
Proc. of the 7th International Conference on Engineering and Emerging Technologies (ICEET)
27-28 October 2021, Istanbul, Turkey

978-1-6654-3897-1/21/$31.00 ©2021 IEEE

Genetic Algorithm for Solving Coverage Issues in

Undersea Mining

Ronald Ponguillo-Intriago

Dept. of Industrial Systems Engineering and

Product Design

Ghent University

Industrial Systems Engineering (ISyE),

Flanders Make

Ghent, Belgium

Facultad de Ingenieria en Electricidad y

Computacion

Escuela Superior Politecnica del Litoral,

ESPOL

Guayaquil, Ecuador

RonaldAlberto.PonguilloIntriago@ugent.be

Ivana Semanjski

Dept. of Industrial Systems Engineering and

Product Design

Ghent University

Industrial Systems Engineering (ISyE),

Flanders Make

Ghent, Belgium

Ivana.Semanjski@ugent.be

Daniel Ochoa

Facultad de Ingenieria en Electricidad y

Computacion

Escuela Superior Politecnica del Litoral,

ESPOL

Guayaquil, Ecuador

dochoa@espol.edu.ec

line 1: 5th Given Name Surname

line 2: dept. name of organization

(of Affiliation)

line 3: name of organization

(of Affiliation)

line 4: City, Country

line 5: email address or ORCID

Angel J. Lopez

Dept. of Industrial Systems Engineering and

Product Design

Ghent University

Industrial Systems Engineering (ISyE),

Flanders Make

Ghent, Belgium

Facultad de Ingenieria en Electricidad y

Computacion

Escuela Superior Politecnica del Litoral,

ESPOL

Guayaquil, Ecuador

Angel.Lopez@ugent.be

Sidharta Gautama

Dept. of Industrial Systems Engineering and

Product Design

Ghent University

Industrial Systems Engineering (ISyE),

Flanders Make

Ghent, Belgium

Sidharta.Gautama@ugent.be

Abstract—To be cost-effective, robot-based undersea mining

must comply several operational constraints. Among the main

constraints are the time and energy required to extract the

mineral from the seabed. It is also important to reduce the wear

of the joints that connect the ship on the surface with the robot

crawler that does the mining on the seabed, since this not only

reduces operating costs, but also lengthens the useful life of these

parts which increases system security. For this reason, the least

amount of twisting in these pieces is preferable, so it is advisable

to reduce the number of turns or changes of direction in the

trajectory of the robot that extracts the mineral. In this article,

we present an algorithm to optimize Coverage Path Planning

using Genetic Algorithm to produce paths with longer segments,

which can be used in underwater mining and reduce the effects

the mentioned turning problem. The resulting paths have on

average 55% less changes of directions in the trajectory than a

GA with standard cost function. In addition, in tests made by

placing small obstacles in a random way, 76% of useful paths

were obtained and up to 59% of useful path when the obstacles

were grouped into a single larger obstacle.

Keywords—genetic algorithms, coverage path planning, deep

sea mining, autonomous systems.

I. INTRODUCTION

Crawler robots have the potential of turning sub-sea
mineral extraction operations into a highly lucrative business.
Such robots collect minerals at the sea bottom using a number
of mining tools such as specialised robotic arms or a cutter-
suction dredgers. At great depths, the crawler is usually linked
to a vessel by power and data wires to ensure its continuous
operation. As the crawler surveys the mining area, the
extracted material is pumped up to the vessel through flexible
pipes. A crawler robot is one of mayor investment for a mining
company. Therefore, it is imperative that the robot covers all

mining sites with the least possible energy consumption and
within its recommended operational parameters. This problem
is equivalent to the well-known Travelling Salesman Problem
(TSP). Where the mining area is represented by a regular grid
and each node is labelled either as mining-place or an obstacle.
Then, the shortest path across all mining-place nodes is
computed.

For efficient undersea mining operations, two additional
constrains must be satisfied. First, the crawler should visit
each mining-place node exactly once to reduce energy
consumption. Second, the crawler should avoid sharp turns to
reduce the possibilities of mechanical failures or
disconnection of tethered cables. Reducing the number of
changes in direction of the crawler also reduces the frequency
of junctions maintenance and replacement.

TSP solving approaches can be classified into: exact,
heuristic, and meta-heuristic methods. Since, TSP is an NP-
hard type problem with complexity O((n − 1)!/2). As the
number of nodes n increases exact methods tend to converge
to a solution at a much slower rate than other methods because
the whole search space must be explored.

