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Abstract: The present work tackles the modeling of the motion dynamics of an object submerged in
a non-Newtonian environment. The mathematical model is developed starting from already known
Newtonian interactions between the submersible and the fluid. The obtained model is therefore
altered through optimization techniques to describe non-Newtonian interactions on the motion of
the vehicle by using real-life data regarding non-Newtonian influences on submerged thrusting. For
the obtained non-Newtonian fractional order process model, a fractional order control approach is
employed to sway the submerged object’s position inside the viscoelastic environment. The presented
modeling and control methodologies are solidified by real-life experimental data used to validate the
veracity of the presented concepts. The robustness of the control strategy is experimentally validated
on both Newtonian and non-Newtonian environments.

Keywords: non-Newtonian dynamics; fractional order modeling and control; targeted drug delivery;
submerged position control

1. Introduction

Non-Newtonian fluid dynamics properties are encountered in multiple fields such
as physics, medicine, biology, and industrial manufacturing. Several steel manufacturing
techniques require the motion of particles inside the non-Newtonian steel framework
stirred through electromagnetic actuation [1]. Another application of significant relevance
is the rising domain of targeted drug delivery. This concept consists of a nanorobot
traveling inside the blood vessels to detect possible problematic areas caused by cholesterol
deposits, atherosclerosis, thrombophlebitis, aneurysm, or blood clots [2,3]. Apart from
problem detection, the robot can also release a treatment substance to treat the specified
area. The benefits brought by the targeted treatment include reduced side effects, faster
action, and less substance intoxicating the body when compared to classical medicine
treatment options [4,5].

The carrier object should maintain a fixed position inside the venous habitat until the
full substance administration is performed. This paper provides the tuning of a fractional
order controller with the purpose of navigating and stationing at the desired position in a
non-Newtonian blood environment, which can be associated with blood.

The focus of the present study is the development and experimental validation of a
fractional order model that captures the interaction between a non-Newtonian environment
and a submerged object. To begin with, an integer order model is formulated for objects
transiting through Newtonian fluids, using available information regarding underwater
propulsion on submarines in maritime environments. The initial integer order navigation
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model is a simplified model, capturing only essential aspects of Newtonian fluid submer-
sion. Furthermore, the model is calibrated on experimental data acquired from a custom
built platform that mimics non-Newtonian conditions inside the cardiovascular framework,
obtaining a generalized fractional order model. The obtained fractional order model for
non-Newtonian submersion is based on fractional calculus, a powerful tool used to accu-
rately express memory based material dynamics and biological phenomena. The purpose
of the fractional order representation is to encompass complex motion dynamics within a
transfer function that has a reduced number of parameters but an increased complexity.
Hence, the initial model is roughly obtained and serves as the starting point in the search
for a more complex and accurate fractional order model, which ultimately will capture high
order characteristics and various physical aspects that have been neglected throughout
the development of the initial navigation model. The available specialized literature is
abundant on the suitability of fractional calculus to properly define physical phenomena
such as the memory based viscoelasticity and shear stress found in non-Newtonian singu-
larities [6–8]. In addition, fractional calculus is a powerful tool in biomedical studies such
as epidemiological modeling of different infections [9–12].

The novelty of this paper is related to the modeling and control of non-Newtonian
interactions from an experimental perspective. Modeling non-Newtonian system dynamics
has been realized using complex Navier–Stokes equations in [13]. The aim of the current
study is to exclude complex fractional order differential equations for system identification
by employing an experimental approach. The process modeling is based on generalizing
already available Newtonian interaction models to non-Newtonian motion models using
experimental data acquired from a custom built platform. The obtained model is success-
fully validated in the non-Newtonian setting, and a fractional order motion controller is
developed. Moreover, the non-Newtonian control strategy is validated experimentally,
proving the suitability of fractional calculus for both modeling and control purposes. Fi-
nally, the versatility of the experimental platform through environmental changes allows
a robustness analysis of the controller in various types of liquids, both Newtonian and
non-Newtonian, representing another novel aspect of the study.

The relevance of the study is widespread through a multitude of research fields
connected to non-Newtonian interactions such as pharmaceutical process control, biomed-
ical fields, manufacturing of viscous substances, and non-Newtonian fluid navigation,
etc. [1,4,6,14–18].

The paper is structured as follows. Section 2 describes the custom built experimental
platform that simulates non-Newtonian vascular conditions as well as the autonomous
submerged vehicle capable of cruising thorough the environment. Section 3 presents mo-
tion dynamics modeling of a submerged object starting from Newtonian dynamics which
are extended towards the generalized non-Newtonian dynamics framework. Section 4
provides information regarding the chosen tuning procedure for the fractional order PD
controller as well as the motivation behind choosing the design specifications. The pro-
posed modeling and control strategies are customized for the experimental setup presented
in Section 2 by developing a dedicated model for the motion of the submerged vehicle in
the venous habitat and controlling its position throughout the environment in Section 5.
This section also features experimental validation of the proposed methodology, solidifying
the presented concepts. Section 6 concludes the study by briefly emphasizing the relevance
of the obtained results in the non-Newtonian field.

