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Abstract

This paper aims to study a degenerate parabolic problem for a solenoidal vector field in which the time derivative
acts on a moving body. We propose a fully-discrete finite element scheme combined with backward Euler’s method
for the saddle-point variational formulation. The convergence of this numerical scheme is proved and error estimates
for some stable finite element pairs are also established.
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1. Introduction

Let Ω be an open bounded connected polyhedral and Lipschitz domain in Rd, with d = 2 or 3. Inside the domain
Ω, a body Σ0 ∈ C2,1 is considered, which occupies different regions during the time interval [0,T ]. We refer to Σ0 as
the reference configuration and describe the motion of Σ0 by a C3-function

Φ : Σ0 × [0,T ]→ Rd,

where Φt := Φ(·, t) for each t ∈ [0,T ] is a deformation of Σ0 to Σ(t) := Φ(Σ0, t), which is the space occupied by Σ0 at
time t, cf. [1]. We make the following assumptions throughout the article

Σ̃ :=
⋃

t∈[0,T ]

Σ(t) ⊂ Ω; det∇Φ(x, t) > 0, ∀(x, t) ∈ Σ0 × [0,T ]. (1)

The trajectory of the motion, which is a subset of the space-time domain Q := Ω × (0,T ), is specified by

T := {(x, t) : x ∈ Σ(t), t ∈ [0,T ]} .

SinceΦt is a bijective mapping for each t, the velocity vector of the moving body is defined by v(x, t) := Φ̇(Φ−1
t (x), t).

From now on, we assume that there exists an extension of v from T to Q such that v ∈ C1(Q). We denote further by n
the unit outward normal vector associated to the boundary of Ω and Σ(t).

In this paper, we aim to investigate the following initial-boundary value problem for the solenoidal vector field u

α∂tu − β∆u + χΣ Au = f in Ω × (0,T ),
∇ · u = 0 in Ω × (0,T ),
u = 0 on ∂Ω × (0,T ),
~(∇u)n� = 0 on ∂Σ × (0,T ),
u(·, 0) = u0 in Σ0,

(2)
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where u(x, t) =
[
ui(x, t)

]d

i=1
, β > 0 is a constant and f ∈ Lip([0,T ],L2(Ω)). Moreover, α and A are defined by

α(t) = αΣχΣ(t) =

αΣ > 0 in Σ(t)
0 in Ω \ Σ(t)

, A(x, t)u(x, t) =

 d∑
j,k=1

ai jk(x, t)
∂u j(x, t)
∂xk +

d∑
j=1

bi j(x, t)u j(x, t)


d

i=1

,

where ai jk, bi j ∈ Lip([0,T ],L∞(Ω)) with i, j, k = 1, . . . , d. For example, the operator A can play the role of the
convection, i.e. Au = (v · ∇)u, which is a part of the material derivative Du

Dt = ∂tu + (v · ∇)u.
The system (2) is a degenerate parabolic problem. Moreover, it can be achieved from two different problems

separately, namely a parabolic one on the trajectory T where α > 0 and an elliptic one otherwise, which are combined
via the interface condition. Therefore, (2) is also called a parabolic-elliptic problem. The given initial guest u0 is
supposed to satisfy that u0 ∈ H2(Σ0) and ∇ · u0 = 0. Since Σ0 is of the class C2,1, there exists an extension of u0 such
that u0 ∈ H1

0(Ω) ∩H2(Ω) and ∇ · u0 = 0 in Ω, see [2, Proposition 4.1].
The motivation of studying the system (2) comes from the eddy current model describing an electromagnetic

problem with a moving non-magnetic conductor considered in [3, 4, 5]. More specifically, the paper [4] introduces a
time discretization for the saddle-point formulation of a degenerate parabolic problem for the divergence-free vector
potential. In this setting, α and β stand for the electrical conductivity and the magnetic permeability constant of
vacuum, respectively. The operator A is defined as Au = σv × (∇ × u). A full space-time discretization of this
problem has not been discussed yet. In [5], we propose a fully-discrete finite element scheme by incorporating a
penalty term (Coulomb gauge) into the governing partial differential equation (PDE). However, the purpose of this
paper is to introduce a fully-discrete finite element scheme for the saddle-point formulation of (2).