Metaheuristic algorithms although faster do not guarantee
that the solution will be optimal. Nevertheless, in many
applications a sub-optimal solution may be good enough. The
most popular meta-heuristic algorithms used for TSP are:
Particle Swarm Optimization (PSO)[1], Ant Colony
Optimization (ACO)[2], Genetic Algorithms (GA)[3],
Simulated Annealing (SA)[4] and Tabu Search (TS)[5]. A
survey on methods for solving TSP can be found in [6][7].

In this work, we proposed a GA based technique to solve
the TSP problem under the constrains mentioned before. The

proposed cost function include terms that account for the
length and smoothness of the crawler's path. The best
candidates are used to generate new solutions until a suitable
one is found. To account for changes in the crawler's
trajectory, we built rules to detect sharp turns in a path. Our
approach can be applied to other metaheuristic approaches to
solve the TSP.

This paper is organized as follows. Section III explains the
multi-objective cost function, which include the standard TSP
function and our algorithm for detecting changes in robot
trajectory. Then, a genetic operators are selected and tuned for
optimization. To evaluate the performance of our proposed
method, obstacles are added to the grid. Experimental results
are presented in section IV and discussed in section V.

II. LITERATURE REVIEW

A Genetic Algorithm is an optimization method that uses
meta-heuristic techniques based on the evolutionary process
of species, i.e., it begins with an initial population that evolves
after going through processes called selection, crossover, and
mutation. The idea is to use a mechanism capable of
qualifying individuals and choosing among them the best-
scored ones using probabilistic methods.

Various types of crossover operators to solve TSP are
available in [8] and [9]. After recombination, some of the new
individuals are chosen to be mutated. The authors in [10] and
[11] present specialized mutation operators to solve TSP. The
crossover and mutation methods are applied with a certain
probability of occurrence that is assigned when configuring
the genetic algorithm.

To solve it, the coding of the individuals, based on
permutations of all the nodes that are part of the search space
is used. This technique exchanges the elements of the search
space repeatedly to generate new individuals for obtaining a
solution.

III. METHODOLOGY

A. Genetic Operators: Mutation and Crossover

Local Search Mutation (LSM) is a local search method
that takes an individual and mutates it to generate diverse
solutions in the population from this one on. This favour’s the
exploration of the search space and gets the algorithm out of
local optimum if it were the case. In this work the three
mutation methods combined in the LSM technique are flip,
swap and slide that work as shown in the Fig. 1.

Fig. 1. Mutation operators implemented for LSM process

The Algorithm 1 presents the Order Based Crossover used
in the solution proposed. Fig. 2 shows graphically the process
of order-based crossover.

Algorithm 1. Order Based Crossover

1. Select a sublist of nodes from parent1.

2. Copy the sublist in the corresponding positions of the offspring.

3. From parent2, delete the points in the sublist.

4. The remaining points in parent2 are inserted into the offspring wherever
necessary to complete the offspring.

Fig. 2. Order Based Crossover graphically explained

B. Tuning Genetic Algorithm

 Table I shows the summary of the parameters chosen for
the GA. The improvement of the parameters was done based
on the standard TSP mono-objective function which is the
path length. For the genetic operators, we used the Order
Based Crossover as stated in [12]. The mutation method used
was the Local Search Mutation as explained in section III-A.

TABLE I. PARAMETERS OBTAINED AFTER THE TUNNING
PROCESS FOR THE GENETIC ALGORITHM

Parameter Description

Generations 1000

Individuals 100

Subpopulation 1

Generation Gap 4

Selection Method Tournament

Recombination Method Order Based Crossover

Mutation Method Local Search Mutation

Recombination Rate 1

Mutation Rate 0.07

C. Multi Objective Function

The objective function used consists of two parts. The first
objective presented in equation 1 is the length of the path
generated by the GA and it is the same as defined in a TSP
problem with Euclidean distance. The second component of
the objective function in equation 2 is the number of nodes of
the path where there is a change of direction in the path.

Let's define the components of the objective function
somewhat formally.

Let consider a path p = {n1, n2, . . , nn} , where 𝑛𝑖 is a
point in a Cartesian plane, i.e., 𝑛𝑖 = (𝑥𝑖 , 𝑦𝑖).

Let define 𝑣k = (nk+1– nk), ∀𝑘 = 1, … , 𝑛 − 1.

