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Abstract—To be cost-effective, robot-based undersea mining 

must comply several operational constraints. Among the main 

constraints are the time and energy required to extract the 

mineral from the seabed. It is also important to reduce the wear 

of the joints that connect the ship on the surface with the robot 

crawler that does the mining on the seabed, since this not only 

reduces operating costs, but also lengthens the useful life of these 

parts which increases system security. For this reason, the least 

amount of twisting in these pieces is preferable, so it is advisable 

to reduce the number of turns or changes of direction in the 

trajectory of the robot that extracts the mineral. In this article, 

we present an algorithm to optimize Coverage Path Planning 

using Genetic Algorithm to produce paths with longer segments, 

which can be used in underwater mining and reduce the effects 

the mentioned turning problem. The resulting paths have on 

average 55% less changes of directions in the trajectory than a 

GA with standard cost function. In addition, in tests made by 

placing small obstacles in a random way, 76% of useful paths 

were obtained and up to 59% of useful path when the obstacles 

were grouped into a single larger obstacle. 

Keywords—genetic algorithms, coverage path planning, deep 

sea mining, autonomous systems. 

I. INTRODUCTION 

Crawler robots have the potential of turning sub-sea 
mineral extraction operations into a highly lucrative business. 
Such robots collect minerals at the sea bottom using a number 
of mining tools such as specialised robotic arms or a cutter-
suction dredgers. At great depths, the crawler is usually linked 
to a vessel by power and data wires to ensure its continuous 
operation. As the crawler surveys the mining area, the 
extracted material is pumped up to the vessel through flexible 
pipes. A crawler robot is one of mayor investment for a mining 
company. Therefore, it is imperative that the robot covers all 

mining sites with the least possible energy consumption and 
within its recommended operational parameters. This problem 
is equivalent to the well-known Travelling Salesman Problem 
(TSP). Where the mining area is represented by a regular grid 
and each node is labelled either as mining-place or an obstacle. 
Then, the shortest path across all mining-place nodes is 
computed.  

For efficient undersea mining operations, two additional 
constrains must be satisfied. First, the crawler should visit 
each mining-place node exactly once to reduce energy 
consumption. Second, the crawler should avoid sharp turns to 
reduce the possibilities of mechanical failures or 
disconnection of tethered cables. Reducing the number of 
changes in direction of the crawler also reduces the frequency 
of junctions maintenance and replacement.  

TSP solving approaches can be classified into: exact, 
heuristic, and meta-heuristic methods. Since, TSP is an NP-
hard type problem with complexity O((n − 1)!/2). As the 
number of nodes n increases exact methods tend to converge 
to a solution at a much slower rate than other methods because 
the whole search space must be explored. 

Metaheuristic algorithms although faster do not guarantee 
that the solution will be optimal. Nevertheless, in many 
applications a sub-optimal solution may be good enough. The 
most popular meta-heuristic algorithms used for TSP are: 
Particle Swarm Optimization (PSO)[1], Ant Colony 
Optimization (ACO)[2], Genetic Algorithms (GA)[3], 
Simulated Annealing (SA)[4] and Tabu Search (TS)[5]. A 
survey on methods for solving TSP can be found in [6][7]. 

In this work, we proposed a GA based technique to solve 
the TSP problem under the constrains mentioned before. The 



proposed cost function include terms that account for the 
length and smoothness of the crawler's path. The best 
candidates are used to generate new solutions until a suitable 
one is found. To account for changes in the crawler's 
trajectory, we built rules to detect sharp turns in a path. Our 
approach can be applied to other metaheuristic approaches to 
solve the TSP. 

This paper is organized as follows. Section III explains the  
multi-objective cost function, which include the standard TSP 
function and our algorithm for detecting changes in robot 
trajectory. Then, a genetic operators are selected and tuned for 
optimization. To evaluate the performance of our proposed 
method, obstacles are added to the grid. Experimental results 
are presented in section IV and discussed in section V. 

II. LITERATURE REVIEW 

A Genetic Algorithm is an optimization method that uses 
meta-heuristic techniques based on the evolutionary process 
of species, i.e., it begins with an initial population that evolves 
after going through processes called selection, crossover, and 
mutation. The idea is to use a mechanism capable of 
qualifying individuals and choosing among them the best-
scored ones using probabilistic methods.  

