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Abstract—High–speed industrial robots can cause severe dam-
age in the event of a collision. In order to deploy them in
unstructured environments, they require overload protection and
sensitive collision detection. A qualitative and quantitative com-
parison of different detection techniques is presented based on
high–speed collision experiments. A high–speed industrial robot
actuator with overload clutch was instrumented with various
sensors for this purpose. Limit switches and secondary encoders
required the clutch to decouple prior to detection. Proprioceptive
techniques were successfully implemented but showed lower
sensitivity compared to accelerometer based collision detection.

Index Terms—collision detection, actuator, robot, clutch

I. INTRODUCTION

Robots have the risk to collide, especially while operating in
unknown or unstructured environments. Safety is the prior con-
cern when humans interact with collaborative robots. Speeds
are kept low according to safety standards such as ISO/TS
15066:2016. On the other hand, high–speed industrial robots,
which for safety reasons have to operate in cages, still have the
risk to create (internal) damage when colliding. The Combined
Friction Cam Clutch (CFCC) was introduced in [1] as a
means to increase mechanical compliance upon impact without
compromising the dynamic performance in nominal operation.
The clutch has sufficient residual torque to counteract gravity
once decoupled and allows an automatic reset. Generally
speaking, clutches allow a significant but finite relative angle
difference between input and output side upon collision. While
they protect the drive train from overload, the decoupling of
the clutch compromises the kinematic configuration of the
robot. The collision must therefore be detected in order for
the robot to react accordingly, for instance by initiating an
automatic reset as discussed in [1].

Collision detection techniques rely on different sensor archi-
tectures and use either model–based or data–driven techniques
to identify collisions. Collision detection strategies relying on
motor position and current alone are often referred to as ’sen-
sorless’ or proprioceptive solutions as both are usually already
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monitored during nominal robot control [2]. In addition, data
of joint and/or wrist force/torque sensors, accelerometers and
gyroscopes can improve the detection speed and accuracy
(avoiding false positives and undetected collisions) but add
to the cost and complexity of the detection solution. Torque
sensors measure the load torque directly. They rely on strain
gauges or capacitance monitoring as a means to measure
torque induced deformations in a base structure. These devices
are sophisticated and come at a cost. Reducing the cost as
well as their size and complexity is ongoing research [3].
In comparison, MEMS accelerometers and gyroscopes are
cheaper and easier to install as they come as system on chip
and are mass produced. Although they do not measure torque
directly, they can be used to detect collisions [4]. The chal-
lenge with these devices is in their calibration. Combinations
of force/torque sensors with accelerometers are also used [5].
Limit switches and (low resolution) secondary encoders are
an option as well if the actuator is equipped with an overload
clutch. Limit switches monitor if the input and output flange
of the clutch rotate with respect to each other. The signal
is either one or zero and the interpretation straightforward.
Secondary encoders serve a similar purpose. They output the
actual angular difference between the input and output clutch
flange. They are more complex than limit switches but offer
higher accuracy.

Data–driven techniques do not require a model of the robot.
They rely on filters and dynamic thresholds to detect a colli-
sion. Examples are the work by Geravand et al. [6] and Indri et
al. [7]. Sharkawy et al. used neural networks (NN) to identify
collisions based on motor encoder data [8]. In order to train
the model, the robot must (temporally) be instrumented with
additional direct force/torque sensors. Model–based techniques
require dynamic models describing the state of the robot and
residual or disturbance observers to estimate this state and
other collision relevant parameters [9]. As summarized in [2],
the most common observers are energy, velocity or momentum
based. Since its introduction by De Luca et al. in [10], the
momentum observer has been extended to distinguish between



intended contact and unexpected collision [11]. Furthermore,
it can also be used relying on motor currents instead of direct
joint torque sensing by including a non–linear friction model
of the drivetrain [12]. Both extensions were combined in
[13]. A second order sliding mode extension was proposed
by Garofalo et al. [14]. Birjandi et al. suggested to use
Kalman filtering to estimate load acceleration [15], [16]. A
simplified integrator model was introduced with motor encoder
and load accelerometer data as input. The full dynamic model
is subsequently used to calculate the external load directly. The
main advantages of this method are the avoidance of delays
introduced by the momentum observer and the preprocessing
of its input, often obtained by low pass filtering differentiated
position encoder data.

