiting task-irrelevant but correlated
information. Thus, when conflict is low, the model will
distribute its control signal over the entire network (less
selective). When conflict is high, the model will only send
the control signal to the task-relevant dimension (more
selective). Because low-conflict trials are characterized
by the fact that task-irrelevant and task-relevant informa-
tion provide evidence for the same response, evidence
accumulation in the integrator unit of themodel will be fas-
ter, leading to faster RT (see also Figure 2). Intriguingly,
whereas the control signal in Botvinick et al. (2001) did
not implement selectivity, we demonstrated that, in the
sync model, adaptivity in the selectivity of control is a nec-
essary requirement for reproducing the qualitative pattern

of conflict-adaptation effects in behavior (performance
benefit for congruent–congruent sequences). Such a per-
spective shifts theoretical attention toward consideration
of all trial types (congruent, incongruent, neutral) and
how they can be employed for optimal performance
(Compton, Huber, Levinson, & Zheutl in, 2012).
Importantly, when multiple stimulus dimensions are
added to the task, a selective adaptive model is required
to also detect the source of conflict such that the agent
can optimally select information from multiple noncon-
flicting dimensions. Future work should therefore also
evaluate the costs and benefits of exploiting (nominally)
task-irrelevant dimensions. This could be implemented
by (reinforcement) learning the conflict-to-control weight
matrix, the control-to-processing weight matrix (Verguts
& Notebaert, 2008), or the attention directed to specific
dimensions (Roelfsema & Van Ooyen, 2005; Kruschke,
1992, 2001). As demonstrated in previous work, the oscil-
latory model can easily be embedded in a general learning
framework (Verbeke & Verguts, 2019).
Importantly, when to use control was evaluated on two

time scales. A weighted integration of conflict over the re-
spective time scale (trials or time steps for slow and fast
time scales, respectively) determined the level of control
employed by the model. Although most models of control
only implemented control on a slow time scale (but see
Scherbaum et al., 2011), we show that implementing
control on both time scales, simultaneously, allows the
model to connect to previous neurophysiological findings
that show a conflict-adaptation effect in midfrontal theta
power (Pastötter et al., 2013). Moreover, implementing
control adaptation on a fast time scale allows the model
to deal with situations in which the relevant stimulus
dimension needs to be inferred during the trial itself
(stimulus-driven control; see also Bugg, 2012). The
approach to use two time scales of control can be linked
to previous theoretical (Braver, 2012) and empirical (e.g.,
Gonthier, Braver, & Bugg, 2016; Ruge, Jamadar,
Zimmermann, & Karayanidis, 2013; Stuphorn & Emeric,
2012) work that described a dual-mechanism framework
for cognitive control. Here, control on a slow time scale
is used proactively by synchronizing the network before
trial onset, to prevent conflict to occur. Control on a fast
time scale is used reactively during the trial itself, to elim-
inate all conflict that could not be prevented by proactive
control. Note that, although in the current work proactive
and reactive control could be differentiated by their
respective time scales, the time scale of both types of
control might depend on the task context ( Jiang, Beck,
Heller, & Egner, 2015).
An important feature of the current model is that it

accounts for the fact that neural activity is characterized
by oscillations in different frequencies. Although, on a
computational level, top–down biasing of lower-level pro-
cessing can easily be simulated without oscillations
(Shenhav et al., 2013; Botvinick et al., 2001; Verguts &
Notebaert, 2008; Cohen et al., 1990), a growing amount
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of empirical research indicates that the human brain uses
synchrony to modulate processing efficiency between
neural areas (Fries, 2005, 2015). Moreover, current work,
as well as previous work (Verguts, 2017), illustrates that
implementing oscillations allows a model to connect to a
wider range of neurophysiological data. In addition, oscil-
latory processing might reveal important constraints (e.g.,
the need for adaptive selectivity) that are not applicable for
other implementations of biasing signals. Future work
should further explore the benefits and costs of oscilla-
tions for neural processing dynamics.
In the processing unit, oscillations were implemented