Various types of crossover operators to solve TSP are 
available in [8] and [9]. After recombination, some of the new 
individuals are chosen to be mutated. The authors in [10] and 
[11] present specialized mutation operators to solve TSP. The 
crossover and mutation methods are applied with a certain 
probability of occurrence that is assigned when configuring 
the genetic algorithm. 

To solve it, the coding of the individuals, based on 
permutations of all the nodes that are part of the search space 
is used. This technique exchanges the elements of the search 
space repeatedly to generate new individuals for obtaining a 
solution. 

III. METHODOLOGY 

A. Genetic Operators: Mutation and Crossover 

Local Search Mutation (LSM) is a local search method 
that takes an individual and mutates it to generate diverse 
solutions in the population from this one on. This favour’s the 
exploration of the search space and gets the algorithm out of 
local optimum if it were the case. In this work the three 
mutation methods combined in the LSM technique are flip, 
swap and slide that work as shown in the Fig. 1. 

 

 

Fig. 1.  Mutation operators implemented for LSM process 

 

The Algorithm 1 presents the Order Based Crossover used 
in the solution proposed. Fig. 2 shows graphically the process 
of order-based crossover. 

Algorithm 1. Order Based Crossover 

1. Select a sublist of nodes from parent1. 

2. Copy the sublist in the corresponding positions of the offspring. 

3. From parent2, delete the points in the sublist. 

4. The remaining points in parent2 are inserted into the offspring wherever 
necessary to complete the offspring. 

 

 

Fig. 2.  Order Based Crossover graphically explained 

 

B. Tuning Genetic Algorithm 

 Table I shows the summary of the parameters chosen for 
the GA. The improvement of the parameters was done based 
on the standard TSP mono-objective function which is the 
path length. For the genetic operators, we used the Order 
Based Crossover as stated in [12]. The mutation method used 
was the Local Search Mutation as explained in section III-A. 

TABLE I. PARAMETERS OBTAINED AFTER THE TUNNING 
PROCESS FOR THE GENETIC ALGORITHM 

Parameter Description 

Generations 1000 

Individuals                    100 

Subpopulation                        1 

Generation Gap 4 

Selection   Method Tournament 

Recombination   Method Order Based Crossover 

Mutation   Method Local Search Mutation 

Recombination   Rate 1 

Mutation Rate 0.07 

 

 

C. Multi Objective Function 

The objective function used consists of two parts. The first 
objective presented in equation 1 is the length of the path 
generated by the GA and it is the same as defined in a TSP 
problem with Euclidean distance. The second component of 
the objective function in equation 2 is the number of nodes of 
the path where there is a change of direction in the path.  

Let's define the components of the objective function 
somewhat formally. 

     

    

    



Let consider a path p =  {n1, n2, . . , nn} , where 𝑛𝑖  is a 
point in a Cartesian plane, i.e., 𝑛𝑖 = (𝑥𝑖 , 𝑦𝑖).  

Let define 𝑣k =  (nk+1– nk), ∀𝑘 =  1, … , 𝑛 − 1. 

In the standard TSP the objective function corresponds to 
the Euclidean distance between nodes i and i+1, ∀𝑖 =
 1, … , 𝑛 − 1 which is calculated as follow: 

c1 =  ∑ √(𝑥𝑖 − 𝑥𝑖+1)2 + (𝑦𝑖 − 𝑦𝑖+1)2n−1
i=1  (1) 

 

c2 =  ∑ −𝑠𝑖𝑔𝑛(|
〈𝑣𝑘,𝑣𝑘+1〉

‖𝑣𝑘‖‖𝑣𝑘+1‖
|)n−1

k=1    (2) 

As we are using a multi-objective function with two 
objectives, it is possible to use the Pareto frontier 
method[13][14][15] to divide the space of solutions into two 
areas from which the solutions could be chosen. On the other 
hand, there is the Weighted Sum Method [16][17], which we 
choose because simplifies the process by combining both 
costs into one, thus transforming a multi-objective cost 
function into a mono-objective function as is showed in the 
equation 3. 