2. Experimental Non-Newtonian Environment Framework

Fluids such as ice-water, petrol-water, liquid detergents, etc., can be introduced in
a custom built experimental setup to test the relevance of several modeling and control
approaches in non-Newtonian frameworks. The versatile setup encapsulates the dynamics
of a moving object, suspended in a non-Newtonian fluid, with data measurements and
control regarding the object’s motion dynamics.
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For this particular study, the experimental unit has been configured to mimic the
cardiovascular system. The challenges encountered by a substance carrier device inside the
cardiovascular environment with the purpose of targeted drug delivery are recreated inside
the custom built platform. The setup can be divided into two main parts: the cardiovascular
resemblance exhibiting characteristics similar to human blood, including the blood flow
profile as well as non-Newtonian traits, and the carrier device capable of transiting and
analyzing the impedance of the non-Newtonian environment. The framework is used for
calibrating and validating a generalized model for sunken advancement of the robot in
non-Newtonian conditions and for testing different control strategies for position control
of the robot.

2.1. Non-Newtonian Cardiovascular Homology

The vascular homology is illustrated in Figure 1. The circuit is a sealed environment
that houses the non-Newtonian fluid which is recirculated using a variable flow pump,
SPXFLOW BL70-EB. A periodic blood flow hemodynamic profile is implemented based
on the research presented in [19]. The blood flow characteristic is programmed using a
real-time myRIO controller and LabVIEW programming. Two small reservoirs are used for
robot insertion and extraction and also for completely sealing the circuit. The reservoirs are
connected by two pipes of different diameters resembling an artery and a vein, respectively.
Additionally, passing between the two venous items is realized, and the robot is capable of
navigating in both directions, mimicking the transition between an artery and a vein, and
vice versa.

Figure 1. Experimental setup that resembles the cardiovascular system.

Fabric conditioner with similar blood characteristics has been used inside the venous
system with viscosity of µ = 0.085 × 10−5 kg/ms, density ρ = 1.03/100 kg/m3, and
pulsation frequency ω = 2π7/6.

During real-life blood flow scenarios, the vessels slightly expand and contract [20,21].
The experimental framework aims to also encapsulate the vessel expansion and contraction
properties. Hence, the two tubes representing the vein and artery are made of polyurethane
with steel insertions. During experiments, the metal insertions obtain a certain flexibility of
the pipe’s wall. The insertion density ρcart = 1.14× 103 kg/m3 is the same for both tubes.

The properties of the larger tube are diameter D = 160/1000 m, wall thickness
h = 0.9/1000 m, and a ratio between soft and hard metal insertions of κ = 0.9, while for
the small tube, D = 102/1000 m, h = 0.9/1000 m, and κ = 0.1.

2.2. Autonomous Submerged Vehicle

A robot capable of transiting the cardiovascular resemblance unit has been designed,
built, and programmed to achieve a single purpose: efficient targeted drug delivery at a
given area in need of treatment.

The design of the submersible is inspired by autonomous underwater vehicles, re-
duced size submarines capable of autonomously traveling and recording underwater
data [22]. The aquadynamic carcass has been 3D printed such that it has a symmetrical
ellipsoidal shape with length of 0.09 m and width of 0.03 m (Figure 2).
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Figure 2. Custom built autonomous submersible robot.

Inside the hull, there is a hollow for the embedded electronics that ensure proper
functionality. The main brain of the robot consists of the ESP8266 module, a WiFi module
and microcontroller used to manage individual modules such as: inertial measurement
unit, impedance measurement unit, DC motor command unit, and WiFi communication
logic (Figure 3).

Figure 3. Incorporated electronics inside the submersible.

For the intertial measurement unit, the BNO055 9 degrees of freedom sensor has
been chosen to measure the real-life acceleration of the body. The acceleration data are
processed by the robot’s microcontroller and transformed into velocity and position with a
sampling frequency of 100 Hz. A solution of the well-studied problem of accumulating
measurement errors that cause a slow drift to infinity when transforming acceleration data
to position measurement is presented in [23]. The positioning algorithms are implemented
inside the submersible, and the data are processed locally. This is done with the purpose of
providing autonomous feedback for position control without the need of an external server.
Positioning data are provided to the server only for analysis purposes. Multiple tests of
different time lengths show experimentally that the algorithms presented in [23] provide
accurate positioning measurements.

The submersible is equipped with a 6 mm DC motor attached to a 40 mm Graupner
three-blade propeller. The DC motor is rotated by giving a voltage between 0 and 5 V
through the pulse width modulation (PWM) technique.

The WiFi module is used for communication with an external server used for logging
and analyzing data. A secure communication through the TCP/IP protocol is used to send
the computed position and impedance information of the environment. The robot can
operate in manual, automatic or emergency modes. For the manual operating mode, the
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server sends the command value (PWM duty ratio) for the DC motor, and the robot cruises
with a constant propeller rotation. In auto mode, the server sends a desired position, and
the robot navigates towards it, computing the necessary PWM duty ratio following a control
law. The emergency procedure overrides the aforementioned functioning possibilities in
order to suddenly stop the motion of the submersible.

The submersible is equipped with a single propeller and has no side propellers for
steering since the circulatory system does not present any bending. This is a prototype
still in its infancy, and its main purpose is to validate non-Newtonian interactions from
modeling and control points of view. The experimental platform was built to encompass
only essential aspects in order to successfully study fractional order and control in non-
Newtonian fluids.

