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Abstract

Localization and mapping has been a long standing area of research, both in

neuroscience, to understand how mammals navigate their environment, as well

as in robotics, to enable autonomous mobile robots. In this paper, we treat

navigation as inferring actions that minimize (expected) variational free energy

under a hierarchical generative model. We find that familiar concepts like per-

ception, path integration, localisation and mapping naturally emerge from this

active inference formulation. Moreover, we show that this model is consistent

with models of hippocampal functions, and can be implemented in silico on a

real-world robot. Our experiments illustrate that a robot equipped with our hi-

erarchical model is able to generate topologically consistent maps, and correct

navigation behaviour is inferred when a goal location is provided to the system.

Keywords: active inference, robot navigation, SLAM, RatSLAM, deep

learning

1. Introduction

Being able to robustly explore and navigate an environment has been a long

standing challenge in robotics. In past decades this has been mainly addressed

by simultaneous localization and mapping (SLAM), in which a robot builds a

metric (grid) map of the environment using sensory input of various sensors such5

as lidars and cameras [1]. Although the tremendous progress in this area, current

approaches still fall short when operating in complex, dynamic environments for

a longer period of time [2].
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Being able to navigate successfully and consistently through an environment

is a fundamental capability for almost all animals [3]. Humans easily explore10

and map their surroundings without much extra thought or considerations. In-

tuitively we build a logically consistent map without needing accurate distance

measurements [4]. We find it natural to think about navigation in terms of a

sequence of moves towards locations. When considering moving to a new loca-

tion, humans typically do not consider lower level tasks such as opening doors or15

lifting feet in the mental process. Only when something unexpected occurs do

we actively engage in planning in terms of individual movements of the joints.

For example, when encountering a puddle on the side walk, we’ll actively start

planning in order to not get our feet wet. We can thus see the process of human

navigation in terms of hierarchical model, the lower levels allows us to reason20

about joint states and immediate observations. The higher levels allows us to

reason about different locations and how these are connected to each other.

Although the working of human mapping and localization is still not thor-

oughly understood, there are numerous models of rodent navigation in the hip-

pocampus. Research suggests rodents build topological maps, in the sense that25

they recall one experience being correlated by some other set of experiences

through some spatial relation. This relation, typically is not only expressed

in terms of distance in meters, but also in closeness through spatio-temporal

consistency and experiences [5, 6].

Besides building a map and localizing oneself therein, navigation also entails30

planning and following routes to goals, as well as environment exploration. Ac-

tive inference [7] is a process theory of the brain that casts action as perception

as two sides of the same coin. It rests upon the idea the free energy minimiza-

tion underpins the mechanisms and motivations of organism agency. It builds

upon the free energy principle, which states that every agent builds a generative35

model, of varying complexity, of the world. This model then is used to make

predictions about possible outcomes of the world. Future actions and model

beliefs are inferred in order to minimize the surprise this generative model in-

duces. The complexity of this model typically depends on the capabilities of the
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agent, i.e. a virus would have a very simple generative model of the world that40

is only capable of “reasoning” over short term homeostasis. A mammal on the

other hand would need a complex generative model that can reason over longer

timescales.

In this paper, we propose a hierarchical generative model casting navigation

as minimizing (expected) variational free energy [8]. We show how perception,45

localization, mapping and navigation naturally emerge from optimizing this

hierarchical generative model under active inference. Moreover, we implement

this system in silico on a real-world robot platform, navigating a warehouse

environment using camera sensor input only. Finally, we also relate our work to

various findings and hypotheses in biology about navigation in the rodent and50

primate brain.

Recent work already illustrated how active inference can be applied for plan-

ning and navigation in simple, discrete maze tasks [9] [10]. Also, in our prior

work we proposed how to learn generative state space models from pixel data

to engage in active inference [11] [12]. However, these methods fall short when55

having to plan on sufficiently long timescales, as is ubiquitous in real-world

navigation. Therefore, we extend these approaches with an hierarchical gener-

ative model, while also drawing inspiration from other bio-insipred SLAM ap-

proaches [13]. The remainder of this paper is structured as follows. In the next

section, we first rehearse the literature on the neural correlates of navigation,60

both in rodent and primate brains. Section 3 then describes our hierarchical

generative model, casting navigation and mapping as the minimization of (ex-

pected) variational free energy. In Section 4 we further discuss how the different

factors of the generative model can be instantiated in silico, which we imple-

ment on a real-world mobile robot platform in Section 5. Finally we discuss our65

results in light of other recent research in Section 6.
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2. Neural correlates of navigation: the hippocampus and beyond

The evolution of the hippocampal/entorhinal system (H/E) system repre-

sents a major transition in evolution [14, 15]. This advent is at least 300 million

years old, as homologues are found in both birds and mammals [16], with large70

portions of this functionality likely being established over 500 million years ago

in the Cambrian period [17, 18]. The H/E system provides a basis for both

memory and control of behavior, solving multiple fundamental evolutionary

challenges, including rapid associative learning, as well as the situating of an

organism in space and time for the sake of navigation and searching/foraging75

for value.

We will ground the following discussion of the H/E system in terms of its role

in (generalized) search and navigation [9]. A basic intuitive link of these func-

tions can be found in the difficulty of finding something if an agent is unaware

of its own location in space. Yet localization will be challenging if an agent lacks80

awareness of its motions - which when considered over time affords localizing

via path integration - and of the likely observations accompanying its trajectory

through space and time. In light of this, immense excitement was generated by

the discovery of allocentric spatial representations in the hippocampus, where

these “place cells” exhibited reliable responses when an organism frequented a85

given position in space [19]. Additional excitement was generated by the dis-

covery of “grid cells” in entorhinal cortex [20] - and possibly elsewhere [21] -

which represent a largely regular triangular or hexagonal tiling of space, orga-

nized according to egocentric reference frames. The regularity of these repeating

grids provides a basis for path integration, via estimating distances and loca-90

tions in terms of the directions and frequency with which this metric tiling is

traversed. In physical domains, it has been observed that the spacing of grid

representations varies as a function of the space being tiled, e.g. smaller and

more fine-grained if an agent is situated within an enclosure, or larger and more

coarse-grained if situated in an open space. The granularity of tilings appears95

to be influenced by brainstem locomotor nuclei [22] – potentially reflecting an
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inductive bias for greater speed being more likely in larger spaces – as well as

by exteroceptive stimulus cues such as optic flow [23].