at gamma frequency, in line with a wide range of empir-
ical data that describe a critical role for gamma in cogni-
tive processing (Lisman & Jensen, 2013; Womelsdorf &
Fries, 2007; Gray & Singer, 1989). In the MFC of the con-
trol unit, a theta frequency was used. This is consistent
with numerous studies that link cognitive control, and
more specifically control adaptation, to midfrontal theta
power (van Driel et al., 2015; Cavanagh & Frank, 2014).
More specifically, the current model uses theta frequency
in the MFC to send synchronizing bursts to gamma-
frequency oscillations in the processing unit. Importantly,
as illustrated in the Appendix, model behavior can be
reproduced by implementing other frequencies as well.
Furthermore, previous work (Verbeke et al., 2021) has
implemented theta frequency in the model processing unit
as well. In this case, control and processing units communi-
cate via within-frequency (theta–theta) instead of cross-
frequency interactions (theta–gamma). Both types of
interactions are supported by empirical EEG work
(Verbeke et al., 2021; Siems & Siegel, 2020; Szczepanski
et al., 2014; Lisman & Jensen, 2013; Cavanagh, Cohen, &
Allen, 2009; Jensen&Colgin, 2007). Also in the control unit,
different frequencies can lead to qualitatively similar results.
However, previous work (Verbeke & Verguts, 2019) was
able to provide a more detailed insight in the importance
of control frequency. Importantly, the controller frequency
determines the frequency of bursts. When this frequency is
slow, there ismore time between bursts, whichmight allow
oscillations in the processing unit to drift apart. Crucially, if
the controller frequency is too fast, there may be too many
bursts and not enough time where activity is actually oscil-
lating. In such case, the BBS principle (Equation 5) would
be negligible, which leads to a dramatic decrease in model
performance, as was demonstrated in previous work
(Verbeke & Verguts, 2019). For simplicity, here, we em-
ployed the same control frequency for all trials. However,
as illustrated in recent work, frequency might also change
as a function of task difficulty (Senoussi et al., 2021). In
summary, an important avenue for future work is to further
explore the computational role of different frequency
bands.
Current work has demonstrated how implementing

oscillatory processing allows an improved insight into
the mechanisms underlying cognitive processes. For ex-
ample, it allows the model to connect to a wider range of

empirical data (Schmidt & Weissman, 2014; Pastötter
et al., 2013; Gratton et al., 1992) and provide testable
predictions for future empirical work. For instance, we
hypothesize an inverse conflict-adaptation effect in
synchrony/phase coupling between task-related input
(e.g., visual) and output (e.g., motor) areas. Note that
this hypothesis considers more posterior task-related
areas and hence crucially differs from previous findings
showing an increase of phase coupling between frontal
areas during incongruent trials (Hanslmayr et al., 2008).
Importantly, we collapsed our measure of synchrony over
the full input (color and word dimensions) or output
(response dimension) layers of the model. As a result,
our hypotheses are testable with neurophysiological
measurements. In addition, the model hypothesizes that
both synchrony and midfrontal theta power can predict
accuracy and RTs on a trial-to-trial basis.

In the current model, cognitive control is established
through a cooperation between the MFC and LFC. We
propose that the MFC determines the intensity of con-
trol. More specifically, stronger theta power in the MFC
results in an increase of synchronizing bursts that are
sent to lower-level processing areas (e.g., posterior visual
or motor areas). Given its involvement in both proactive
and reactive cognitive control (Stuphorn & Emeric, 2012;
Miller & Cohen, 2001) and the strong anatomical connec-
tivity between MFC and posterior processing and motor
control areas (Silvetti, Alexander, Verguts, & Brown,
2014), MFC seems optimally suited for sending these
bursts. We propose that selecting where to send the
bursts is anatomically linked to the LFC. This is consistent
with the notion of (dorso)LFC as a holder of task de-
mands (Mac Donald, Cohen, Stenger, & Carter, 2000;
Braver et al., 1997). Both LFC and MFC receive informa-
tion from the conflict monitoring unit, on which basis
they decide the required intensity and selectivity of con-
trol. Previous work also linked this conflict monitoring
unit to MFC (Botvinick, Cohen, & Carter, 2004).

In summary, the current work has described an oscilla-
tory model of adaptive cognitive control. The model
implements cognitive control on two time scales, by
top–down modulated gating of neural activity via synchro-
nization. It provides new insights into adaptive cognitive
control and opens avenues to further explore how
learning modulates cognitive control. Moreover, the
model simulations were consistent with previous behav-
ioral and neurophysiological data and provided predic-
tions for future empirical work.