Even if bending has not been taken into consideration, the tube walls act as a guide for
the submersible’s motion, allowing it to move between the two tubes. Future developments
include altering the experimental platform to include bending as well as extensions of the
present algorithm.

More information regarding the software implementation used for the submersible is
detailed in Appendix A.

2.3. Environmental Impedance Variation Detection

The authors of [24,25] use electrical impedance measurement to analyze different
properties regarding blood chemical concentration with biomedical purposes. An environ-
mental analysis can be performed in the non-Newtonian fluid with the help of a sensor
that measures the liquid’s impedance while the robot is transiting the veins. The actual
values of impedance are not of significant relevance, but the emphasis is on detecting
environmental changes that signal a problematic area in need of localized treatment. The
data offered by the sensor setup are logged together with the position information using
the same sampling time of 10 ms.

The chosen sensor to fulfill the task is the Dropsens DS550 screen printed electrode.
The sensor has been designed for clinical analysis regarding saliva glucose concentration.
The device is suitable for chemical analysis performed on microvolumetric samples, as well
as full liquid submersion. The sensor’s reduced dimensions (3.4 cm × 1.0 cm ×0.005 cm)
allow the attachment to the surface of the robot. The sensor data are read and analyzed by
the same microcontroller, ESP8266.

Experimental tests have been performed to detect impedance differences among the
liquid. In order to simulate these differences, a mixture of glucose and the non-Newtonian
fluid has been inserted in certain points of the venous system. Several experimental
measurements are presented in Appendix B.

The applicability in the biomedical domain of impedance sensing can be useful in any
targeted treatment, depending on the substance that is being transported by the robot, e.g.,
AHRO-001 for cholesterol deposits [26].

2.4. Submersible Miniaturization Possibilities

The purpose of this study is to provide a framework to analyze the interaction between
the moving object and the non-Newtonian fluid. The concepts are proven at a large
scale, and the current dimension of the submersible is far from reaching targeted drug
delivery sizing. Non-Newtonian fluid dynamics analysis is an emerging topic, one of the
novelties of this study being the accessible experimental setup which is affordable and easy
to reproduce.

The current submersible sizing is justified by the desire to build the setup by entirely
using widely available components at a reasonable price. In addition, the microcontroller
has been chosen to be easily programmed using the Arduino IDE, a popular programming
language based on C, a lighter alternative to embedded C programming that is studied
mostly by students with electrical oriented degrees. The motivation behind this choice is
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the ease of reproduction for research and education. An analysis regarding the versatility
of the setup for educational purposes is presented in [27].

The main factors that influence the increased size of the submersible are the battery,
the propeller, and the impedance sensor. The 40 mm propeller has been chosen such that
the submersible is able to navigate counter currents, which is not needed for the current
purpose of the setup. The DC motor has a reduction box in order to be able to spin the large
propeller, which can be eliminated when the propeller size is reduced. Another aspect that
adds to the overall sizing is the 3D printed hull featuring sturdy walls with a thickness of
approximately 4 mm. The increased wall thickness ensures that the two halves of the case
can be dismounted and re-glued without damage, for easy access to the components during
the development and testing phase of the submersible. Since the submersible has reached
its final version both from design and programming perspectives, the hull’s thickness can
be drastically reduced.

Reducing the size of the submersible to 15 mm in length and 8 mm in width can be
realized by replacing the current ESP8266 microcontroller with a dedicated printed circuit
board (PCB), changing the CR123A battery with a smaller sized 3.3 V alternative, elimi-
nating the motor’s reduction box, and reducing the propeller’s diameter from 40 mm to
8 mm. The battery will always be a critical element inside the robot because it can produce
damage through heating. An alternative to the battery is the usage of a supercapacitor [28].
Wi-Fi can be replaced by Bluetooth low energy (BLE) for energy efficiency, and the 3D
printed hull will be realized through Teflon injection [29] or milling. The advantage of this
approach is that the design of the submersible is similar to the current solution. However,
the drawback is that the cost for a prototype is increased, as well as the need to order
custom made PCBs, instead of simply buying the components.

Further dimension reduction can be performed in the 1–2 mm scale. In this scenario,
the entire propulsion system must be completely redesigned. The motor and the propeller
should be replaced with piezoelectric materials (the most popular being Lead Zirconate
Titanate) or any other material that produces vibration through deformation. The sub-
mersible’s movement concept is based on propellant-less thrusting of the object using
vibration [30,31]. Apart from complete redesign of the propeller, the battery is also replaced
by an energy harvesting circuit of reduced size. Multiple options are available based on
temperature, vibration, chemicals, etc., such as those detailed in [32]. Furthermore, the
impedance sensor is replaced by printed electro-mechanical cells of nanometer dimen-
sions [33]. In this scenario, the submersible’s dimension fits the targeted drug delivery
paradigm. However, producing a single prototype is difficult with costs spanning in
thousands of euros, making the platform scarcely accessible for educational purposes.

A feasibility study is performed on the current non-Newtonian platform in [13],
proving the platform’s scalability. The discovered non-Newtonian properties hold at larger
or smaller scales. Hence, the current non-Newtonian interactions modeled throughout
this paper are also valid if the prototype is scaled differently than the one presented in the
current study.