Grid and place cells tend to be organized as 2D tilings in maps or graphs,

as motion affordance tends to be constrained to planes for terrestrial animals.100

However, this is not necessarily true for aviation-capable beings [24]. The pre-

cise mechanistic and developmental relationships between place and grid cells

remains a matter of some debate, with some viewing place cells as emerging

from combinations of grid cells as their Fourier basis, and others viewing grid

cells as a kind of compressed eigenvector description of likely place cell activity.105

The former perspective is emphasized in the Tolman-Eichenbaum machine [25],

which has many parallels with the architecture described here. In this view,

entorhinal grid cells encode particular structural details, and hippocampal cells

link this basis set with sensory representations via an evolving map/graph of

the world [5]. Alternatively, the latter view is associated with place cells repre-110

senting a “predictive map” based on “successor representations”1 of likely state

transitions, from which grid cells are derived as higher-level, more invariant

representations [26].

In addition to place and grid cells, a variety of additional specialized cell

types have been observed in the H/E system. While it was previously assumed115

that these features represent innate inductive biases [27], increasing evidence

suggests that these specialized cell types may arise from experience-dependent

plasticity, including models with similar architectural principles to the ones de-

scribed here. Support continues to accumulate for the H/E system as inherently

predictive on multiple levels. Within the hippocampus, place fields appear to120

be tuned to the direction of motion, whether in 2 or 3 spatial dimensions [24].

Further, activation of place fields exhibit forward sweeps as organisms consider

1The notion of successor representations should not be confused with representations of

successive states under different policies in the future. This is because the successor repre-

sentation assumes that, following the subsequent action, agents pursue a fixed state-action

policy. In other words, the successor representation does not call planning or inference.
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alternative routes, and where the most robust sweeps predict and select the di-

rection of subsequent locomotion [28, 29]. The precise sources of these predictive

successor representations remain unclear [26, 30].125

In rodent studies, H/E couples with multimodal (hexagonally organized)

value representations of the ventromedial prefrontal cortex [31, 32], which may

not only allow navigation to be organized according to a “common neural cur-

rency” of expected organismic value, but may also aid in updating those esti-

mates based on histories of experience organized according to spatiotemporal130

trajectories. Similar bidirectional functional relationships may also be observed

with the dorsomedial prefrontal cortex (and corresponding posterior structures),

both allowing H/E successor representations to be informed based on activity

in high level motor and gaze direction, but also potentially allowing visual and

somatic spatial fields to be directed as a kind of navigation and foraging through135

informational and affordance spaces [33, 34], with saccades/samples and discrete

actions orchestrated at theta frequencies [35, 36]. Somewhat less exotically, a

substantial amount of predictive transitions between place fields may be ex-

plainable by relatively simple “bump attractor” models of CA3 [37, 38], or in

terms of the ability of recurrent networks to encode predictive information -140

as a kind of spontaneous meta-learning - via their evolving attractor dynam-

ics [39]. However, these may be compatible and complimentary possibilities, as

predictive information could depend on both intrinsic properties of hippocam-

pal circuits as well as the external systems with which they couple. Indeed, the

H/E system and cortex dynamically interact in terms of flexible (near-critical)145

alternating of driving/responding [40, 41, 42]. Speculatively, if hippocampal

pattern completion is inherently predictive, then this could help to scaffold the

development of more sophisticated predictive abilities for the rest of the brain.

Intra-hippocampal recurrent dynamics are notable for several reasons, one of

which is the ability of such systems to serve as sequence memories, which is a150

highly influential interpretation of H/E functioning [43].

As the top of the cortical hierarchy, the H/E system not only provides a basis

for storing and synthesizing novel information with spatiotemporal organization,
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but it also helps to create frames of sense-making for episodes [44]. Consistent

with the predictive processing models described above, fMRI studies show how155

continuous audiovisual stimuli are well-modeled as a nested hierarchy of events,

with the hippocampus representing the highest level of organization of these

events into coherent individual scenes [45]. With respect to goal-oriented behav-

ior, these could be thought of as chunks, or subgoals in the context of hierarchical

reinforcement learning and imaginative planning (as inference) [46, 47, 48].160

To summarize, there is ample evidence that spatial awareness is at the core

of the mammal brain, with explicit representations for pose, heading and loca-

tion. Also, the H/E system is closely involved with episodic memory suggesting

the storage of information as individual experiences linked together. Finally, re-

cent research suggests that these representations are formed through predictive165

processing. In the remainder of this paper, we will further build on these in-

sights using a process theory of the brain deeply rooted in predictive processing:

active inference.

3. Navigation as hierarchical active inference

We cast the SLAM problem in terms of a hierarchical Bayesian generative170

model. The agent reasons on two different levels: on a higher level for long

term navigation and on a lower level for short term perception. On the higher

level, the agent is capable of reasoning in terms of sequences of locations it

wants to visit without having to worry about the intricacies of how to control

its actuators to get there. On the lower level, the agent can reason and plan in175

terms of observation sequences without needing to “think” too far ahead. We

will distinguish between the higher level and lower level actuation by calling

them moves m and actions a respectively. Sensor readings at the lower level are

called observations o.