In the standard TSP the objective function corresponds to
the Euclidean distance between nodes i and i+1, ∀𝑖 =
 1, … , 𝑛 − 1 which is calculated as follow:

c1 = ∑ √(𝑥𝑖 − 𝑥𝑖+1)2 + (𝑦𝑖 − 𝑦𝑖+1)2n−1
i=1 (1)

c2 = ∑ −𝑠𝑖𝑔𝑛(|
〈𝑣𝑘,𝑣𝑘+1〉

‖𝑣𝑘‖‖𝑣𝑘+1‖
|)n−1

k=1 (2)

As we are using a multi-objective function with two
objectives, it is possible to use the Pareto frontier
method[13][14][15] to divide the space of solutions into two
areas from which the solutions could be chosen. On the other
hand, there is the Weighted Sum Method [16][17], which we
choose because simplifies the process by combining both
costs into one, thus transforming a multi-objective cost
function into a mono-objective function as is showed in the
equation 3.

ObjF = A ∗ c1 + B ∗ c2 (3)

where A + B = 1 and A and B ϵ(0,1]

Considering A+B=1, we can eliminate a variable and
express equation 3 as:

ObjF = α ∗ c1 + (1 − α) ∗ c2 (4)

D. Experiment Organization

Two types of experiments were designed to evaluate the
performance of our algorithm. All experiments were evaluated
on a regular grid, i.e. a Cartesian arrangement of nodes
mounted on a two-dimensional plane. The distance between
two consecutive nodes in the abscissa or ordinate ones is 1 and

the diagonals between neighbouring nodes is √2 . The α
parameter is varied from 0.1 to 0.9 with steps of 0.1. Each
experiment was run 100 times using the parameters showed in
Table I.

The first experiment was developed with a map without
obstacles to evaluate for which values of α the genetic
algorithm produces the best solutions. The results of the tests
are shown in Fig. 5 and 6.

In the second experiment, noise (obstacles) is added to the
map. Obstacles represent nodes on the map where the
algorithm must not cross. These obstacles are placed in two
ways. The first is as randomly distributed obstacles on the map
simulating a salt and pepper noise effect and the second is by
randomly placing one or more obstacle clusters made up of
several nodes. A number of obstacle nodes of up to 5% of the
map nodes was considered. This is to prove that our algorithm
continues to work even in the presence of obstacles. The
results of the tests are shown in Fig. 7.

IV. RESULTS

The Fig. 3 shows typical solutions obtained when TSP is
solved using genetic algorithms. The Fig. 3(a) shows an
optimal solution when the TSP is solved with the objective
function by default, that is, it only evaluates the length of the
path. On the other hand, in the Fig. 3(b) it can be seen an
optimal solution obtained with our algorithm in which is
combined the standard objective function plus our objective

function that detects and counts the changes of direction in the
trajectory of the path. It can be seen how in both figures the
generated paths have the same length (53) but in the Fig. 3(b)
the sections are straighter. In the first case, the path produced
has 34 nodes where there is a change in the direction of the
path, while using our algorithm this number is 17 nodes.

Finally, the Fig. 3(c) shows another possible output of the
genetic algorithm that we qualify as an unfeasible solution
since for our mining application having segment crossings in
a path means being inefficient in the process because the
crawler would pass through the same point more than once
picking up the ore.

(a) Typical optimal solution
using a standard TSP.

(b) Typical optimal solution using
a TSP with our approach

(c) Unfeasible solution for subsea mining applications

Fig. 3. Types of solution for Coverage Path Planning using Genetic
Algorithm

(a) Solution with crossing
segments

(b) Solution with obstacle space
violation

(c) Accepted Good Solution

Fig. 4. Example of solutions obtained by our GA when obstacles are
added in the form of clustered nodes

 In Fig. 4 is shown an example with typical solutions
produced by the GA when it solves a search space with a
cluster of obstacles. The blue nodes represent the obstacle
space. The Fig. 4(a) shows a solution that is discarded even
though it does not invade the obstacle space because it
produces a crossing of segments. In the Fig. 4(b) it can see the
effect of invasion of the obstacle space. In this solution several
long segments are produced, but instead there is an invasion
of the obstacle space. The Fig. 4(c) shows a solution that is
acceptable for our application. This solution has neither
crossing of segments nor invasion of the obstacle space.

Since α represents the combination of the two objectives
in the cost function, it is necessary to evaluate the
characteristics of the solutions when α changes within the
proposed interval. In this way, the distance obtained in the
solutions, the number of nodes where there is a change in the
direction of the trajectory (# Corners), the processing time and
the number of generations used by the GA to converge to the
solutions were evaluated. The Fig. 5 shows a summary of the
results of the first experiment.