3. Motion Dynamics Modeling for Submerged Objects in a
Non-Newtonian Environment

Viscoelasticity is one of the main properties of materials exhibiting non-Newtonian
behavior that require fractional order equations to properly represent the dynamics of
submerged non-Newtonian motion [6]. Equations such as the Mittag–Leffler function or
Navier–Stokes equations can be found in the literature to handle the fractional dynamics of
viscoelastic flow of blood, polymers, or other non-Newtonian materials [34–36]. Hitherto,
there is no relevant work found that handles the problem of positioning in non-Newtonian
environments based on a solid experimental background. The improvement the present
paper brings to the field of non-Newtonian motion dynamics is the experimental approach
it offers both through the built experimental platform and through the process’s fractional
order identification experimental approach. In addition, apart from developing the non-
Newtonian navigation model, the experimental approach also captures particularities of
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the custom built setup that cannot be included in the previously mentioned analytical
models, such as the connection between the two tubes of different diameters, the expansion
and contraction of the flexible tubes acting as blood vessels, and the effect of the pump.

Obtaining an accurate model for the submersible’s non-Newtonian motion dynamics
has been realized using a two-step approach. Firstly, we develop a general navigation
model for the dynamics of the robot based on submerged motion equations widely available
for Newtonian habitats [37–39], leading to an integer order process model. Consequently,
we include the non-Newtonian habitat singularities by searching for a fractional order
motion dynamics model using optimization techniques to minimize the mean squared
error between the experimental step response and a candidate fractional order model.
The integer order model obtained in the first step is the pivot point for the minimization
procedure, guaranteeing that the obtained fractional order model has physical relevance in
the submerged viscoelastic environment.

3.1. Developing a General Navigation Model for Submerged Objects in a Newtonian Setting

Figure 4 shows a free body diagram of a fully submerged robot with surge motions
along the X axis. The center of gravity is considered in the centroid of volume, the object’s
geometric center. The thrust force is generated by the propulsion unit that pushes the
submersible forward, whereas the drag force acts opposite to the relative motion of the
body with respect to the moving fluid. The weight is the downward force acting upon
the robot created by the gravitational acceleration and the object’s mass. According to
Archimede’s principle, the buoyancy force is equal to the weight of the fluid displaced by
the moving body.

Figure 4. Free body diagram of a submersible.

Navigation equations related to large scale submarines operating in Newtonian fluids
are developed by [40,41] based on nonlinear equations. A single-propeller submarine’s
navigation model is developed starting from the following equation:

(MRB + MA)ν̇ + (CRB + CA)ν + (Dl + Dn)ν = τ, (1)

representing the general navigation model for large scale submarines [42], where MRB,
MA, CRB, CA, Dl , and Dn are matrices representing the inertia of the rigid body, added
mass, rigid centripetal and Coriolis forces, hydrodynamic centripetal and Coriolis force,
linear damping, and nonlinear damping. The matrices are formulated for a three degree of
freedom submarine: surge (u)—motion on the X axis, sway (y)—motion on the Y axis, and
heave—motion on the Z axis.
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MRB =

m 0 0
0 m 0
0 0 m

 (2)

MA = −

Xu̇ 0 0
0 Yv̇ 0
0 0 Zẇ

 (3)

CRB =

 0 0 −mv
0 0 mu

mv −mu 0

 (4)

CA =

 0 0 Yv̇v
0 0 −Xu̇u
−Yv̇v Xu̇u 0

 (5)

Dl = −

Xu 0 0
0 Yv 0
0 0 Zw

 (6)

Dn = −

X|u|u|u| 0 0
0 Y|v|v|v| 0
0 0 Z|w|w|w|

 (7)

The matrices describing the navigation model from (1) depend on the velocities u—
surge, v—sway, and w—heave. (X, Y, Z) denote the forces decomposed in the body’s
reference frame. Xu, Xv, Xw, Yx, Yv, Yw, Zu, Zv, andZw represent the forces decomposed on
the three axes of the reference plane.

The propeller’s torque and thrust are expressed through τ, while the submarine’s
velocity vector is given by ν.

The velocity vector can be written as a dependence of velocities on the X axis u, Y axis
v, and Z axis r as expressed by

ν = [u v r]T . (8)

The emphasis for the navigation model is on the X axis while ignoring the other two
axes due to the design characteristics of the constructed experimental platform in the
initial analytical development. However, for the experimental calibration of data, all forces,
breaking effects, and the influence of the non-Newtonian fluid are taken into consideration
to develop the fractional order data. The integer order model is only a starting point for
the search of a fractional order model that encapsulates all the dynamics.