At the lower level, the model builds upon earlier work [12] in order to learn180

and infer belief states s from sequences of observations o and actions a. This

allows the agent to model short-term lower level dynamics. In addition to this
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belief state s, in this work we also explicitly model the agent’s pose p as a

separate variable, in order to allow explicit reasoning about agent positions in

the environment.185

At the higher level, the model takes the set of (pose, state) pairs as obser-

vations to the model and links them with locations. Locations can be traversed

by means of higher level moves. The relation between locations l, moves m and

observations (o, s) is treated in the same way as the corresponding variables at

the lower level.190

3.1. Active inference

Active inference posits that intelligent agents entertain a generative model of

the world they operate in, and act in order to minimize surprise, or equivalently,

maximize their model evidence [49]. Before we dive into the details of the

proposed hierarchical model, we’ll introduce a prototypical generative model for195

rehearsing the core concepts of active inference. Suppose an agent entertains

Figure 1: Prototypical generative model of an active inference agent. The nodes in the

graphical model represent the random variables, and the grey color indicates the observed

variables, while white nodes are assumed unobserved. An observation at the current timestep

ot is generated by a hidden state st, which is in turn generated by the previous hidden state

and action at timestep t− 1. Future states and observations depend on future actions, which

are determined by the policy π.
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a generative model as shown graphically in Figure 1. The model P (õ, s̃, ã,π)

– note the usage of tildes to indicate sequences – specifies the way the agent

expects the world to generate new observable outcomes. In particular, the agent

believes that there is some hidden state s in the world that connects observable200

actions a with observable world outcomes, or observations, o. One could say

that the agent is looking for hidden causes that explain the data it observes,

given its actions. It is worth mentioning that the hidden state variables do not

necessarily map in a one-to-one fashion to traditional physical quantities (such

as locations, velocities in 3D space).205

In active inference, the agent will infer beliefs over these hidden states based

on experiences, i.e. looking back into the past observations, as well as infer

future actions through a process of minimizing variational free energy. We can

factorize the generative model up to a certain time horizon H according to the

relations specified in the graphical model as210

P (õ, s̃, ã,π) = P (π)P (a0|π)P (s0)P (o0|s0)
H!

t=1

P (st|st−1, at−1)P (at|π)P (ot|st).

(1)

The variational free energy up to the current timestep t is then defined

as [50]:

F = EQ(s̃)

"
logQ(s̃)− logP (õ, s̃, ã)

#

= DKL

"
Q(s̃)||P (s̃|õ, ã)

#
$ %& '

divergence

− logP (õ)$ %& '
log evidence

= DKL

"
Q(s̃)||P (s̃, ã)

#
$ %& '

complexity

−EQ(s̃)

"
logP (õ|s̃)

#
$ %& '

accuracy

,

(2)

in which the approximate posterior distribution Q is introduced due to the

variational approximation [51], which is necessary as full Bayesian inference is

intractable for this kind of models. Note that wessume no uncertainty about the

actions we executed in the past, which allows us to omit π and set logP (ã|õ) = 0.

When unpacking the free energy equation, we see that when minimizing free215

energy, the agent is actually maximizing a lower bound on the log evidence.
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The difference between the free energy and the log evidence is given by the KL

divergence between the approximate posterior Q(s̃) and the true posterior. In

machine learning this is known as the evidence lower bound (ELBO) [52, 53].

Similarly, we can also write the free energy as a complexity and accuracy term.220

When minimizing the free energy, the agent is actively attempting to find the

least complex set of state values that still explain the observations the agent

receives.

Crucially, in active inference the agent will not only optimize its generative

model by minimizing F for past observations. In addition, the agent will also225

select actions that it believes will minimize its future surprise. However, as

future observations are not yet available, the free energy F cannot be computed,

and the expected free energy G is used instead to compare the effect of various

policies or actions in relation to the goal of reaching the preferred state. In

essence G is the amount of free energy the agent expects to achieve under a230

certain action sequence, or policy:

G(π) =
(

τ

G(π, τ) (3)

The expected free energy G(π, τ) for a certain policy π and timestep τ in

the future for the generative model is defined as:

G(π, τ) = EQ(sτ ,oτ |π)
"
logQ(sτ |π)− logP (oτ , sτ |π)

#

= EQ(sτ ,oτ |π)
"
logQ(sτ |π)− logP (oτ |sτ ,π)− logP (sτ |π)

#

= DKL

"
Q(sτ |π)||P (sτ )

#
$ %& '

risk

+EQ(sτ )

"
H(P (oτ |sτ ))

#
$ %& '

ambiguity

.

(4)

A key aspect here is that the agent has prior beliefs about future states, which

can be regarded as its goals. Mathematically, this means that the dependency235

on π in the prior over states P (sτ ) in the KL term can be left out. This reflects

that the agent wants to realize its preferred states of the world, independent

of which policies it takes. The expected free energy inherently balances the
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agent’s drive towards its preferences, i.e. minimizing risk, with the expected

uncertainty of the path towards the goal, i.e. reducing ambiguity.240

The expected free energy is calculated for each future timestep the agent

wants to consider and is then aggregated, after which the most likely sequence

of actions is inferred through

P (π) = σ(−γG(π)), (5)

where σ denotes the softmax function with temperature parameter γ, which

transforms the expected free energy of policies into a categorical distribution245

over policies. This effectively casts planning as an inference problem, and be-

liefs over policies are proportional to the expected free energy. The softmax

temperature γ then reflects the confidence the agent has in its current beliefs

over policies.

3.2. A hierarchical active inference model for navigation250

We now turn to the setting of navigation and mapping, and extend the gen-

erative model to explicitly incorporate pose and location information. In formal

terms, we can visualize the proposed generative navigation model as a two level

hierarchical model, as shown in Figure 2. At the lower level, the model rea-

sons about the relation between actuator actions and sensory observations. At255

the higher level, it reasons about the relations between possible moves between

locations and the possible corresponding states of the world and poses.

We can formalize this model mathematically, similar to the prototypical

model of the previous section, in a Bayesian framework as follows. Considering

the joint distribution over observations o, states s, actions a, locations l, poses p,260

moves m and policy π to be P (õ, s̃, ã, l̃, p̃, m̃,π), where tildes again indicate that

we are considering sequences of the corresponding variable. We can factorize

the model according to:

P (õ, s̃, ã, l̃, p̃, m̃,π) = P (õ, s̃i>0, ã, p̃i>0,π|l̃, s̃0, p̃0)$ %& '
lower level

P (l̃, m̃, s̃0, p̃0)$ %& '
higher level

, (6)
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Figure 2: Navigation as a hierarchical generative model for active inference. At the lower

level, highlighted in blue, the model entertains beliefs about hidden state sT ,t and the agents

pose pT ,t at the current timestep t. Again, the hidden states s give rise to an observations o,

whereas the hidden states s and pose p are influenced by the previous state, pose and action

or the higher level model incase of the initial states. At the higher level, highlighted in red,

the agent reasons about locations l. The next location lT +1 will be determined by executing

a move mT . Note that the higher level operates on a coarser timescale. The initial state sT ,0

and pose pT ,0 have a dependency on the current location lT , i.e. the initial state and pose

are “observations” of the higher level model.