ObjF =  A ∗  c1 +  B ∗  c2    (3) 

where A + B = 1 and A and B ϵ(0,1] 

Considering A+B=1, we can eliminate a variable and 
express equation 3 as:  

ObjF =  α ∗  c1 +  (1 − α) ∗  c2  (4) 

D. Experiment Organization 

Two types of experiments were designed to evaluate the 
performance of our algorithm. All experiments were evaluated 
on a regular grid, i.e. a Cartesian arrangement of nodes 
mounted on a two-dimensional plane. The distance between 
two consecutive nodes in the abscissa or ordinate ones is 1 and 

the diagonals between neighbouring nodes is √2 . The α 
parameter is varied from 0.1 to 0.9 with steps of 0.1. Each 
experiment was run 100 times using the parameters showed in 
Table I. 

The first experiment was developed with a map without 
obstacles to evaluate for which values of α the genetic 
algorithm produces the best solutions. The results of the tests 
are shown in Fig. 5 and 6.  

In the second experiment, noise (obstacles) is added to the 
map. Obstacles represent nodes on the map where the 
algorithm must not cross. These obstacles are placed in two 
ways. The first is as randomly distributed obstacles on the map 
simulating a salt and pepper noise effect and the second is by 
randomly placing one or more obstacle clusters made up of 
several nodes. A number of obstacle nodes of up to 5% of the 
map nodes was considered. This is to prove that our algorithm 
continues to work even in the presence of obstacles. The 
results of the tests are shown in Fig. 7. 

IV. RESULTS 

The Fig. 3 shows typical solutions obtained when TSP is 
solved using genetic algorithms. The Fig. 3(a) shows an 
optimal solution when the TSP is solved with the objective 
function by default, that is, it only evaluates the length of the 
path. On the other hand, in the Fig. 3(b) it can be seen an 
optimal solution obtained with our algorithm in which is 
combined the standard objective function plus our objective 

function that detects and counts the changes of direction in the 
trajectory of the path. It can be seen how in both figures the 
generated paths have the same length (53) but in the Fig. 3(b) 
the sections are straighter. In the first case, the path produced 
has 34 nodes where there is a change in the direction of the 
path, while using our algorithm this number is 17 nodes. 

Finally, the Fig. 3(c) shows another possible output of the 
genetic algorithm that we qualify as an unfeasible solution 
since for our mining application having segment crossings in 
a path means being inefficient in the process because the 
crawler would pass through the same point more than once 
picking up the ore. 

 

(a) Typical optimal solution 
using a standard TSP. 

 

(b) Typical optimal solution using 
a TSP with our approach 

 

(c) Unfeasible solution for subsea mining applications 

Fig. 3.  Types of solution for Coverage Path Planning using Genetic 
Algorithm 

 

 

(a) Solution with crossing 
segments 

 

(b) Solution with obstacle space 
violation 

 

(c) Accepted Good Solution 

Fig. 4.  Example of solutions obtained by our GA when obstacles are 
added in the form of clustered nodes 

                     



 In Fig. 4 is shown an example with typical solutions 
produced by the GA when it solves a search space with a 
cluster of obstacles. The blue nodes represent the obstacle 
space. The Fig. 4(a) shows a solution that is discarded even 
though it does not invade the obstacle space because it 
produces a crossing of segments. In the Fig. 4(b) it can see the 
effect of invasion of the obstacle space. In this solution several 
long segments are produced, but instead there is an invasion 
of the obstacle space. The Fig. 4(c) shows a solution that is 
acceptable for our application. This solution has neither 
crossing of segments nor invasion of the obstacle space.        

Since α represents the combination of the two objectives 
in the cost function, it is necessary to evaluate the 
characteristics of the solutions when α changes within the 
proposed interval. In this way, the distance obtained in the 
solutions, the number of nodes where there is a change in the 
direction of the trajectory (# Corners), the processing time and 
the number of generations used by the GA to converge to the 
solutions were evaluated. The Fig. 5 shows a summary of the 
results of the first experiment. 

The Fig. 6 shows the percentage of each type of solution 
generated by the GA based on the parameter α. The red bar 
shows the unfeasible solutions, as defined in Fig. 3(c). The 
yellow bars correspond to solutions that, even having a lack of 
optimal length, present characteristics of very straight sections 
and do not have crosses in their segments. For this reason, it 
has been classified as sub-optimal and could be used in our 
applications. Finally, the green bars correspond to solutions 
that have optimal length and have long stretches in their 
trajectory, such as shown in Fig. 3(b). 

The results of the second experiment are shown in Fig. 7. 
The blue bars correspond to the tests made on a map without 
obstacles. The orange bars shows the results obtained when 
the obstacles are randomly located and scattered within the 
map. Meanwhile, the purple bars show the results when the 
obstacles were grouped in a cluster within the map. This 
picture shows only those solutions that are acceptable for our 
application, and whose interpretation is presented in Fig. 4.  