The contribution of this article is in the evaluation of
different sensor architectures and the appropriate data–driven
or model–based techniques to detect collisions at high speed
(300 ◦/s). The aim is to have a low cost solution, excluding
the use of joint torque sensors. How this affects the model–
based techniques will be discussed in detail. Methods requiring
training (such as [8]) are also excluded in this study. An
actuator with a Combined Friction Cam Clutch (CFCC) as
introduced in [1] serves as use case for this study. The results
are however not necessarily restricted to this type of clutch.

This article is organised as follows: first, the different
collision detection techniques are introduced in Section II.
The actuator with overload clutch that is used as experimen-
tal platform is presented next (Section III-A). Experimental
results including a qualitative and quantitative comparison of
the different collision detection techniques are documented in
Section III-B-D. The article is concluded in Section IV.

II. COLLISION DETECTION TECHNIQUES

Several sensor architectures and detection techniques are
presented next. Their parameters are listed in Table I.

A. Load cell

An external torque sensor measures the external collision
torque directly. A force sensor that is pressed by a known
load arm with length LLC can serve a similar purpose. An
external device is not considered as viable option to be used
in an actual robot for collision detection purposes. The closest
alternative is a joint or wrist force/torque sensor. The load
cell is used in this study as benchmark to evaluate the sensor
architectures to follow.

B. Proximity switch or low resolution encoder

A proximity switch measures if material is present in front
of it or not. Such a device is often used as limit switch.
In this application, it detects if the clutch input and output
side rotate with respect to each other. Proximity switches
are low cost and their interpretation is straightforward: the
output is either one or zero. This instrumentation comes with
the following disadvantages (1) only collisions resulting in
clutch disengagement are detected and (2) the relative angle

difference that triggers a detection depends on the accuracy
with which they were installed.

The separation of the clutch halves can also be monitored
with an encoder. Even low resolution (and hence lower cost)
encoders will outperform a limit switch. They however need
more computational power. Only collisions resulting in clutch
disengagement are detected.

C. Data–driven collision detection based on motor currents
or accelerometer data

Geravand et al. suggest the use of a high–pass filter to
identify unintentional collisions while monitoring the motor
torque τm or motor current im [6]. In the following, a
high–pass Butterworth filter of third order is used. Collisions
resulting in > 15 Hz responses can be detected:

τm,HPF(tk) =

∑3
l=0 bHPF,lτm(tk − l∆t)

1 +
∑3

l=1 aHPF,lτm,HPF(tk − l∆t)
(1)

with ∆t the sampling time and aHPF,l, bHPF,l depending on the
filter frequency. Their values are listed in Table I. Note that
the filter has a sampling time of 1 ms versus the 12 ms sample
time reported in [6].

A collision is detected if the filtered motor torques |τm,HPF|
exceed a dynamic detection threshold

τm,HPF,TH = τHPF,0 + τHPF,1
|q̇m,d|
vmax

+ τHPF,2
|q̈m,d|
amax

(2)

with τHPF,0 chosen to cover static conditions, q̇m,d and q̈m,d the
commanded motor velocity and acceleration respectively, vmax
and amax the maximum motor velocity and acceleration and
τHPF,1 and τHPF,2 tuning parameters. In order to simplify the
comparison of different techniques, only the static condition
is used (τHPF,1−2 = 0). The threshold is tuned as sensitive
to collisions as possible while avoiding false positives during
nominal movement.