.
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which contains a lower level and higher level part of the hierarchy. It is

important to note that these two levels operate on a different time scale. Note265

that we use the notation s̃0, p̃0, s̃i>0and p̃i>0 to indicate the sequence of lower

level initial states and lower level follow-up states respectively. The lower level

operates on a fine-grained time scale t, and is responsible for lower level visual

perception and path integration. The higher level operates on a coarser time

scale T , where a single step from T to T + 1 actually involves N + 1 steps270

0, 1, ..., N on the lower level. The current time step is denoted t for the lower level

or T for the higher level depending on the level we are currently considering.

We will omit the T when we are only considering a single slice of the lower

level. Although the entire sequences of variables cover the same time in the

environment, the lower- and higher level models operate on different levels of275

detail. The higher level operates at a coarser timescale, indicating that multiple

lower level time steps come to pass in one step of the higher level. Finally, in

the higher level the global policy is omitted, every move is treated independent

of each other. This hierarchical arrangement allows the agent to reason about

its environment further ahead, both temporal and spatial.280

We can further decompose these terms.

P (õ,s̃, ã, l̃, p̃, m̃,π) =

P (π)
!

T >0

P (mT )P (lT |lT −1,mT −1)P (sT ,0|lT )P (pT ,0|lT )

P (oT ,0|sT ,0)
!

t≥1

P (sT ,t|sT ,t−1, aT ,t−1)P (pT ,t|pT ,t−1, aT ,t−1, sT ,t)

P (oT ,t|sT ,t)P (aT ,t|π)

(7)

From which we can see that the generative model decomposes into terms

for both the lower level dynamics, i.e. how actions influence the next state and

pose. Furthermore we see that in the lower level action selection is modelled

through policy inference. Moreover, an observation likelihood is modelled. From285

the higher level part the low level initial states s̃0 = {s0,0, s1,0, ...} and p̃0 =

{p0,0, p1,0, ...} emerge as likelihood terms, while the higher level dynamics over

13



l̃ remain similar to the prototypical active inference case.

3.3. Variational (expected) free energy of the hierarchical model

Now that we have fully specified our generative model, we again turn the

the variational (expected) free energy that will be minimized in active inference.

Again, the agent infers posterior beliefs Q(s̃, p̃, l̃) over hidden states, poses and

locations through free energy minimization. Applying the free energy functional

to the hierarchical generative model, and using a mean-field approximation for

Q(s̃, p̃, l̃) = Q(s̃)Q(p̃)Q(l̃) we get

Fhier = EQ

"
logQ(s̃, p̃, l̃)− logP (õ, s̃, ã, l̃, p̃, m̃)

#

= EQ

"
logQ(s̃, p̃) + logQ(l̃)− logP (õ, s̃, ã, l̃, p̃, m̃)

#

= EQ

"
logQ(s̃, p̃)− logP (õ, s̃i>0, ã, p̃i>0|l̃, s̃0, p̃0) + logQ(l̃)− logP (l̃, m̃, s̃0, p̃0)

#

= Flow + Fhigh.

(8)

This falls apart into a term for the lower level and the higher level of the290

hierarchy, which we can further unpack. For the higher level we get

Fhigh = EQ

"
logQ(l̃)− logP (l̃, m̃, s̃0, p̃0)

#

=
(

T
DKL

"
Q(lT )||P (lT |lT −1,mT −1)

#
$ %& '

localization complexity

+ EQ

"
− logP (sT ,0|lT )− logP (pT ,0|lT )

#
$ %& '

localization accuracy

.

(9)

Here we plugged in the higher level part of Equation 7 and assume that our

moves from the past are observed without uncertainty. Again we find a com-

plexity and accuracy term, meaning that the agent searches the least complex

location description that explains the matching hidden states and poses. In295

practice this boils down to the agent building a mental map of its environment,

and localizing itself therein. Hence, localization and mapping naturally follow

from the free energy minimization.
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Similarly, plugging the lower level part of Equation 7 over all possible lower

level time values, into Flow we get300

Flow = EQ

"
logQ(s̃, p̃)− logP (õ, s̃, ã, p̃)

#

=
(

t

EQ

"
logQ(pt)− logP (pt|pt−1, at−1, st)

#
$ %& '

pose estimation

+DKL

"
Q(st)||P (st|st−1, at−1)

#
$ %& '

hidden state complexity

+ EQ

"
− logP (ot|st)

#
$ %& '
observation accuracy

.

(10)

Now we recover the same complexity and accuracy terms as Equation 2,

but complemented with a pose estimation term. This can be interpreted as the

agent engaging in visual perception on the one hand, and path integration and

odometry estimation on the other hand. We omitted the first time index from

the variables as we only consider one tick of the higher level model. Note that305

we considered the sum over all t for which s̃i>0 is applicable.

When considering future time steps τ , the variational free energy becomes

an expected free energy, which again unfolds to a term for each level in the

hierarchy. For the higher level this yields:

Ghigh(m̃, τ) = EQ

"
logQ(lτ |m̃)− P (sτ,0, pτ,0, lτ |m̃)

#

= DKL

"
Q(lτ |m̃)||P (lτ )

#
$ %& '

reach goal location

+EQ(lτ )

"
H(P (pτ,0|lτ )) +H(P (sτ,0|lτ ))

#
$ %& '

route ambiguity

.

(11)

Similar to Equation 4, this unpacks in a risk term to reach a prior goal310

location P (lτ ), and an ambiguity term. Intuitively this means the agent selects

a route to its goal location with the lowest ambiguity. Hence, if the agent

operates in a completely static environment without uncertainty, this basically

becomes equivalent to shortest path planning.
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For the lower level we get:315

Glow(π, τ) = EQ

"
logQ(sτ , pτ |π)− logP (oτ , sτ , pτ |π)]

= DKL

"
Q(sτ , pτ |π)||P (sτ , pτ )

#
+ EQ(sτ )

"
H(P (oτ |sτ ))

#

≈ DKL

"
Q(sτ , pτ |π)||Q(sT+1, pT+1|lT ,mT )

#
$ %& '

short term goal from higher level

+EQ(sτ )

"
H(P (oτ |sτ ))

#
$ %& '
observation ambiguity

.