Making the velocity equation on the X axis linear around a working point denoted by
u0 for the X axis gives the linear velocity equation

ν = ν0 + ∆ν = [u0 + ∆u 0 0]T . (9)

Replacing the linear velocity around a working point u0 of a submarine with mass
m gives

∆Th = [−2u0X|u|u − Xu 0 0]∆ν + [m− Xu̇ 0 0]∆ν̇, (10)

leading to the transfer function connecting the thrust generated by the propeller and
submarine’s velocity

H(s) =
∆U(s)
∆Th(s)

=
1

(m− Xu̇)s− 2u0X|u|u − Xu
, (11)

with Xu̇ (kg/m) representing the surge added mass coefficient along the X axis

Xu̇ =
−4βρπ

3
(

d
2
)2, (12)
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the force component decomposed in the body’s frame Xu (kg/s)

Xu = −ρVA f Cd (13)

and the surge drag coefficient X|u|u (kg s) generated by the robot’s body

X|u|u =
1
2

ρCd A f . (14)

The density of the operating fluid is denoted by ρ (kg/m3), while the Newtonian
liquid’s flow velocity vectorial magnitude is represented by V (m/s). The submarine’s
hull shape influences the motion through the frontal area A f (m2) and through β, an
empirical parameter dependent upon the ellipsoidal properties of the shape. The motion is
influenced also by propeller characteristics such as d (m) representing the diameter and the
experimentally determined drag coefficient Cd.

A single propeller placed in the center of the X axis, at the rear of the submarine,
thrusts the vehicle forward with the following force Th(N) [43]:

Th = CtρA(ωr)2, (15)

where ω is the propeller’s angular velocity (rad/s), r is the radius (m), and

A = πd2/4. (16)

The propeller’s angular velocity, ω, is influenced by the angular velocity of the motor
acting upon it, which is determined by the voltage feeding the motor. A simple relation
between the motor’s voltage and the propeller’s angular velocity can be written in the
shape of a first order transfer function [44]

Hmotor(s) =
km

Tms + 1
, (17)

with km and Tm being the process’s gain and time constant, respectively.
An analytic linear Newtonian navigation model of a submerged object on the X axis is

obtained as an integer order transfer function connecting the input voltage applied on the
motor and the submarine’s velocity.

HIO(s) =
kmCtρAr2

(Tms + 1)[(m− Xu̇)s− 2u0X|u|u − Xu]
. (18)

The condensed integer order navigation model can be written as

HIO−Velocity(s) =
k

a1s2 + a2s + a3
. (19)

3.2. Newtonian Model Calibration towards Non-Newtonian Feature Mitigation

The previous analytic model in the form of an integer order transfer function is
relevant to characterize the motion of a submerged object in Newtonian circumstances. For
non-Newtonian operating conditions, the condensed model presented in (19) should be
extended in the generalized domain of fractional calculus in the following manner:

HFO−Velocity(s) =
kp

b1sα + b2sβ + b3
, (20)

where kp is the proportional gain, b1, b2, b3 are polynomial coefficients, and α, β denote
fractional orders of differentiation, able to capture local material properties [8].

In order to determine the relevant fractional order model for the forward thrusting
dynamics, the integer order model is calibrated on experimental step response data regis-
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tered in the non-Newtonian framework. For the fractional order identification purposes, an
input voltage is applied to the motor advancing the propeller, and the velocity is measured.
A minimization criterion in the form of a cost function denoted by J is chosen to optimize
the mean squared error between the data registered during the experiment and possible
candidate models for the fractional order transfer function

J = min
∫ ∞

0
|xm(t)− x(t)|dx. (21)

The fractional order parameters are optimized such that the difference between the
experimental measurement at time t, denoted by xm(t), and the response of the system to
be identified, x(t), is minimized.

As in any optimization algorithm, the pivot point from which the search is started is
of significant relevance to the solution reached [45–47]. The chosen starting point to search
for the solution is the determined Newtonian motion model described in the previous
subsection. The initial values are given such that kp = k, b1 = a1, b2 = a2, and b3 = a3 and
for the fractional orders α = 2 and β = 1. Constraints are imposed for the search interval,
parameter values, and the fractional orders tolerance in order to reduce computation time
and to obtain a model with physical relevance. For reducing local minima occurrences,
it is suggested to constrain the fractional orders in the maximal ranges of α ∈ (1, 2) and
β ∈ (0, 1) intervals. The parameters kp, b1, b2, and b3 must be > 0, such that the model has
physical relevance. The optimization can be performed using MATLAB’s optimization
toolbox with the fmincon function. Different fmincon algorithms such as optim-set or trust-
region-reflectiv should be tested on the same minimization problem in order to asses if the
found solution is stuck in a local minima problem.

The velocity model of a vehicle transiting a Newtonian environment has been obtained
in (19) using analytical equations described in Section 3.1 as a second order transfer function.
The velocity transfer function is further generalized in (20), where the fixed orders of s,
s2 and s1, have been generalized to arbitrary orders denoted by α and β to include the
complex dynamics of non-Newtonian submersion in the process model. The obtained
model subsequent to the optimization procedure represents the motion dynamics of an
object in a non-Newtonian habitat from the velocity point of view. In order to obtain the
positioning dynamics, an integrator is added to the fractional order velocity from (20):

HFO−Position(s) =
kp

s(b1sα + b2sβ + b3)
. (22)

4. Motion Controller Development

Automatic control challenges for positioning processes consist of developing an ef-
ficient control strategy that provides zero steady state error, reduced settling time, fast
disturbance rejection, and robustness. The fractional order model exhibiting the motion
characteristics of submerged non-Newtonian interaction suggests the usage of fractional
order control approaches, well known for offering more degrees of freedom and increased
stability, while also satisfying a bigger range of design specifications than classical order
controllers [48–52].