Load accelerometer data can be used alternatively. The same
15 Hz Butterworth high–pass filter can be used to eliminate
low frequency signal content such as gravitational acceleration.
A similarly constructed dynamic threshold as Eq. (2) can be
used. As stated before, only the static condition will be used.

D. ’Sensorless’ model–based collision detection using a mo-
mentum observer

Model–based techniques use dynamic models describing the
state of the robot and observers to estimate this state. The
dynamics of the complete actuator can be described based on
a set of Lagrange–Euler equations with all parameters reduced
to the load side:

Jlq̈l +Dlq̇l + g(ql) = τext + τc

Jmq̈m + τ ′f = τm − τc
(3)

with Jl and Jm being the clutch output and load and the motor
inertia respectively. ql and qm are the accompanying rotary
positions, Dl a viscous friction coefficient (mainly due to the
friction in the cross roller bearing), τext is the external torque,
τc the clutch torque (derived in [1]), g(ql) gravitational torque



TABLE I
COLLISION DETECTION AND CLUTCH PARAMETERS. ALL QUANTITIES

ARE EXPRESSED WITH RESPECT/REDUCED TO THE LOAD SIDE.

Parameter Symbol Value
Sample time [ms] ∆t 1
Maximal velocity [◦/s] vmax 300
Maximal acceleration [rad/s2] amax 60
Filter coefficient bHPF,0 0.910
Filter coefficient bHPF,l -2.730
Filter coefficient bHPF,2 2.730
Filter coefficient bHPF,3 -0.910
Filter coefficient aHPF,l -2.812
Filter coefficient aHPF,2 2.641
Filter coefficient aHPF,3 -0.828
Filter threshold [Nm] τHPF,0 40
Momentum observer threshold [Nm] τMO,0 30
Momentum observer low–pass cut–off [rad/s] KLP 500
Momentum observer high–pass cut–off [rad/s] KLP 100
Accelerometer threshold [g] τacc,0 1
Load cell load arm [mm] LLC 300
Gravitational force [N] Mg 40
Center of gravity load arm [mm] LCOG 225
Motor side inertia [kgm2] Jm 2.5
Load side inertia [kgm2] Jl 0.2
Clutch threshold torque [Nm] τtr 240
Clutch residual torque [Nm] τres 60
Calculated ratio [%] τres/τtr 25

depending on the load position ql, τm the motor torque and
τ ′f the friction torque of the motor and harmonic drive. Note
that the flexibility of the joint due to the inherent compliance
of a gearbox and/or clutch was neglected in order to reduce
model complexity.

In nominal operation with an engaged overload clutch, the
motor and load positions are equal, qm = ql. If the clutch
torque τc is eliminated from Eq. (3) and all friction compo-
nents are combined in a single friction term τf = τ ′f +Dlq̇l,
a single equation is obtained:

(Jl + Jm)q̈l + τf + g(ql) = τm + τext (4)

The bandpass momentum observer as introduced in [11]
extends the standard low–pass filter observer by adding a high–
pass filter. The sensitivity towards intended contact is reduced
making it an appropriate tool to detect unexpected collisions.
Applied to a single joint, the bandpass momentum observer
r(t) reads

r(t) = KLP [p(t)− p(0)]

−KLP

∫ t

0

[
τm,meas − τf − g(ql) + (1 +

KHP

KLP
)r

]
dt

−KLPKHP

∫ t

0

[∫ t

0

rdt

]
dt

(5)

with KLP and KHP tuning parameters equal to the low–pass
and high–pass filter (angular) cut–off frequencies respectively,
p(t) = (Jl + Jm)q̇m,meas the total momentum and τm,meas the
measured motor torque. If KLP → ∞ and KHP → 0, then
r → τext. A 15 Hz high–pass filter cut–off frequency was
chosen as in the data–driven detection methods. The low–pass
filter frequency was set at 80 Hz. A higher frequency did not

Fig. 1. Schematic overview of the control strategy, including the control loop
and different collision detection techniques.

adequately reduce noise while a lower value introduced longer
delays. Further details can be found in [11]. The momentum
observer can be compared with a dynamic threshold τMO,0 in
a similar fashion as with the data–driven technique in order to
detect collisions.