(12)

Again this unfolds in a risk and ambiguity term, now encouraging the agent

to reach a short term preferred state and pose, while minimizing the entropy

of the expected observations. Crucially, here the prior preference P (sτ , pτ ) is

provided by the higher level plan. Concretely, we use Q(sT +1,0, pT +1,0|lT ,mT ),

which depicts the expected initial state and pose when reaching the next location320

lT +1, assuming we are following the first move mT of m̃ that minimizes Ghigh.

Note that both the lower level policy and the higher level moves are modelled as

independent in the generative model, even though that in planning they affect

each other through the process of inferring actions according to the expected

free energy G. The preferred higher level states guide the selection of higher325

level moves, which in turn set the preferred lower-level states, leading the to the

inference of the optimal lower level policy π.

So basically we recover a two stage navigation process, where at the higher

level the agent plans a route of moves visiting a sequence of locations up to the

goal location, and at the lower level the agent infers the actions that will bring330

it to the next location on that route.

4. Active inference SLAM

Now that we have established our generative model and the variational free

energy optimization objectives, we present how to instantiate such a model

in silico for navigation on a real robot with camera input. In this case, the335

observations are the raw pixels from the camera sensor, and actions consist of the

twist commands specifying the linear and angular velocity vl and va. Concretely,
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the agent requires installation of the various dynamics and likelihood models,

as well as the approximate posterior models over states, poses and locations.

For this, we draw inspiration from previous work on generative models [12], as340

well as a biologically-inspired SLAM algorithm [13].

4.1. Visual perception

For the lower level perception system, the agent needs to infer beliefs over

a hidden state space s, given pixel observations o. As it is hard to specify such

a mapping by hand, we turn to deep learning methods to learn such a repre-345

sentation from data. Following the example of earlier related techniques [11,

12, 54, 55], we model the likelihood P (ot|st), state dynamics P (st|st−1, at−1)

and approximate posterior Q(st) respectively by three neural networks pξ(ot|st),

pθ(st|st−1, at−1) and qφ(st|st−1, at−1, ot).

The likelihood model pξ reconstructs the current observation from the cur-350

rent state estimate. The state dynamics model pθ takes the previous state

estimate and action as input in order to get a new prior state estimate. Finally,

the posterior model qφ takes the same inputs but also utilizes the current obser-

vation as an extra input to get the posterior estimate on the state. Note that

this recurrent nature of both the prior and posterior models allow the model to355

capture temporal relations in the observation space. All three of these networks

output a mean and variance of a multivariate Gaussian distribution with diag-

onal covariance matrix. Finally, it is worth mentioning that only the prior and

posterior models are strictly necessary at runtime for planning and inference.

The likelihood model aids the training process by relating the agents state space360

to real world observations. This model can of-course also be used to visualize

the agents imaginations at runtime.

Given a dataset of sequences of actions and observations, we can then train

these neural networks end-to-end by minimizing the corresponding terms of the

variational free energy of Equation 10. This boils down the (negative) evidence365

lower bound (ELBO) that is well known from the Variational Auto Encoder

17



(VAE) [52, 53].

L =
(

t

DKL

"
qφ(st|st−1, at−1, ot)||pθ(st|st−1, at−1)

#
− log pξ(ot|st) (13)

Hence, we can train our neural networks accordingly, using the re-parameterisation

trick to backpropagate gradients from pξ to qφ.

4.2. Path integration370

The second part of the lower level generative model involves inferring beliefs

about the agents pose. We specify the pose as (x, y, θ), with x and y a position

in Cartesian space, and θ the heading or rotation around the z-axis. For the

pose dynamics model P (pt|pt−1, at−1, st) we simply estimate the odometry by

integrating the action velocities over the time interval ∆t:375

θt = θt−1 + va∆t

xt = xt−1 + vl∆t cos θt

yt = yt−1 + vl∆t sin θt

(14)

The posterior distribution Q(pt) is represented by a Continuous Attractor

Network (CAN) [13]. The CAN is implemented as a 3D cube that wraps around

the edges with dimensions x, y and θ. Activity is injected based on the esti-

mated odometry and exhibits locally excitatory, globally inhibitory connectivity

yielding the following energy distribution [56]:380

ε∆x,∆y,∆θ = exp
−∆x2 −∆y2

kexcp

exp
−∆θ2

kexcd

− exp
−∆x2 −∆y2

kinhp

exp
−∆θ2

kinhd

. (15)

Here kd and kp are the variance constants for place and direction. Pose estimates

based solely on proprioceptive information will eventually lead to estimation

errors and drift. Therefore, there is an extra excitatory link based on the current

belief state st. We keep an episodic memory of encountered state-pose pairs

(s, p), and if the current state st matches with one of the stored pairs, we inject385
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energy on the corresponding pose in the CAN. Hence the CAN closely resembles

grid cells in the rodent medial entorhinal cortex, with a similar torus layout [57].

Moreover, the state-pose pairs (s, p) will form the basis for building a topological

map for the higher level generative model.

4.3. Localization and mapping390

At the higher level, the agent needs to infer a posterior belief Q(lT ) about

its current location, and be equipped with a dynamics model P (lT |lT −1,mT −1),

i.e. which moves lead to which locations. To this end, we build an experience

map as a graph that keeps track of the location of the agent at the higher

abstraction level [13]. Each node in the graph defines a unique location l, to-395

gether with corresponding state-pose pairs (s, p). Links between nodes indicate

that the agent can traverse between those two nodes and are weighted with the

Euclidean distance between the two nodes in the map. The dynamics model

P (lT |lT −1,mT −1) can then be deduced from the adjacency matrix of the graph,

where possible moves are the outbound links of the experience node. For pos-400

terior belief distribution Q(lT |st, pt) on the other hand, we assign probability

inversely proportional to some distance function D between the current state

st and pose pt and the (s, p) pairs belonging to the different experience map

nodes. In particular, we use the cosine similarity to compare states and Eucle-

dian distance to compare poses.405

When none of the experience map nodes matches the current state and pose,

i.e. D[(st, pt), (s
i, pi)] > δ ∀i, where si and pi are the state and pose associated

with the ith node in the map, a new experience is added to the map2, linked to

2Although not the focus of this work, adding a new experience to the generative model

addresses an important issue in active inference and modelling in general; namely, the issue of

structure learning. Here, we implement structure learning in a straightforward way by adding

model nodes or components if they improve accuracy in relation to complexity cost. Formal

procedures for this kind of structure learning would be seen in the light of Bayesian model

comparison using variational free energy as a bound on model evidence. This aspect of model

optimisation is closely related to nonparametric Bayes and provides yet another hierarchical
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the previously visited node. This way, the map is gradually expanded as new

area is explored. The threshold value δ will then influence the granularity of410

the map, and is determined empirically. A higher δ will result in a coarser map,

but physically different locations might be erroneously mapped to the same

experience node.