For the submersible’s positioning control challenge, a fractional order proportional
derivative (PD) controller is proposed with the following equation:

HFO−PD = kp(1 + kdsµ), (23)

where kp is the proportional gain, kd is the derivative gain, and µ is the fractional order of
differentiation. The values of µ are limited to the interval (0,1). For the particularity of µ = 1,
the controller denotes the classical PD controller. The controller tuning is complete when
the three design parameters, kp, kd, and µ, are determined. The proposed fractional order
PD controller is suitable to control the position of the submersible in the non-Newtonian
fluid, without needing the integral effect, since the 1/s is already present in the process
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model from (22). Fractional order controller tuning can be realized through a manifold of
tuning procedures such as the methods described by [48] or [50]. The chosen strategy is
based on imposing constraints related to the frequency response of the fractional order
positioning model, dependent on the desired process bandwidth.

A stable closed loop system with the FOPD controller and reduced settling time are
ensured by two design constraints targeting the gain crossover frequency, denoted by ωgc,
and the open loop phase margin, φm:

|HFO−PD(jωgc)HFO−Position(jωgc)| = 1, (24)

∠HFO−PD(jωgc) +∠HFO−Position(jωgc) = −π + ϕm. (25)

The third frequency domain design specification tackles the individuality of every
real-life cardiovascular environment, making robustness an essential feature of the obtained
FOPD closed loop system. The uniqueness of every cardiovascular environment consists
of the capacity of blood vessels to expand and contract, the different viscosity of the non-
Newtonian fluid, or divergent blood flow profiles caused by certain diseases or premature
aging [53,54]. A possible real-life implementation of the concept presented throughout this
work requires the customization of the positioning controller to every individual’s needs
in order to operate efficiently, requiring a robustness characteristic attached to the closed
loop system such that the submersible’s behavior in operating conditions different than the
nominal tuning conditions is similar.

The robustness attribute is mathematically described by a constant value for the phase
margin in a reduced interval bounding the gain crossover frequency. By imposing the
derivative of the phase as being equal to 0 near the gain crossover frequency, a constant
phase margin is obtained, ensuring robust performance to changes in the environmental
influences [55]:

d(∠HFO−PD(jω)HFO−Position(jω))

dω
= 0|ω=ωgc . (26)

Equations (24)–(26) form a system of nonlinear equations with three unknown pa-
rameters, kp, kd, and µ. Solving the system requires imposing the gain crossover fre-
quency and the desired phase margin of the open loop system in order to determine the
FOPD controller’s parameters. Guidelines regarding the choice of the two frequency do-
main properties are provided by [56], such that the obtained controller’s parameters have
physical relevance.

The null steady state error mentioned as a design specification for the fractional
order PD controller is usually assured by the integrator effect provided in the controller’s
structure. However, a pure integrator effect is present in the fractional order position (22),
eliminating the need for integration inside the controller, while also satisfying the zero
steady state error.

Fractional order controller implementation is usually done by approximations using
finite-dimensional integer-order transfer functions. Several approximation methods are
available both in the continuous and discrete domains [57,58]. However, it is recommended
to use approximation methods that map the fractional controller directly to the discrete
domain such as the method presented in [59] in order to reduce approximation errors.

5. Experimental Validation of the Proposed Methodology

Process modeling and position control have been applied to the laboratory setup
using the previously described methodology. An integer order model has been obtained
analytically for the custom built robot to describe the velocity profile in a Newtonian
environment. Furthermore, the velocity model has been extended in the non-Newtonian
operating framework through fractional order operators, therefore obtaining the non-
Newtonian position evolution. For the determined position transfer function, a fractional
order PD controller is designed to ensure accurate fulfillment of position requirements for
the submersible using the tuning procedure presented in Section 4.
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5.1. Dedicated Model for the Autonomous Submersible’s Motion in the Cardiovascular Replica

The Newtonian navigation model has been developed for underwater motion by
taking into consideration propeller characteristics and the submersible’s shape and weight
as well as the hydrodynamic properties of the liquid in which it is submerged. The
parameters used for the integer order model computation are detailed in Table 1. It is
important to emphasize that the parameters were determined for the experimental setup
presented in Section 2.

Table 1. Analytic Newtonian motion design parameters.

Parameter Value

Ct 0.3

Cd 0.6

d 0.04 m

r 0.02 m

A 0.0013 m2

ρ 1060 kg/m3

A f 0.031 m2

β 0.2473

V 0.1 m/s

m 0.1 kg

u0 1 m/s

The parameters from Table 1 are discussed in detail in [44]. The thrust and drag
coefficients, Ct and Cd, are specific to the chosen Graupner three-blade propeller and have
been experimentally determined by the manufacturer. Other propeller specific parameters
are the diameter and radius, denoted by d and r, respectively, and the rotor blade area, A.
These parameters are also officially provided by the manufacturer.

The fluid density, ρ, is the density of the non-Newtonian liquid flowing through the
pipes (the liquid is chosen such that it has similar density to human blood).