Let us mention also some other relevant recent results to the governing problem (2). In the paper [6], the author
studied regularity of the solution to a parabolic-elliptic problem with moving parabolic subdomain, which was also
motivated by an eddy current model with moving conductors. Nevertheless, the divergence-free condition and the
convection-type term arising from the movement of conductors were not taken into account. The goal of [7] is to
present an abstract framework for analyzing a family of linear degenerate parabolic mixed equations, then the paper
[8] aims at introducing a fully-discrete approximation for this kind of problems. As stated in [8], the discrete inf-sup
condition plays an important role for finite element analysis of the mixed problems, which allowed the authors to get
quasi-optimal error estimate O(

√
τ + h/

√
τ). However, in these articles, all concerned domain and subdomains were

fixed during the time process.
In the present paper, we propose a full discretization based on the finite element scheme and the backward Euler

method for the variational formulation, see Section 3. The discrete inf-sup condition required for the existence of
a discrete solution to the saddle-point approach together with handling terms acting on the moving body makes
it challenging to establish an error estimate (with independent h and τ) for this numerical scheme, which are the
highlights of this contribution. In the future, we aim to study the stability and to establish error estimates for the full
discretization of the problem (2) with a jumping (non-Lipschitz) coefficient β, which still remains as a challenge at the
moment. In the next section, we derive the mixed variational formulation for the degenerate parabolic problem (2).

2. Variational formulation

By means of the saddle-point approach, the variational formulation of the system (2) reads as follows:

Find u(t) ∈ H1
0(Ω) with ∂tu(t) ∈ L2(Σ(t)) and p(t) ∈ L2

0(Ω) such that for a.a. t ∈ (0,T ), it holds that

αΣ (∂tu(t),ϕ)Σ(t) + β (∇u(t),∇ϕ)Ω + (A(t)u(t),ϕ)Σ(t) + (p(t),∇ · ϕ)Ω = ( f (t),ϕ)Ω ∀ϕ ∈ H1
0(Ω), (3)

(∇ · u(t), q)Ω = 0 ∀q ∈ L2
0(Ω). (4)

Please note that the additional unknown p plays the role of the divergence of u (see [4] for more details on the
interpretation of p). Since p(t) ∈ L2

0(Ω), the inf-sup condition is satisfied following from [9, Theorem 5.1 on p. 80].
Throughout this paper, we consider the following subspace of H1

0(Ω):

H1
0(div) =

{
ϕ ∈ H1

0(Ω) : ∇ · ϕ = 0
}
.
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The well-posedness of the mixed variational problem (3-4) can be proved by performing similar arguments as pre-
sented in [10, Theorem 5.1]. Thus, we can obtain the following result without the proof.

Theorem 2.1 (Well-posedness). Let u0 ∈ H1
0(div) ∩ H2(Ω) satisfying ∆u0 = 0 on Ω \ Σ0, v ∈ C1(Q) and f ∈

Lip([0,T ],L2(Ω)). Moreover, we assume that ai jk, bi j ∈ Lip([0,T ],L∞(Ω)) with i, j, k = 1, . . . , d. Then the sys-
tem (3-4) admits exactly one solution (u, p) satisfying p ∈ L2((0,T ),L2

0(Ω)) and u ∈ C([0,T ],H1
0(div)) with ∂tu ∈

L2((0,T ),H1
0(div)).

The following local regularity result provided by [11, Theorem 8.8] will play a crucial role for the error estimate
of the full discretization scheme in the next section.

Corollary 2.1. Let the assumptions of Theorem 2.1 be fulfilled. Then for any subdomain Σ′ ⊂⊂ Ω (i.e. Σ′ ⊂ Ω), we
have u ∈ L2((0,T ),H2(Σ′)).

We mention here the well-known Reynolds transport theorem, which will be helpful for further analysis of PDEs
with time-dependent domains. Let ω(t) be a Lipschitz moving body whose velocity vector v is of class C1 and f an
abstract function satisfying f (t) ∈W1,1(ω(t)) and ∂t f (t) ∈ L1(ω(t)) for all t ∈ (0,T ). Then it holds that

d
dt

∫
ω(t)

f dx =

∫
ω(t)

∂t f dx +

∫
∂ω(t)

f v · n ds. (5)

3. Full discretization

Let Vh
0 and Vh be two finite-dimensional subspaces of H1

0(Ω) and L2
0(Ω), respectively. These spaces are equipped

with two orthogonal projection operators Ph ∈ L(H1
0(Ω),Vh

0) and Ph ∈ L(L2
0(Ω),Vh). The time interval [0,T ] is

divided into n equidistant subintervals with length τ = T
n . The fully-discrete approximations of u and p at time

ti = iτ (0 ≤ i ≤ n) are denoted by uh
i and ph

i , respectively. We also introduce the following notations

δuh
i =

uh
i − uh

i−1

τ
, uh

0 = Ph u0, Ai = A(ti), Σi = Σ(ti).