Also, due to odometry integration drift, matching experiences will not have

exactly the same associated pose. These displacement errors are distributed415

throughout the graph by use of graph relaxation, shifting the stored pose ac-

cording to

∆pi =
1

2

) inbound(

j=1

(pj − pi −∆pij) +

outbound(

k=1

(pk − pi −∆pki)
*
. (16)

This enforces the map to be topologically consistent, even after loop closures,

which is often challenging in metric SLAM systems [1].

4.4. Navigation420

To navigate the environment, the agent now has to infer future moves and

actions, which minimize Ghigh (Eq. 11) and Glow (Eq. 12) respectively. In our

hierarchical model this is a two stage process. First, given a goal location lτ , the

higher level will infer a sequence of moves m̃ that minimize Ghigh. Next, we use

the higher level dynamics and likelihood model to get Q(sT +1,0, pT +1,0|lT ,mT ),425

which is basically the belief over states and poses that we want to attain at

T +1. This is then used as preferred prior probability for the lower level model.

Finally, we estimate Glow and infer the lower level policy π to follow. Actions

are then chosen from P (a|π), which is in our case a deterministic mapping. As

the agent executes the action, new observations are obtained, after which the430

agent updates its posterior beliefs and the process repeats.

In the higher level model, a sequence of moves m̃ basically corresponds to

a path in the experience map graph. The goal-directed term in Ghigh reduces

level that may be an important metaphor for hierarchical structure learning when exposed to

a new environment - or, indeed, in developmental neurorobotics.
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to the Euclidian distance between the visited and the goal location in the map.

The ambiguity terms can be estimated by looking at the variance of the (s, p)435

pairs associated with the visited experience nodes. The optimal route can then

easily be found using a shortest path algorithm with Ghigh as node weights.

In the lower level model, we adopt the approach proposed in [12] for estimat-

ing Glow through Monte Carlo sampling. For a discrete number of policies (i.e.

turn left, turn right, move forward), we sample N trajectories to approximate440

Q(sτ , pτ |π). From these samples we can then estimate both the KL divergence

term and the ambiguity term.

5. Experiments

In order to be able to validate the approach laid out in Section 4, we con-

ducted experiments on a real world robot navigating a warehouse-like environ-445

ment. We will first lay out the experimental setup and implementation details,

before we present the results of the hierarchical model.

5.1. Setup

We collected data by teleoperating a mobile robot through the IIoT lab

which has a warehouse-style layout. The lab consists of 4 aisles with racks as450

shown in Figure 3(a). This is a very challenging environment for visual SLAM,

as the visual inpu ts can be very similar on various locations. The robot, shown

in Figure 3(b), is a Turtlebot 2i equipped with various sensors mounted, such

as an Intel Realsense D435 camera, a Hokuyo lidar, TI mmWave radar and

an Astra 3D camera. In this experiment, we only use the RGB data of the455

Realsense in the hierarchical model, and the Astra RGBD data was used to

establish a baseline with a metric visual SLAM system. The entire dataset

consists of 65400 datapoints sampled at 100 ms intervals. For a more detailed

description of the dataset, we refer the reader to [58].
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Layer Neurons/Filters stride

q φ

Convolutional 32 2

Convolutional 32 1

Convolutional 64 2

Convolutional 64 1

Convolutional 128 2

Convolutional 128 1

Convolutional 256 2

Convolutional 256 1

Concat

Linear 512

Linear 2 x 32

p
ξ

Linear 256 x 15 x 20

Convolutional 256 1

Upsample

Convolutional 256 1

Convolutional 128 1

Upsample

Convolutional 128 1

Convolutional 64 1

Upsample

Convolutional 64 1

Convolutional 32 1

Upsample

Convolutional 32 1

p
θ

LSTM cell 512

Linear 2 x 32

Table 1: Neural network parameterization. The posterior model qφ processes images through

a convolutional pipeline, after which state and action vectors are concatenated for fully con-

nected layers. The likelihood model pξ reconstructs image data from a state vector. The

dynamics model pθ consists of an LSTM cell followed by a fully connected layer. All lay-

ers (except the last one) have LeakyReLU activations. It’s worth noting that these models

implement a form of amortization, i.e. they learn to infer.22



(a) Lab (b) Turtlebot

Figure 3: The dataset consists of trajectories recorded around racks in a warehouse lab. The

red lines depict the robot trajectories, with visual impressions on six different locations. All

data is captured with a Turtlebot 2i equipped with an Intel Realsense D435 camera.

5.2. Implementation460

For the visual perception pipeline we instantiate the three neural networks

as follows. The posterior neural network qφ is implemented as a convolutional

pipeline at the end of which the previous state and action values are concate-

nated before being processed in a final fully connected layer with variational

output (i.e. µ and σ). The likelihood model pξ performs the inverse opera-465

tion of the posterior model, generating an image from a state vector. In the

likelihood model we utilize shape preserving convolutions by settings stride and

padding to 1, while using and nearest-neighbor interpolation between every

other convolutional layer to upsample to the required image resolution. Finally

the dynamics model pθ consists of an LSTM cell [59] and a fully connected layer470

with variational output. Table 1 shows the exact parameterization for each

neural network layer in the architecture. The input resolution of the images is

320x240, whereas our state space has 32 dimensions. As action input we use

the raw twist command containing linear and angular velocities.