 

 

Fig. 5.   GA performance in function of α coefficient 

 

 

Fig. 6.   α coefficient correlation with the quality of solutions 

 

 

 

Fig. 7.   Solutions performance analysis in presence of obstacles 

 

V. DISCUSION 

When solving the TSP in a regular grid it is possible to 
obtain several solutions that are optimal. Since TSP evaluates 
the length of the path, the optimal solutions will be those that, 
complying with the TSP rules, give the shortest length to 
travel by the traveler. Thus, in the Fig. 3(a) and 3(b) we see 
two optimal TSP solutions that differ in form. The difference 
between the two is that in the case of the traditional TSP, the 
solutions do not have diagonal sections or intersections of 
segments, but the optimizer does not care about changes in 
trajectory during the journey from the starting point to the 
goal, but only to meet the objective of get as little distance as 
possible. 

On the other hand, the Fig. 3(b) shows an optimal solution 
in which the number of nodes where the path changes its 
trajectory occur has been reduced by half, which can be seen 
visually on longer paths, which it is desired for our underwater 
mining application. 

In experiment 1, we tested different values of α in the 
objective function to determine which are the most useful 
values for our mining application. As you can see in the Fig. 
5, the values of α that give minimum values of distance are α 
≥ 0.6. As it is of interest to our application to reduce the 
number of direction changes in the trajectory at the same time, 
from the graph (#Corners) the number of direction changes in 



the trajectory varies from 17 to 27 nodes on average for the 
interval of 0.6 ≤ α≤ 0.9. Also, in the Fig. 5, for 0.6 ≤α ≤ 0.8 
the GA converges in fewer generations and needs less 
processing time. This processing time is between 180 and 185 
seconds which is a reasonable time for the size of the search 
space with 54 nodes. 

The combination of all this information leads us to choose 
values of α greater than or equal to 0.6 as a starting point for 
the following experiments. Also considering that for greater 
value of α the effect of eliminating changes of direction in the 
path disappears and with it the obtaining of straighter paths, 
therefore we will not consider the value of α = 0.9. Based on 
the Fig. 6, we have for the values of α chosen in a scenario 
without obstacles, 82% feasible solutions are achieved for α = 
0.6, 88% for α = 0.7 and 98% for α = 0.8. 

In the Fig. 7 the results of experiment 2 are shown. Here 
the count of the feasible solutions in the different obstacle 
conditions is summarized. The higher value of α for both types 
of obstacles, produce a greater number of feasible solutions. It 
is also observed that for α = 0.7 and α = 0.8 there is a better 
answer for the case of clustered obstacles. The latter is 
preferable since in real applications the obstacles are more like 
the case of cluster obstacles than to small, isolated obstacles. 

VI. CONCLUSIONS 

In this work, using genetic algorithms to solve a multi-
objective TSP, was possible to generate good quality paths for 
undersea mining applications. For this type of application, it 
is highly desirable, reduce the number of direction changes in 
the robot's trajectory on the seabed, to limit the possible risks 
of damaging or wearing out the connection cable with the ship 
on the surface. 

Using GA or any metaheuristics with the standard cost 
function for TSP, the resulting path in a regular grid can have 
a lot of changes in the direction of its trajectory even if the 
resulting path has an optimal value for the standard cost 
function. We were able to reduce up to 55% on average the 
changes on the path trajectory using our method. 

Also, the developed algorithm to detect changes in the 
trajectory of the path, achieved 59% useful paths in the 
presence to up 5% of obstacles grouped in a cluster and, 76% 
if these obstacles are randomly scattered inside the map, 
showing robustness in our technique. 

Although, our cost function is universal and can be applied 
with any metaheuristic, apply it with GA, limits its evaluation 
to a few hundred nodes in the search space. 

In future works, this technique can be tested and extended 
with other optimizers that allow working with a greater 
number of nodes. 

ACKNOWLEDGMENT 

This research is supported by MarTERA, an ERA-NET 
Cofund scheme of Horizon 2020 European Commission. The 
overall goal of the ERA-NET Cofund MarTERA is to 
strengthen the European Research Area (ERA) in maritime 
and marine technologies, as well as Blue Growth. The project 

has received funding from the European Union’s Horizon 
2020 research and innovation programme under grant 
agreement No. 728053-MarTERA. Also this work was 
supported in part funded by National Secretariat of Higher 
Education, Science, Technology and Innovation of Ecuador 
(SENESCYT). 