The velocity is obtained by differentiating position encoder
data. The differentiation introduces noise in the momentum
observer through p(t). Low–pass filtering reduces this noise
but introduces delay. In the experiments to follow, the same
velocity estimate is used as input in the PID position control
loop. The controller’s D–term amplifies this noise. As such,
an additional source of noise is introduced in the momentum
observer via the motor torque τm,meas. Reducing the D–action
is no option however. High–speed robots are build for preci-
sion and speed which translates in aggressive tuning (while
still ensuring system stability). In the experiments to follow,
a velocity observer is used to reduce noise while avoiding
delay. The differentiated position data is low–pass filtered
with frequency fVO = 500 Hz. In order to avoid the inherent
delay, it is mended by adding a high–pass filtered model–
based estimate (with the same cut–off frequency fVO) of the
velocity q̇l,HP =

∫ t

0
τm,meas/(Jl + Jm)dt where a simplified

version of Eq. (4) is used, including solely the inertia term.
Kalman filtering could potentially be used as an alternative
(similar as in [15]). The former method was chosen as it was
already available as advanced option in the drive used for the
experiments and runs at a higher sample frequency than a
Kalman filter, which had to be implemented in the PLC control
unit.

Note that the latter technique to estimate the velocity will
also improve the data–driven collision detection based on
motor currents, as discussed in Section II-C. A summary of
the complete control and detection strategy is schematically
represented in Fig. 1.



Fig. 2. Cross section of a high–speed industrial robot actuator with overload
clutch. The actuator consists of a motor (4), a harmonic drive gearbox (3), a
cross roller bearing (2) and the CFCC (1).

III. EXPERIMENTAL COMPARISON OF COLLISION
DETECTION TECHNIQUES

Protecting the internal drive train of a high–speed industrial
robot actuator equipped with a recently presented overload
clutch [1] serves as use case for comparing collision detection
techniques. A cross–section of the custom designed high–
speed industrial robot actuator with CFCC that will be used
as experimental platform for the evaluation of the collision
detection techniques is shown in Fig. 2. It shows the series
connection of (4) a motor (Tecnotion QTR–133–25) with
absolute encoder (RLS AksIM–2, 20 bit magnetic encoder),
(3) harmonic drive (CSD–40–50–2A) with reduction N = 50
and overload clutch (1). The input and output side of the
clutch (and by extension the actuator) can move with respect
to each other thanks to the cross roller bearing (2). If excessive
torque is applied on the output side of the clutch, the clutch
disengages, partially decoupling the harmonic drive output
(flex spline) and hence protecting it from overload. The
actuator has an outer diameter of 174 mm. Its peak torque
output is 240 Nm as this is the maximum torque the clutch
can transmit without decoupling. Higher output speeds (300
◦/s) than a collaborative robot actuator can be achieved.

A. Experimental setup

The experimental setup shown in Fig. 3 consists of the
actuator with CFCC on a test stand. A load arm is bolted
to the output flange of the actuator. The load arm carries
a 3.5 kg weight. Its tip compresses a TE Connectivity load
cell, model FC2311-0000-0500-L which is amplified with a
Texas Instruments INA826 precision instrumentation amplifier.
The load cell allows to measure force (and load torque once
multiplied with the length of the load arm LLC). The setup is
instrumented with a M8 x 1 NPN inductive sensor, a Beckhoff
EP3752 accelerometer and a RLS RE36 13 bit incremental
encoder. The drive train is driven by a Beckhoff AX5106 servo
drive and TwinCAT 3. The IO is processed via a Beckhoff
EK1100 EtherCAT coupler [17]. A state machine controls

Fig. 3. Test setup showing the actuator with Combined Friction Cam Clutch
(1) mounted on a test stand (3). A weight of 3.5 kg is attached to a load arm
(2), on its turn bolted to the output flange of the actuator. The arm can swing
until its tip touches a load cell (4). (5) is a secondary encoder, (6) a proximity
sensor and (7) an accelerometer.

the setup and allows automatic execution of the collision
experiments.