The Fig. 6 shows the percentage of each type of solution
generated by the GA based on the parameter α. The red bar
shows the unfeasible solutions, as defined in Fig. 3(c). The
yellow bars correspond to solutions that, even having a lack of
optimal length, present characteristics of very straight sections
and do not have crosses in their segments. For this reason, it
has been classified as sub-optimal and could be used in our
applications. Finally, the green bars correspond to solutions
that have optimal length and have long stretches in their
trajectory, such as shown in Fig. 3(b).

The results of the second experiment are shown in Fig. 7.
The blue bars correspond to the tests made on a map without
obstacles. The orange bars shows the results obtained when
the obstacles are randomly located and scattered within the
map. Meanwhile, the purple bars show the results when the
obstacles were grouped in a cluster within the map. This
picture shows only those solutions that are acceptable for our
application, and whose interpretation is presented in Fig. 4.

Fig. 5. GA performance in function of α coefficient

Fig. 6. α coefficient correlation with the quality of solutions

Fig. 7. Solutions performance analysis in presence of obstacles

V. DISCUSION

When solving the TSP in a regular grid it is possible to
obtain several solutions that are optimal. Since TSP evaluates
the length of the path, the optimal solutions will be those that,
complying with the TSP rules, give the shortest length to
travel by the traveler. Thus, in the Fig. 3(a) and 3(b) we see
two optimal TSP solutions that differ in form. The difference
between the two is that in the case of the traditional TSP, the
solutions do not have diagonal sections or intersections of
segments, but the optimizer does not care about changes in
trajectory during the journey from the starting point to the
goal, but only to meet the objective of get as little distance as
possible.

On the other hand, the Fig. 3(b) shows an optimal solution
in which the number of nodes where the path changes its
trajectory occur has been reduced by half, which can be seen
visually on longer paths, which it is desired for our underwater
mining application.

In experiment 1, we tested different values of α in the
objective function to determine which are the most useful
values for our mining application. As you can see in the Fig.
5, the values of α that give minimum values of distance are α
≥ 0.6. As it is of interest to our application to reduce the
number of direction changes in the trajectory at the same time,
from the graph (#Corners) the number of direction changes in

the trajectory varies from 17 to 27 nodes on average for the
interval of 0.6 ≤ α≤ 0.9. Also, in the Fig. 5, for 0.6 ≤α ≤ 0.8
the GA converges in fewer generations and needs less
processing time. This processing time is between 180 and 185
seconds which is a reasonable time for the size of the search
space with 54 nodes.

The combination of all this information leads us to choose
values of α greater than or equal to 0.6 as a starting point for
the following experiments. Also considering that for greater
value of α the effect of eliminating changes of direction in the
path disappears and with it the obtaining of straighter paths,
therefore we will not consider the value of α = 0.9. Based on
the Fig. 6, we have for the values of α chosen in a scenario
without obstacles, 82% feasible solutions are achieved for α =
0.6, 88% for α = 0.7 and 98% for α = 0.8.

In the Fig. 7 the results of experiment 2 are shown. Here
the count of the feasible solutions in the different obstacle
conditions is summarized. The higher value of α for both types
of obstacles, produce a greater number of feasible solutions. It
is also observed that for α = 0.7 and α = 0.8 there is a better
answer for the case of clustered obstacles. The latter is
preferable since in real applications the obstacles are more like
the case of cluster obstacles than to small, isolated obstacles.

VI. CONCLUSIONS

In this work, using genetic algorithms to solve a multi-
objective TSP, was possible to generate good quality paths for
undersea mining applications. For this type of application, it
is highly desirable, reduce the number of direction changes in
the robot's trajectory on the seabed, to limit the possible risks
of damaging or wearing out the connection cable with the ship
on the surface.

Using GA or any metaheuristics with the standard cost
function for TSP, the resulting path in a regular grid can have
a lot of changes in the direction of its trajectory even if the
resulting path has an optimal value for the standard cost
function. We were able to reduce up to 55% on average the
changes on the path trajectory using our method.

Also, the developed algorithm to detect changes in the
trajectory of the path, achieved 59% useful paths in the
presence to up 5% of obstacles grouped in a cluster and, 76%
if these obstacles are randomly scattered inside the map,
showing robustness in our technique.

Although, our cost function is universal and can be applied
with any metaheuristic, apply it with GA, limits its evaluation
to a few hundred nodes in the search space.

In future works, this technique can be tested and extended
with other optimizers that allow working with a greater
number of nodes.