REFERENCES 

[1] Shi XH, Liang YC, Lee HP, Lu C, Wang Q, “Particle swarm 
optimization-based algorithms for TSP and generalized TSP,” 
Information processing letters, vol. 103, no. 5, pp. 169-176, 2007.  

[2] Hlaing, Zar Chi Su Su, and May Aye Khine, “Solving Traveling 
Salesman Problem by Using Improved Ant Colony Optimization 
Algorithm,” International Journal of Information and Education 
Technology, vol. 1, no. 5, pp. 404, 2011.  

[3] Yu, Y., Y. Chen, and T. Li, “Improved genetic algorithm for solving 
TSP,” Control and decision, vol. 29, no. 8, pp. 1483-1488. 

[4] Zhan, Shi-hua, Juan Lin, Ze-jun Zhang, and Yi-wen Zhong, “List-
based simulated annealing algorithm for traveling salesman problem,” 
Computational intelligence and neuroscience, vol. 2016. 

[5] Y.-F. Lim, P.-Y. Hong, R. Ramli and R. Khalid, “An improved tabu 
search for solving symmetric traveling salesman problems,” 2011 IEEE 
Colloquium on Humanities, Science and Engineering, pp. 851-854, 
2011. 

[6] M. Bellmore and G. L. Nemhauser, “The traveling salesman problem: 
a survey,” Operations Research, vol. 16, no. 3, pp. 538-558, 1968. 

[7] G. Laporte, “The traveling salesman problem: An overview of exact 
and approximate algorithms,” European Journal of Operational 
Research, vol. 59, no. 2, pp. 231-247, 1992. 

[8] O. Abdoun and J. Abouchabaka, “A comparative study of adaptive 
crossover operators for genetic algorithms to resolve the traveling 
salesman problem,” arXiv preprint arXiv:1203.3097, 2012. 

[9] W. M. Hameed and A. B. Kanbar, “A comparative study of crossover 
operators for genetic algorithms to solve travelling salesman problem,” 
International Journal of Research-Granthaalayah, vol. 5, no. 2, pp. 284-
291, 2017. 

[10] O. Abdoun, J. Abouchabaka and C. Tajani, “Analyzing the 
performance of mutation operators to solve the travelling salesman 
problem,” arXiv preprint arXiv:1203.3099, 2012. 

[11] K. Deep and H. Mebrahtu, “Combined mutation operators of genetic 
algorithm for the travelling salesman problem,” International Journal 
of Combinatorial Optimization Problems and Informatics, vol. 2, no. 3, 
pp. 1-23, 2011. 

[12] M. F. Tasgetiren and A. E. Smith, “A genetic algorithm for the 
orienteering problem,” Proceedings of the 2000 Congress on 
Evolutionary Computation. CEC00 (Cat. No. 00TH8512), vol. 2, , pp. 
910-915, IEEE,  2000 

[13] D. Ščap, M. Hoić and A. Jokić, “Determination of the Pareto frontier 
for multiobjective optimization problem,” Transactions of FAMENA, 
vol. 37, no. 2, pp. 15-28, 2013. 

[14] B. Wilson, D. Cappelleri, T. W. Simpson and M. Frecker, “Efficient 
Pareto frontier exploration using surrogate approximations,” 
Optimization and Engineering, vol. 2, no. 1, pp. 31-50, 2001. 

[15] H. A. Abbass, R. Sarker and C. Newton, “PDE: a Pareto-frontier 
differential evolution approach for multi-objective optimization 
problems,” Proceedings of the 2001 congress on evolutionary 
computation (IEEE Cat. No. 01TH8546), vol. 2, pp. 971-978, IEEE, 
2001. 

[16] C. A. C. Coello, G. B. Lamont and D. A. Van Veldhuizen, 
“Evolutionary algorithms for solving multi-objective problems,” vol. 
5, Springer, 2007. 

[17] Deb, Kalyanmoy, “Multi-objective optimisation using evolutionary 
algorithms: an introduction,” Multi-objective evolutionary 
optimisation for product design and manufacturing, Springer, pp. 3-34, 
2011. 

 

 