B. Friction identification and gravity compensation

A significant portion of the motor torque is converted to heat
due to the friction torque τf in the bearings and harmonic drive
gearbox. Friction was determined by measuring the motor
torque while running at different constant speeds. The results
are plotted in Fig. 4. A friction model including Coulomb and
viscous terms

τf = Dq̇m +

{
min(|τm|, τC)q̇m/ε if |q̇m| 6 ε

sign( ˙qm)τC otherwise (6)

was fitted to the data resulting in D = 5 Nms/rad and τC = 35
Nm (reduced to the load side) with ε = 0.03 rad/s introduced
for computational purposes [18]. A higher order polynomial
fits the data with smaller error. Its equation is added in the
figure. The higher order polynomial fitted data was used.

Based on the dimensions defined in Fig. 3, the gravity torque
g(ql) is given by

g(ql) = MgLCOG sin(ql) (7)

with Mg the gravitational force and LCOG the load arm length
to the Center Of Gravity (COG). Their values are specified in
Table I.

C. High speed collision experiment

A high–speed (300 ◦/s) collision experiment is shown in
Fig. 5. The following events occur:

1) Reversing from 0◦ → 80◦ → 0◦ with a top speed of 300
◦/s without collision. This reversing sequence is used to
tune the collision detection thresholds in order to avoid
false positives;

2) Moving from 0◦ → 110◦ with a top speed of 300 ◦/s.
The tip of the load arm collides with the load cell.

Fig. 5 shows the actual motor position, speed and accelera-
tion as reduced to the load side and the different measurements



Fig. 4. Identification of the friction torque. A first order (’poly1’) and sixth
order polynomial (’poly6’) are fitted to the data.
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Fig. 5. High speed collision test. The actuator collides with the load cell at
high speed (300 ◦/s). The latter occurs at 2.2 s. The CFCC disengages and
limits the torque transmitted from the load to the motor side of the actuator.
The collision is detected and the motor inertia is braked.

used to detect a collision. These are the high–pass–filtered
motor torque, the momentum observer, the load cell output,
the proximity switch output, the relative angular displacement
as monitored by the secondary encoder and the accelerometer
data. The torque as detected by the load cell is close to 500
Nm. Depending on the load inertia to be decelerated, this
torque can be above the specifications of the harmonic drive
(the HD CSD–40–50–2A gearbox has a maximum repeatable
output torque of 281 Nm and a maximum allowed emergency
stop torque of 480 Nm [19]) and could result in mechanical
failure of its flex spline. Due to the presence of the overload
clutch, such a scenario is avoided. Those excessive collision
loads result in decoupling of the overload clutch. The maxi-
mum collision torque as ’experienced’ by the harmonic drive
and motor is the clutch threshold torque.

All techniques allow to detect the collision. None of them
falsely identifies a collision in the reversing sequence 0◦ →
80◦ → 0◦. The same peak torque was measured by the load
cell for all techniques. Hence not the detection techniques but
the kinetic energy upon collision and the deceleration time
of the motor inertia determine the measured external torque.
The same holds for the final relative angular displacement
of the clutch input and output flange. It was measured to
be approximately 11◦ independent of the collision detection
technique. The detection techniques differ significantly in
other metrics such as the threshold torque and sensitivity.
These differences are discussed next.