ACKNOWLEDGMENT

This research is supported by MarTERA, an ERA-NET
Cofund scheme of Horizon 2020 European Commission. The
overall goal of the ERA-NET Cofund MarTERA is to
strengthen the European Research Area (ERA) in maritime
and marine technologies, as well as Blue Growth. The project

has received funding from the European Union’s Horizon
2020 research and innovation programme under grant
agreement No. 728053-MarTERA. Also this work was
supported in part funded by National Secretariat of Higher
Education, Science, Technology and Innovation of Ecuador
(SENESCYT).

REFERENCES

[1] Shi XH, Liang YC, Lee HP, Lu C, Wang Q, “Particle swarm
optimization-based algorithms for TSP and generalized TSP,”
Information processing letters, vol. 103, no. 5, pp. 169-176, 2007.

[2] Hlaing, Zar Chi Su Su, and May Aye Khine, “Solving Traveling
Salesman Problem by Using Improved Ant Colony Optimization
Algorithm,” International Journal of Information and Education
Technology, vol. 1, no. 5, pp. 404, 2011.

[3] Yu, Y., Y. Chen, and T. Li, “Improved genetic algorithm for solving
TSP,” Control and decision, vol. 29, no. 8, pp. 1483-1488.

[4] Zhan, Shi-hua, Juan Lin, Ze-jun Zhang, and Yi-wen Zhong, “List-
based simulated annealing algorithm for traveling salesman problem,”
Computational intelligence and neuroscience, vol. 2016.

[5] Y.-F. Lim, P.-Y. Hong, R. Ramli and R. Khalid, “An improved tabu
search for solving symmetric traveling salesman problems,” 2011 IEEE
Colloquium on Humanities, Science and Engineering, pp. 851-854,
2011.

[6] M. Bellmore and G. L. Nemhauser, “The traveling salesman problem:
a survey,” Operations Research, vol. 16, no. 3, pp. 538-558, 1968.

[7] G. Laporte, “The traveling salesman problem: An overview of exact
and approximate algorithms,” European Journal of Operational
Research, vol. 59, no. 2, pp. 231-247, 1992.

[8] O. Abdoun and J. Abouchabaka, “A comparative study of adaptive
crossover operators for genetic algorithms to resolve the traveling
salesman problem,” arXiv preprint arXiv:1203.3097, 2012.

[9] W. M. Hameed and A. B. Kanbar, “A comparative study of crossover
operators for genetic algorithms to solve travelling salesman problem,”
International Journal of Research-Granthaalayah, vol. 5, no. 2, pp. 284-
291, 2017.

[10] O. Abdoun, J. Abouchabaka and C. Tajani, “Analyzing the
performance of mutation operators to solve the travelling salesman
problem,” arXiv preprint arXiv:1203.3099, 2012.

[11] K. Deep and H. Mebrahtu, “Combined mutation operators of genetic
algorithm for the travelling salesman problem,” International Journal
of Combinatorial Optimization Problems and Informatics, vol. 2, no. 3,
pp. 1-23, 2011.

[12] M. F. Tasgetiren and A. E. Smith, “A genetic algorithm for the
orienteering problem,” Proceedings of the 2000 Congress on
Evolutionary Computation. CEC00 (Cat. No. 00TH8512), vol. 2, , pp.
910-915, IEEE, 2000

[13] D. Ščap, M. Hoić and A. Jokić, “Determination of the Pareto frontier
for multiobjective optimization problem,” Transactions of FAMENA,
vol. 37, no. 2, pp. 15-28, 2013.

[14] B. Wilson, D. Cappelleri, T. W. Simpson and M. Frecker, “Efficient
Pareto frontier exploration using surrogate approximations,”
Optimization and Engineering, vol. 2, no. 1, pp. 31-50, 2001.

[15] H. A. Abbass, R. Sarker and C. Newton, “PDE: a Pareto-frontier
differential evolution approach for multi-objective optimization
problems,” Proceedings of the 2001 congress on evolutionary
computation (IEEE Cat. No. 01TH8546), vol. 2, pp. 971-978, IEEE,
2001.

[16] C. A. C. Coello, G. B. Lamont and D. A. Van Veldhuizen,
“Evolutionary algorithms for solving multi-objective problems,” vol.
5, Springer, 2007.

[17] Deb, Kalyanmoy, “Multi-objective optimisation using evolutionary
algorithms: an introduction,” Multi-objective evolutionary
optimisation for product design and manufacturing, Springer, pp. 3-34,
2011.