Parameters A f , β are connected to the shape of the hull. A f represents the frontal area,
whereas β is computed based on the ellipsoidal shape of the frontal area as shown in [60,61].
V is the volume of the submersible, while m represents the weight of the robot. An
operating point is given through u0, representing a desired operating velocity. The velocity
value is chosen based on experimental data. The motor’s transfer function from (17) has
been determined experimentally by submersing the propeller in the non-Newtonian fluid.
PWM inputs have been applied to the motor, and the angular velocity of the propeller inside
the motor has been measured. The motor transfer function is experimentally obtained
using standard first order identification procedures for step changes of the PWM input:

Hmotor(s) =
700

0.022s + 1
. (27)

Replacing the parameters from Table 1 and (27) in (18) gives the following velocity
transfer function:

HIO−Velocity(s) =
232

s2 + 60.13s + 667.1
(28)

which connects the applied PWM on the motor to the submersible’s velocity. Note that the
positioning transfer function is obtained by adding a 1/s integrator to (28).

For fractional order extension of the obtained integer order model, a step input of the
PWM duty ratio of 0.3 is applied to the motor rotating the propeller, and the velocity and
position profiles are registered. The measured positioning values at times t represent xm(t)
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in the minimization function from (21). The initial point for the optimization procedure is
based on the analytically determined velocity transfer function given by (28). The initial
parameters from (20) are chosen: kp = 232, b1 = 1, b2 = 60.13, b3 = 667.1, α = 2, and β = 1.
The optimization is performed using MATLAB’s Optimization Toolbox and the ’active-set’
algorithm. The search region for the fractional orders is limited, such that α ∈ (1, 2) and
β ∈ (0, 1) with the initial velocity transfer function from (28), to which an integrator is
added for positioning.

The obtained fractional order for the non-Newtonian positioning of the custom built
laboratory setup is expressed as

HFO−Position =
0.1

s(0.005682s1.7263 + 0.11031s0.8682 + 1)
. (29)

Note that the fractional differentiation orders are 1.7263 and 0.8682, satisfying the
imposed boundary interval. The obtained model is validated on experimental positioning
data. Figure 5 presents the positioning FO model compared to experimental position mea-
surements for the 0.3 duty ratio step input. The mean standard deviation of the residuals
error between the experimental data and the model has been obtained as 0.00116, suggest-
ing that the obtained fractional order model captures the dynamics of the submersible
in the non-Newtonian fluid. The obtained fractional order models provide an accurate
description of the motion dynamics in the viscoelastic environment, as can be deduced
from the experimental model validation.
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Figure 5. Position experimental data compared to the identified positioning model for the non-
Newtonian environment.

5.2. Controlling the Vehicle’s Position

The vehicle’s position control is realized using the FOPD, whose tuning procedure
has been previously presented. The controller parameters are determined by imposing the
gain crossover frequency, ωgc = 65 rad/s, and the open loop phase margin, φm = 72 deg.
Equations (24)–(26) form a system of three nonlinear transcendental equations. Solving the
system of equations gives the three parameters needed for the FOPD controller. Several
solving strategies can be successfully employed such as optimization techniques using
MATLAB System Optimization Toolbox or graphical approaches. The former has been
chosen for this particular task, using a graphical approach to determine the fractional order
of differentiation, µ. Furthermore, µ is replaced in the magnitude and phase equations,
easily determining kp and kd. Finally, the obtained controller parameters are verified
to respect the existence conditions from [56]. Otherwise, the phase margin and gain
crossover frequencies should be modified and the tuning process repeated. The obtained
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fractional order controller for the specifications, considering the robustness performance, is
denoted by

HFO−PD = 65.0028(1 + 0.0305s0.6524). (30)

Note the obtained fractional order of 0.6524 for the differentiating controller effect.
The Bode diagram from Figure 6 shows that the obtained phase margin and gain crossover
frequency are similar to those imposed in the tuning procedure.

Figure 6. Bode diagram of the open loop system with the fractional order PD controller.

For physical implementation, the controller from (30) has been mapped to the discrete-
time domain using the method provided by [59]. The discretization method represents a
direct mapper between the fractional order transfer function and its discrete time represen-
tation. The complexity of the resulting discrete time model has been chosen to have order
5, validated by comparing the frequency responses of the initial continuous time model
to its discrete time representation. The control law has been implemented as a recurrence
relation inside the submersible using the ESP8266 microcontroller. The discrete sampling
frequency is 100 Hz, the same as that used for the measurements. Several experiments have
been performed by sending a desired position to the submersible over WiFi and analyzing
the closed loop position profile. The experimental test from Figure 7 has been performed
by sending a reference position of 0.1 m. At moment t = 20 s, a disturbance of −0.05 m
is programmatically given in order to validate the disturbance rejection capabilities. As
can be seen, the submersible successfully reached the desired position, and the position
disturbance is rejected without the presence of overshoot.
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Figure 7. Fractional order PD controller experimental validation in the non-Newtonian environment.

Experimental robustness tests have been performed by replacing the non-Newtonian
liquid inside the cardiovascular setup with tap water. The same desired input is given
to the submersible in the two operating environments, Newtonian and non-Newtonian,
and the position profile for both cases is presented in Figure 8. It can be observed that
the settling time for the Non-Newtonian case is 5 s faster than the tap water experiment.
However, the controller proves to be robust to high environmental variations, such as
the nature of the fluid, proving robustness to more than just the process’s proportional
gain changes.