The full discretization of the mixed variational formulation (3-4) is defined as:

Find uh
i ∈ Vh

0 and ph
i ∈ Vh such that for any i = 1, 2, . . . , n, it holds that

αΣ

(
δuh

i ,ϕ
h
)
Σi

+ β
(
∇uh

i ,∇ϕ
h
)
Ω

+
(
Aiuh

i ,ϕ
h
)
Σi

+
(
ph

i ,∇ · ϕ
h
)
Ω

=
(

f i,ϕ
h
)
Ω

∀ϕh ∈ Vh
0, (6)(

∇ · uh
i , q

h
)
Ω

= 0 ∀qh ∈ Vh . (7)

The solvability of the system (6-7) on every time step follows from the Brezzi theorem, cf. [12, Corollary 1.1].

Lemma 3.1 (Solvability). Let the assumptions of Theorem 2.1 be fulfilled. Moreover, we assume that the discrete
inf-sup condition is satisfied, i.e. there exists a constant C > 0 such that

sup
ϕh∈Vh

0, ϕ
h,0

(
∇ · ϕh, qh

)
Ω∥∥∥ϕh

∥∥∥
H1

0(Ω)

≥ C
∥∥∥qh

∥∥∥
L2(Ω) ∀qh ∈ Vh . (8)

Then, for any i = 1, 2, . . . , n and any τ < τ0, there exists a unique couple (uh
i , ph

i ) ∈ Vh
0 ×Vh solving (6-7).

The following basic a priori estimate for iterates can be obtained in the same way as in [4, Lemma 4.3]. This
estimate is crucial in obtaining the main result of this paper.

Lemma 3.2 (A priori estimate). Let the assumptions of Lemma 3.1 be fulfilled. In addition, we assume that uh
0 solves

the equation (7). Then there exists a constant C > 0 such that the following relation holds true for any τ < τ0

max
1≤l≤n

∥∥∥δuh
l

∥∥∥2
L2(Σl)

+

n∑
i=1

∥∥∥∇δuh
i

∥∥∥2
L2(Ω) τ +

n∑
i=1

∥∥∥δuh
i − δu

h
i−1

∥∥∥2
L2(Σi−1) + max

1≤l≤n

∥∥∥ph
l

∥∥∥2
L2(Ω) ≤ C. (9)
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We define the following piecewise-constant and piecewise-affine in time functions, operator and domain

uh
n(t) = uh

i , uh
n(t) = uh

i−1 + (t − ti−1)δuh
i , ph

n(t) = ph
i , f n(t) = f i, An(t) = Ai, Σn(t) = Σi,

for every t ∈ (ti−1, ti] , 1 ≤ i ≤ n, with the initial data

uh
n(0) = uh

n(0) = uh
0, ph

n(0) = 0, f n(0) = f (0), An(0) = A(0), Σn(0) = Σ0.

The following relation between Rothe’s functions uh
n and uh

n comes from the a priori estimate (9):

T∫
0

∥∥∥∇uh
n(t) − ∇uh

n(t)
∥∥∥2

L2(Ω) dt =

n∑
i=1

ti∫
ti−1

(ti − t)2
∥∥∥∇δuh

i

∥∥∥2
L2(Ω) dt ≤

n∑
i=1

∥∥∥∇δuh
i

∥∥∥2
L2(Ω) τ

3
(9)
. τ2. (10)

Hence, the equations (6) and (7) can be rewritten in the following form

αΣ

(
∂tuh

n(t),ϕh
)
Σn(t)

+ β
(
∇uh

n(t),∇ϕh
)
Ω

+
(
An(t)uh

n(t),ϕh
)
Σn(t)

+
(
ph

n(t),∇ · ϕh
)
Ω

=
(

f n(t),ϕh
)
Ω

∀ϕh ∈ Vh
0, (11)(

∇ · uh
n(t), qh

)
Ω

= 0 ∀qh ∈ Vh . (12)

Now, we are in the position to investigate the convergence of the full discretization scheme.