APPENDIX: PARAMETER EXPLORATION

Methods

To gain insight in the parameter space of the model, three
grid searches were performed. In the first parameter explo-
ration, we focused on parameters in the conflict monitor-
ing and control unit. Here, we explored from Equation 8
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Figure A1. Parameter exploration for the conflict monitoring unit. Each panel presents results for one pair of parameters. Here, statistics and
efficiency are averaged across all values for the not-shown parameters. Black dashed lines indicate parameter values that were used to simulate the
full adaptive model in the main text.
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the γproactive, ηproactive, and β parameters. In addition, we
explored different values for the θselective parameter from
Equation 11. More specifically, for γproactive, values ranged
from 0.125 to 0.875 in steps of 0.125; for ηproactive, we ex-
plore values from 0 to 1 in steps of 0.125; β was evaluated
for values ranging from 2.5 to 20 in steps of 2.5; and
θselective took on values from 0 to 1 in steps of 0.125. All
other parameter values were set as described for the full
adaptive model from the main text. We performed one
simulation of 600 trials for each parameter combination.
In the second grid search, we focused on the integra-

tor unit. Here, we explored the lateral inhibition imple-
mented by the off-diagonal elements of L (see Equation 6),
the response threshold, and the standard deviation of
the noise (n). For “inhibition” (off-diagonal elements
of L), we explored values from 0 to 0.1, with a step size
of 0.005. As for threshold, we searched values from 5
to 40 with a step size of 5. For noise, we looped over
values from 0 to 0.5 with a step size of 0.05. Again, all
other parameter values were set as described for the full
adaptive model from the main text. We performed one
simulation of 600 trials for each parameter combination.
The third grid search focused on the frequencies of the

phase code neurons that were used in the control and

processing unit. Here, we explored control frequencies
ranging from 2 to 20 Hz in steps of 2 Hz and processing
frequencies ranging from 10 to 100 Hz in steps of 10 Hz.
Note that, in the processing unit, there was always a 2.5%
difference in frequency between the stimulus and re-
sponse nodes. Also here, all other parameter values were
set as described for the full adaptive model from the
main text. We performed one simulation of 600 trials
for each parameter combination.

Analyses

Both RT and accuracy data from each simulation were
analyzed. Because there was only one simulation for each
parameter combination, the random intercept was
removed from the linear mixed models that we used to
analyze simulations in the main text, resulting in a linear
model for RT and generalized linear model for accuracy.
Again, congruency on trial n and congruency on trial
n− 1 were used as independent variables. For illustrative
purposes, the accuracy and RT results of parameter explo-
rations were combined. Here, we defined the mean of the
mean of the z-scored accuracy and negative z-scored RT as
a measure of efficiency. For measures of the congruency

Figure A2. Parameter
exploration for the integrator
unit. Each panel presents results
for one pair of parameters.
Here, statistics and efficiency
are averaged across all values
for the not-shown parameter.
Black dashed lines indicate
parameter values that were
used to simulate the full
adaptive model in the main text.
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and conflict-adaptation effect, we used the z-scored statis-
tic that resulted from the linear (F value) or generalized
linear model (χ2 value).

Results

Results from the parameter explorations are presented in
Figure A1–A3. Here, we present heat maps for efficiency
(combination of RT and accuracy; see Methods), the
congruency effect (on trial n), and the conflict-adaptation
effect (interaction of congruency on trial n with congru-
ency on n − 1). Figure A1 presents results of the conflict
monitoring and control unit exploration. Figure A2 pre-
sents results of the integrator unit exploration, and
Figure A3 presents results of the frequency exploration
in the control and processing unit.

Reprint requests should be sent to Pieter Verbeke, Department of
Experimental Psychology, Ghent University, H. Dunantlaan 2,
Ghent, Belgium 9000, or via e-mail: pjverbek.verbeke@ugent.be.

Data Availability

Code to simulate the model and analyze the resulting
data is provided in our GitHub repository: github.com
/CogComNeuroSci/PieterV_public/tree/master/conflict
_synchrony.
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