We split our dataset into a train set and test set, and train for 50 epochs475

using the ADAM optimizer [60] with initial learning rate 1e-4. During training,
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we randomly sample minibatches of size 8 of subsequences of length 8, mainly

due to memory restrictions on our GPU. We skip every other timestep in the

dataset, such that the neural network learns on 200ms × 8 = 1.6s time horizons.

The path integration and experience mapping are implemented based on the480

Milford’s RatSLAM implementation [56]. For the pose CAN we instantiate a

[61 × 61 × 36] cube for tracking the (x, y, θ) pose. For matching experiences

we use 1 − s1s2
‖s1‖‖s2‖

to find matching state vectors if the distance is below a

threshold of δ = 0.04. For poses we declare a match if the Euclidian distance is

below the threshold of δ = 6. If no match is found, a new experience is added485

to the map.

5.3. Results

We evaluate the resulting hierarchical model to resolve the following research

questions:

• Does the lower level model learn accurate representations for inference and490

prediction by minimizing free energy?

• Can these representations be used in the hierarchical model for generating

topological maps of the environment?

• Does the system infer sensible moves and actions by minimizing expected

free energy to engage in navigation?495

5.3.1. Lower level perception

Figure 4 shows the results when inferring states and poses for a sequence of

the test set using our lower level model. The top row shows the ground-truth

observation as captured by the camera. The second and third row show the

model reconstructions and corresponding state space values. One can see how500

the likelihood model is fairly good at reconstructing the ground truth from the

32 dimensional state vector. Also note that at the start in the reconstruction

a tripod appears, which was there in some of the train sequences, but not in
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the test sequence. The final row shows the corresponding pose CAN activa-

tion. One notices how the activity packet shifts upwards in θ direction as the505

robot is turning left. Note that we subsampled images over a half minute pe-

riod, to clearly show the dynamics, whereas the model is actually processing an

observation every 200ms.

Because we train a separate dynamics model pθ to predict next states given

actions, the model can also predict the consequences of its actions. By sam-510

pling trajectories from the dynamics model, and visualizing the corresponding

likelihoods we can get insights of the dynamics it learnt. Figure 6 (d) shows

imaginary rollouts for either turning left, turning right or moving straight ahead.

One can clearly see that the model successfully captures short term dynamics. It

is clear that the robot is turning in the aisle when turning left, or moving closer515

towards the rack when going straight. On the other hand, we also find that the

reconstructions becomes more and more blurry the further we predict in time,

especially for the turning left or right scenarios. This can be attributed to the

fact that on the one hand the model is only trained on subsequences of a limited

length of 8, and on the other hand that in the dataset the robot is much more520

often moving straight ahead compared to turning. Also, when moving straight

ahead all information about the next frame is basically in view, whereas when

turning you have a harder time imagining what comes next. This shows some of

the challenges of using deep learned state space models for long term prediction,

in that these typically become more blurry and temporally inconsistent as the525

time horizon grows bigger. Our hierarchical model addresses this by operating

at a coarser time scale, as well as by using what is effectively an episodic memory

in a graphical model to accommodate long-range dependencies.

5.3.2. Localization and mapping

To evaluate the mapping, we create a map with our system by feeding it a530

long, 30 minute sequence of the robot navigating various aisles. The resulting

map is shown on Figure 5. We can see that, despite the visual ambiguity of

different locations, our system is able to produce a consistent topological map.
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Figure 5: The generated experience map (left) and a comparison map extracted from lo-

calization with RTAB-Map [61]. The experience map is topological, while the RTAB-Map

map is metric. One clearly observes how the different aisles are mapped consistently and the

topological map matches the metric map up to an arbitrary rotation and scale factor.

It correctly maps the four different aisles, and flawlessly closes all loops in the

map.535

For reference, we added the localization over time of the robot using RTAB-

map [61], a real-time appearance based SLAM algorithm using RGB-D data.

Note that with RTAB-map we had to map the different aisles separately in 3

runs, and then combine the maps offline. Otherwise the map would collapse

due to the visual aliasing mapping different aisles onto each other. Also, as we540

compress the images to latent vectors of size 32, our map only takes up about

2MB in memory, whereas the resulting RTAB-map point cloud requires over

850MB.

5.3.3. Navigation and planning

To illustrate navigation as inference, we we equip the robot with a goal loca-545

tion and infer the actions as described in Section 4. Figure 6 shows visualizations

of the current state (a) and the goal location (c).

First, we use the experience map to find a higher level path from the desti-

nation to the goal, as shown in Figure 5. The first location in this path is then
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(a) Current state (b) Short term goal (c) Long term goal

(d) Imaginary policies: go-left (top), go-right (middle) and go-straight (bottom)

Figure 6: Imaginary policies (d) to achieve the short term goal (b) from the current state (a)

as part of the trajectory 5 that leads to the long term goal (c). When calculating Glow and

evaluating P (π), this results in a probability close to 1 to take the policy go-left.
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Figure 7: Different goals for the long term path of Figure 5. The lower level dynamics model

will take the corresponding states as preferred state goals sequentially.

used as preferred state for the lower level model, as visualized in Figure 6 (b).550

To evaluate Glow we sample N=10 trajectories for each considered policy

(i.e. turn left, turn right, go straight ahead) for a time horizon of 10 timesteps

in the future. We have visualized one imaginary trajectory for each policy in

Figure 6 (d). The agent correctly decides that turning left will bring it towards

its current preferred state. In this particular case the ambiguity term plays little555

role, as the expected free energy is dominated by the goal-directed term.

Finally we visualize the complete planned trajectory by interpolating in state

space between the experience nodes on the path in Figure 7. Note that in com-

parison with the imaginary rollouts in Figure 6 (d), the resulting observations

from the trajectory are much more crisp and temporally consistent even for these560

long time horizons. This illustrates the benefit of using the hierarchical model,

and building a coarse grained map as a graph structure for this navigation task.

6. Discussion

Active inference is a process theory of the brain that tries to explain au-

tonomous behavior [7]. In Section 2, we unpacked the active inference formu-565

lation focused on navigation. We introduced a hierarchical generative model,

which models visual inputs, poses and locations similar to the neural correlates
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that contain the visual cortex, grid cells and place cells. From our active in-

ference treatment, it followed that subtasks often identified in robotics such as

path integration, localization and mapping naturally emerge from minimizing570

free energy.