Theorem 3.1. Let the assumptions of Lemma 3.2 be fulfilled. Then there exists a constant C > 0 such that the
following relation holds true for every ξ ∈ [0,T ]

ξ∫
0

∥∥∥∂tuh
n(t) − ∂tu(t)

∥∥∥2
L2(Σ(t)) dt +

∥∥∥∇uh
n(ξ) − ∇u(ξ)

∥∥∥2
L2(Ω) +

ξ∫
0

∥∥∥ph
n(t) − p(t)

∥∥∥2

L2(Ω) dt

≤ C

τ +
∥∥∥∇u0 − ∇Ph u0

∥∥∥2
L2(Ω) +

√√√√√√ ξ∫
0

∥∥∥p(t) − Ph p(t)
∥∥∥2

L2(Ω) dt +

ξ∫
0

∥∥∥∇∂tu(t) − ∇Ph ∂tu(t)
∥∥∥2

L2(Ω) dt

 . (13)

Proof. Subtracting (3) for ϕ = ϕh from (11), then rewriting the result by the Reynolds transport theorem (5), we get
for a.a. t ∈ (0,T ) that

αΣ

(
∂tuh

n(t) − ∂tu(t),ϕh
)
Σ(t)

+ β
(
∇uh

n(t) − ∇u(t),∇ϕh
)
Ω

+
(
ph

n(t) − p(t),∇ · ϕh
)
Ω

+
(
(An(t) − A(t))uh

n(t),ϕh
)
Σn(t)

+
(
A(t)(uh

n(t) − u(t)),ϕh
)
Σn(t)

+

tn∫
t

∫
∂Σ(η)

[(
αΣ∂tuh

n(t) + A(t)u(t)
)
· ϕh

]
(v · n)(η) ds dη =

(
f n(t) − f (t),ϕh

)
Ω
, (14)

where tn =
⌈

t
τ

⌉
τ. Setting ϕh = ∂tuh

n(t) − Ph ∂tu(t) in (14), then integrating in time over (0, ξ) ⊂ (0,T ) and rearranging
the result give us that

αΣ

ξ∫
0

∥∥∥∂tuh
n(t) − ∂tu(t)

∥∥∥2
L2(Σ(t)) dt +

β

2

∥∥∥∇uh
n(ξ) − ∇u(ξ)

∥∥∥2
L2(Ω) −

β

2

∥∥∥∇uh
0 − ∇u0

∥∥∥2
L2(Ω)

= −αΣ

ξ∫
0

(
∂tuh

n(t) − ∂tu(t), ∂tu(t) − Ph ∂tu(t)
)
Σ(t)

dt +

ξ∫
0

(
f n(t) − f (t), ∂tuh

n(t) − Ph ∂tu(t)
)
Ω

dt

− β

ξ∫
0

(
∇uh

n(t) − ∇u(t),∇∂tu(t) − ∇Ph ∂tu(t)
)
Ω

dt − β

ξ∫
0

(
∇uh

n(t) − ∇uh
n(t),∇∂tuh

n(t) − ∇Ph ∂tu(t)
)
Ω

dt
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−

ξ∫
0

(
ph

n(t) − p(t),∇ · ∂tuh
n(t) − ∇ · ∂tu(t)

)
Ω

dt −

ξ∫
0

(
ph

n(t) − p(t),∇ · ∂tu(t) − ∇ · Ph ∂tu(t)
)
Ω

dt

−

ξ∫
0

(
(An(t) − A(t))uh

n(t), ∂tuh
n(t) − Ph ∂tu(t)

)
Σn(t)

dt −

ξ∫
0

(
A(t)(uh

n(t) − u(t)), ∂tuh
n(t) − Ph ∂tu(t)

)
Σn(t)

dt

−

ξ∫
0

tn∫
t

∫
∂Σ(η)

[(
αΣ∂tuh

n(t) + A(t)u(t)
)
·
(
∂tuh

n(t) − Ph ∂tu(t)
)]

(v · n)(η) ds dη dt =:
9∑

i=1

S i.