Time (seconds)
0 5 10 15 20 25

P
o

s
it
io

n
 (

m
)

0

0.02

0.04

0.06

0.08

0.1
Newtonian environment
Non-Newtonian environment

Time (seconds)
0 5 10 15 20 25

C
o

m
m

a
n

d
 s

ig
n

a
l 
(P

W
M

 d
u

ty
 r

a
ti
o

)

0

20

40

60

80
Newtonian environment
Non-Newtonian environment

Figure 8. Fractional order PD controller experimental robustness validation in Newtonian and
non-Newtonian operating conditions.
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Disturbance rejection capabilities are also analyzed in the Newtonian framework
in Figure 9. A software disturbance is also introduced at moment t = 20 s, which is
successfully rejected.
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Figure 9. Fractional order PD controller experimental validation in a Newtonian environment.

The experimental tests provided in this section demonstrate that the chosen fractional
order model calibrated based on analytically derived equations is accurate enough to
describe the dynamics of a small scale submersible in non-Newtonian fluids.

The control strategy is designed under non-Newtonian operating conditions. Since
the controllers have been tuned using the isodamping frequency domain specification,
they are robust to uncertainties. Hence, the controllers also operate in other environ-
ments such as Newtonian fluids, as has been shown by the experimental data. The only
limitations connected to the control strategy arise from the physical limitations of the
submerged vehicle.

In terms of closed loop results, the experimental results clearly prove the efficiency
and robustness of the proposed fractional order controller for accurate positioning of the
submersible in non-Newtonian fluids.

6. Conclusions

The custom built experimental unit has similar non-Newtonian characteristics as the
blood flow non-Newtonian process. The platform offers immense possibilities to experi-
mentally validate non-Newtonian theories regarding modeling and control approaches.

The present study proves that non-Newtonian dynamics modeling of a submerged
object can be performed by modeling its Newtonian submerged dynamics and calibrating
the obtained model to fit experimental non-Newtonian setups. The obtained model is
an accurate fractional order viscoelastic representation of the interaction between the
submerged vehicle and its surrounding. For the obtained fractional order transfer function,
a fractional order proportional derivative controller is tuned with the purpose of controlling
the object’s position inside the environment. The validation of the proposed method is
realized on the experimental setup by testing reference tracking performance, disturbance
rejection capabilities and closed loop system robustness, both in Newtonian and non-
Newtonian environments.
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To conclude, it is important to emphasize that the performed experiments prove that
position control can be accurately realized in a non-Newtonian environment, solidifying
this statement with an accurate, experimental example.

Future developments will target both alterations of the experimental platform as
well as identification and control algorithms. Scaling considerations of the model will
be applied experimentally in order to reduce the dimensions of the submersible. The
circulatory system will be modified in order to include bending of the tubes, and the
submersible will be equipped with side propellers for steering. The non-Newtonian model
will be adjusted such that it includes motion through a bent non-Newtonian environment,
whereas the motion algorithm will be adapted to include steering capabilities, and a more
complex control strategy will be developed.
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Appendix A. Software Development for Data Processing and Motion Control

The submersible’s microcontroller ESP8266 has been programmed to handle several
tasks: acquiring data from the acceleration BNO055 IMU unit, computing the velocity
and position of the vehicle with respect to the starting position, measuring environmental
impedance, computing the necessary command signal for the vehicle’s motion (depending
on the three operating modes: manual, auto, and emergency), and sending the position,
computed command signal, and impedance measurements to the server. The robot is
constantly listening for new commands sent by the server such as a new position to reach
(when in auto mode), a desired PWM duty ration (when operating in manual mode), and
the forced stop command (when the emergency mode is triggered).
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Algorithm A1: An insight into the submersible’s software logic
Data: Server commands given to the submersible
Result: The vehicle continuously listens for server input and until a new

command arrives, it acts according to the last command sent
concentration data initialization;
position and velocity data initialization;
controller initialization;
wifi communication initialization;
pwm configuration;
acceleration sensor operating configuration;
while server communication ongoing do

read acceleration; compute position; read concentration; listen to new server
messages;

change mode according to received message if necessary;
if manual mode then

robot receives desired pwm command;
register desired pwm command;

if auto mode then
use the last desired position input;
compute command signal to apply to the motor using the control law;

else
robot reaches emergency mode;
the appled pwm will be 0;

end
motor voltage pwm value adjusted accordingly;
send position;
send applied pwm duty ration;
send concentration;

end
stop the motor;
go into sleep mode until new communication established;

Appendix B. Impedance Variation in the Non-Newtonian Fluid

In order to test and validate the impedance measurement proposed solution, the
DS550 sensor from Figure A1 has been attached to the surface of the submersible.

Figure A1. Impedance sensor DS550.

A mixture of glucose and non-Newtonian fluid has been inserted in a certain area in
the tubes. The robot navigates with a constant velocity, logging data about its position
and the measured impedance of the surrounding environment. Figure A2 illustrates the
chemical concentration change from 175 mV, the nominal concentration, to 120 mV, where
the glucose mixture has been poured.
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Figure A2. Experimental test for impedance measurement for glucose insertion.

The targeted delivery concept has been implemented only through software due to
the fact that the robot is not equipped with substance administration mechanisms. The
nominal operating impedance value (175 mV) is compared to the measured value, detecting
changes that outbound the [−20, 20] mV interval. In the case of significant impedance
changes, the robot is programmed to stop at the desired position until the concentration
values adjust to the accepted interval. It is considered that the robot administers the proper
medication while being stationed.
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