D. Comparison of collision detection techniques

Table II summarizes several important metrics for the dif-
ferent collision detection techniques. The unit used to list the
threshold depends on the measurement: the load cell, high–
pass–filter and momentum observer thresholds are expressed
in Nm, the proximity switch and encoder in degrees and the
accelerometer in g’s. The ratio of peak by threshold value is
a unitless and quantitative metric to rank the sensitivity of
the collision detection techniques. As all data was gathered
in the same experiment, the techniques that measured values
significantly larger than the threshold are the most sensitive.
Stated otherwise: the higher the sensitivity, the lower the
minimal kinetic energy a collision can have and still be
detected. The delay of the detection is measured with respect
to the technique with the highest sensitivity.

1) Load cell: Detection based on the external load cell data
is the most accurate and direct way of detecting a collision.
This method serves as benchmark for the other techniques. A
threshold as low as 2 Nm can be chosen. This is well below
the clutch threshold torque τtr = 240 Nm. The peak/threshold
ratio is 250.

2) Sensorless/proprioceptive techniques: The clutch thresh-
old torque τtr has to be larger than the dynamic collision
detection threshold as it is the maximum torque transferred
to the motor side in the event of a collision. The maximum
transferred torque must exceed the collision detection thresh-
old otherwise the motor is not aware of the collision and
does not react appropriately. In order to avoid false positives,



TABLE II
COMPARISON OF DIFFERENT COLLISION DETECTION TECHNIQUES.

Metric L
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Threshold [Nm] 2 - - 40 30 -
Threshold [◦] - 0.5 0.1 - - -
Threshold high speed [g] - - - - - 1.0
Peak/threshold 250 22 110 6.3 6.7 16.0
Delay [ms] 0 10 2 2 2 6 1
Detect if not disengaged yes no no yes yes yes
Cost* +++ + ++ 0 0 ++
Computation* + + + ++ +++ ++

*The more ’+’, the higher the cost/computation time.

the threshold for the high–pass–filter technique was set to 40
Nm. A delay of 2 ms with respect to the load cell detection
technique was measured.

The thresholds used for the momentum observer depend on
the cut–off frequencies KLP and KHP. A lower KLP filters the
high–frequent component in the motor torque introduced by
the motor controller but introduces additional detection delay.
Using KLP = 80 Hz and KHP = 15 Hz, a sensitivity of 6.7
was found, which is similar to the high–pass–filter technique.
A delay of 2 ms was observed.

3) Proximity switch and secondary encoder: The proximity
switch and the secondary encoder measure the angular dis-
placement of the input and output side of the clutch. Such a
displacement occurs only upon disengagement of the clutch.
Collisions that do not result in disengagement are not detected.
The external torque must therefore be larger than the threshold
torque of the clutch, τtr = 240 Nm in this case. Only the high–
speed collision resulted in clutch disengagement. Although
insensitive to low–speed collisions, they have the highest
sensitivity once the clutch decouples. The detection with the
secondary encoder and the proximity switch showed a delay
of 2 and 10 ms respectively. The switch detects whether there
is material in front of it or not. Positioning the switch at the
edge material/no material and hence detection/no detection is
nearly impossible to do with the same accuracy of even a low
resolution encoder.

4) Accelerometer: The accelerometer proved to be the most
sensitive collision detection technique without decoupling of
the clutch. The detection threshold was 1.0 g and sensitivity
16.0. No collision detection delay was measured.

IV. CONCLUSION

Different collision detection techniques originally devel-
oped in the context of safe human–robot collaboration were
evaluated at higher speeds for the application of high–speed
industrial robots. Protecting the internal drive train of a high–
speed industrial robot actuator equipped with an overload
clutch served as use case in this study. Collision detection

using proximity switches or a secondary encoder require the
clutch to disengage prior to detection. Collision detection
based on high–pass filtering of motor currents and by applying
the bandpass momentum observer showed similar collision
sensitivity. Collision detection based on accelerometer data has
the highest collision detection sensitivity if the clutch does not
disengage upon impact.
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