The Cauchy-Schwarz and ε-Young inequalities are used to estimate S 1 and S 3 as follows

|S 1| ≤ ε

ξ∫
0

∥∥∥∂tuh
n(t) − ∂tu(t)

∥∥∥2
L2(Σ(t)) dt + Cε

ξ∫
0

∥∥∥∂tu(t) − Ph ∂tu(t)
∥∥∥2

L2(Ω) dt,

|S 3| .

ξ∫
0

∥∥∥∇uh
n(t) − ∇u(t)

∥∥∥2
L2(Ω) dt +

ξ∫
0

∥∥∥∇∂tu(t) − ∇Ph ∂tu(t)
∥∥∥2

L2(Ω) dt.

We invoke the properties of f and ai jk, bi j (i, j, k = 1, . . . , d) together with Friedrichs’s inequality and (10) to obtain
that

|S 2| + |S 4| + |S 7|
(10)
. τ

√√√√√√ ξ∫
0

∥∥∥∇∂tuh
n(t) − ∇Ph ∂tu(t)

∥∥∥2
L2(Ω) dt

(9)
. τ.

To estimate S 8, we need the following auxiliary estimate∣∣∣∣∣∣∣∣∣
ξ∫

0

∥∥∥∂tuh
n(t) − ∂tu(t)

∥∥∥2
L2(Σn(t)) dt −

ξ∫
0

∥∥∥∂tuh
n(t) − ∂tu(t)

∥∥∥2
L2(Σ(t)) dt

∣∣∣∣∣∣∣∣∣
(5)
=

∣∣∣∣∣∣∣∣∣
ξ∫

0

tn∫
t

∫
∂Σ(η)

∣∣∣∂tuh
n(t) − ∂tu(t)

∣∣∣2 (v · n)(η) ds dη dt

∣∣∣∣∣∣∣∣∣ . τ

ξ∫
0

∥∥∥∇∂tuh
n(t) − ∇∂tu(t)

∥∥∥2
L2(Ω) dt

(9)
. τ.

Therefore, we arrive at

|S 8|
(10)
≤ Cετ + Cε

ξ∫
0

∥∥∥∇uh
n(t) − ∇u(t)

∥∥∥2
L2(Ω) dt + ε

ξ∫
0

∥∥∥∂tuh
n(t) − ∂tu(t)

∥∥∥2
L2(Σ(t)) dt + ε

ξ∫
0

∥∥∥∂tu(t) − Ph ∂tu(t)
∥∥∥2

L2(Ω) dt.

The most challenges lie on handling the terms S 5, S 6 and S 9, which arise from the saddle-point approach and the
movement of the body Σ0. Using the equations (4) and (12), we have that

|S 5|
(4)
=

∣∣∣∣∣∣∣∣∣
ξ∫

0

(
ph

n(t) − p(t),∇ · ∂tuh
n(t)

)
Ω

dt

∣∣∣∣∣∣∣∣∣ (12)
=

∣∣∣∣∣∣∣∣∣
ξ∫

0

(
p(t) − Ph p(t),∇ · ∂tuh

n(t)
)
Ω

dt

∣∣∣∣∣∣∣∣∣
(9)
.

√√√√√√ ξ∫
0

∥∥∥p(t) − Ph p(t)
∥∥∥2

L2(Ω) dt.

For the term S 6, we first deduce the following estimate

∥∥∥ph
n(t) − Ph p(t)

∥∥∥
L2(Ω)

(8)
. sup
ϕh∈Vh

0, ϕ
h,0

(
∇ · ϕh, ph

n(t) − Ph p(t)
)
Ω∥∥∥ϕh

∥∥∥
H1

0(Ω)
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(14)
. τ +

∥∥∥p(t) − Ph p(t)
∥∥∥

L2(Ω) +
∥∥∥∂tuh

n(t) − ∂tu(t)
∥∥∥

L2(Σ(t))

+
∥∥∥∇uh

n(t) − ∇u(t)
∥∥∥

L2(Ω) +
∥∥∥∇∂tuh

n(t)
∥∥∥

L2(Ω) τ + ‖u(t)‖H2(Σ̃) τ, (15)

which together with Corollary 2.1 and Lemma 3.2 allow us to conclude that

|S 6| ≤ ε

ξ∫
0

∥∥∥ph
n(t) − p(t)

∥∥∥2

L2(Ω) dt + Cε

ξ∫
0

∥∥∥∇ · ∂tu(t) − ∇ · Ph ∂tu(t)
∥∥∥2

L2(Ω) dt

(9)
. ετ2 + ε

ξ∫
0

∥∥∥p(t) − Ph p(t)
∥∥∥2

L2(Ω) dt + ε

ξ∫
0

∥∥∥∂tuh
n(t) − ∂tu(t)

∥∥∥2
L2(Σ(t)) dt

+ ε

ξ∫
0

∥∥∥∇uh
n(t) − ∇u(t)

∥∥∥2
L2(Ω) dt + Cε

ξ∫
0

∥∥∥∇ · ∂tu(t) − ∇ · Ph ∂tu(t)
∥∥∥2

L2(Ω) dt.

The term S 9 can be handled by applying the local regularity on the weak solution u presented in Corollary 2.1, i.e.

|S 9| . τ

√√√√√√ ξ∫
0

(∥∥∥∇∂tuh
n(t)

∥∥∥2
L2(Ω) + ‖u(t)‖2

H2(Σ̃)

)
dt

√√√√√√ ξ∫
0

∥∥∥∇∂tuh
n(t) − ∇Ph ∂tu(t)

∥∥∥2
L2(Ω) dt

(9)
. τ.

Finally, taking all considerations into account, then fixing a sufficiently small ε > 0 and using a Grönwall argument,
we can achieve the desired estimate for uh

n. The error estimate for ph
n can be acquired following the relation (15).

The convergence of the proposed full discretization scheme is a consequence of Theorem 3.1 and Céa’s lemma.

Theorem 3.2. Let the assumptions of Lemma 3.2 be fulfilled. Then the following convergences hold true: ∂tuh
n → ∂tu

in L2(T), uh
n → u in C([0,T ],H1

0(Ω)) and ph
n → p in L2((0,T ),L2(Ω)).

3.1. Error estimates for some finite element spaces
In this section, we examine the error estimate (13) for some finite element space pairs (Vh

0,V
h), which satisfy

the discrete inf-sup condition (8). Let {T h}h>0 be a regular family of triangulations of Ω. For each integer k ≥ 0,
we denote by Pk the space of all polynomials of degree at most k. We introduce the following spaces of piecewise
polynomials

P0 =
{
ϕ ∈ L2(Ω) : ϕ|K ∈ P0 ∀K ∈ T

}
, Pk =

{
ϕ ∈ C(Ω) : ϕ|K ∈ Pk( k ≥ 1) ∀K ∈ T

}
.

There are some stable finite element pairs satisfying the discrete inf-sup condition (8), see [13, Section VI.3]. Now,
we present two simple examples, namely (P2 − P0) for discontinuous element space of p and the Taylor-Hood pair
(P2 − P1) for continuous elements. The following error estimates are the results of the relation (13) combined with
Céa’s lemma and the standard interpolation error of the finite element spaces.

Corollary 3.1. Let the assumptions of Lemma 3.2 be fulfilled. Moreover, we assume that Vh
0 = (P2)d ∩ H1

0(Ω) and
u ∈ C([0,T ],H1

0(div)) ∩ L2((0,T ),H2(Ω)).

(i) If Vh = P0 ∩L2
0(Ω) and p ∈ L2((0,T ),H1(Ω) ∩L2

0(Ω)), then there exists a constant C > 0 such that

ξ∫
0

∥∥∥∂tuh
n(t) − ∂tu(t)

∥∥∥2
L2(Σ(t)) dt +

∥∥∥∇uh
n(ξ) − ∇u(ξ)

∥∥∥2
L2(Ω) +

ξ∫
0

∥∥∥ph
n(t) − p(t)

∥∥∥2

L2(Ω) dt ≤ C(τ + h).

(ii) If Vh = P1 ∩L2
0(Ω) and p ∈ L2((0,T ),H2(Ω) ∩L2

0(Ω)), then there exists a constant C > 0 such that

ξ∫
0

∥∥∥∂tuh
n(t) − ∂tu(t)

∥∥∥2
L2(Σ(t)) dt +

∥∥∥∇uh
n(ξ) − ∇u(ξ)

∥∥∥2
L2(Ω) +

ξ∫
0

∥∥∥ph
n(t) − p(t)

∥∥∥2

L2(Ω) dt ≤ C(τ + h2).
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