We implemented the lower level visual perception part using deep neural

networks, learning state representations purely from data by minimizing the

free energy objective. Although we found that this yields compact latent repre-

sentations that are suited for indoor navigation, we also saw that the temporal575

consistency is rather short-term. It is to be further investigated whether this

is due to the limited time horizon at train time, or a fundamental limitation of

the architecture.

For the higher level we opted for building an experience map, which can be

seen as a graph structured episodic memory. This is also biologically plausible as580

the hippocampus plays an important role in episodic memory [62]. However, the

free energy minimizing process is less outspoken in this case. To some extent,

the process of adding new nodes to the map can be interpreted as improving

accuracy, whereas the graph relaxation algorithm acts a complexity reducing

regularizer.585

A major shortcoming of our current approach, however, is the reliance on

pre-training the lower level dynamics model. It is necessary to create a suffi-

cient amount of data samples by manually driving the robot around in order

to collect enough examples to train the dynamics model for the environment.

Also, navigation is limited to the few trajectories that were tele-operated to590

build the map. Ideally, one would be able to build a system that constantly

navigates, explores, maps and learns its environment. To integrate exploration,

future work is needed to include novelty seeking terms to the formulation by

also incorporating uncertainties on the (hyper)parameters and inferring beliefs

thereof [50].595

Furthermore this reliance on a pre-trained lower level dynamics model cur-

rently precludes any form of lifelong learning, an important aspect of true auton-

omy. The way the lower level and higher level model cooperate forces the higher
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level model to reconsider and reevaluate all stored state templates. A possible

way to achieve some form of life-long learning is to introduce a sleep-wake cycle,600

where the agent retrains and updates stored experiences during charging cycles,

i.e. “sleep” and collects novel data during operation, i.e. ”wake”. However,

if the visual appearance and the internal dynamics of the world remain fairly

consistent, the model is capable of coping with geometric changes in the world

such as changes to room layouts and objects, by virtue of being related to the605

RatSLAM algorithm [63, 64].

In recent work [65], a recurrent neural network was trained to predict se-

quences of visual inputs from (the latent space) of variational autoencoders.

A natural mapping from egocentric information to an allocentric spatial ref-

erence frame was observed, including the induction of specialized units with610

response properties similar to head direction, place, band, landmark, bound-

ary vector, and egocentric boundary cells. These results are in line with the

Tolman-Eichenbaum machine [25], including reliable cell remapping, thus en-

abling transfer learning across episodes. Suggesting that a learnt latent hidden

state variable could be sufficient for the lower level generative model. However,615

explicitly encoding pose information in a separate random variable as in this

work allows for the resulting topological maps to be more human interpretable,

with an intuitive notion of spatial space. Nonetheless it is an interesting research

direction to see whether navigable maps can be obtained without explicit pose

encoding, but using only implicit state representations.620

Compared to traditional metric SLAM systems, our learnt state representa-

tions offers the benefit of reducing the dimensionality, and better cope with per-

ceptual aliasing. Our results show that indeed our system was able to correctly

perform loop closures for a long running sequence in a challenging environment

with visual ambiguity. The representation was also able to cope with small625

changes in the environment, as certain tripods and ladders were changed loca-

tion in between the different recordings. The generated maps, however should

not be considered as exact representations of the real – Euclidean – world, as

they represent a topological view of the environment.
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Finally the expected free energy is shown to be also an effective method630

for inferring both the higher level moves and lower level actions, selecting a

trajectory through the experience map and being able to execute it at the lower

level. Navigation becomes a two-stage inference process, which closely resembles

manually engineered navigation routines using global and local cost maps. This

allows for a holistic approach to navigation, the same mechanism drives the635

decision making process at both levels. This two-stage process complies with

the findings of [66], which indicates that human planning relies on a model based

prediction mechanism and that the limiting factor in human planning might be

the planning horizon. Furthermore in [67, 68] they make the same distinction

between lower-level motor commands and human path planning.640

6.1. Related Work

Active inference has been applied to a multitude of problem domains ranging

from the classical thermostat [69] and animal foraging [70] to perception [71],

robotic control [72] and reinforcement learning [73] among others. Many of

these applications of active inference, however, are applied only to a simplified645

simulated version of the real problem, allowing for hand crafted prior, posterior

and likelihood models as well as sate space definitions. More recent approaches

to active inference have focused on integrating deep learning in various ways in

order to scale active inference [11, 12, 73, 74, 75].

Ours is not the first approach to casting navigation as an active inference650

process, earlier work [9, 10] however, only considered small grid worlds and maps

thereof. In Kaplan and Friston [9], the authors consider a hand-crafted active

inference model with a shallow policy of two moves. On the other hand Friston

et al. [10] casted the navigation problem to be tackled with a sophisticated

active inference model. Sophistication in this context indicates the usage of655

search trees in order to infer the optimal action according to the expected free

energy G. Our approach however differs in the utilization of a hierarchical model

in conjunction with a learnable dynamics model, allowing our model to scale

beyond grid-worlds to the real world.
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The field of robotics has considered the SLAM problem for almost half a660

century [76]. Over this period many different approaches to mapping and navi-

gating evolved, ranging from engineered approaches [77, 78] to bio-inspired ap-

proaches [13, 79, 80]. These bio-inspired SLAM algorithms also rely on a pose-

CAN and experience map, however they traditionally use classical feature ex-

tractors to achieve the view-template matching. Traditional SLAM approaches665

often rely on different metrics to achieve the map building and localization and

separately the navigation. In contrast active inference and the free energy prin-

ciple allows for a holistic treatment of these concepts in a biologically plausible

way. There has been some research recently in the application of deep learning

on (visual)SLAM [81, 82, 83], however these approaches have typically focused670

on improving the perception aspect of SLAM, while leaving the mapping and

navigation aspects untouched.

7. Conclusion

In this paper, we have shown how navigation can be cast as active inference

using a hierarchical generative model. By unpacking the variational free energy675

and expected free energy terms, we presented how concepts like visual percep-

tion, path integration, localization, mapping and navigation naturally emerge.

Moreover, we have shown how such a hierarchical model can be instantiated

using recent advances in deep learning as well as other bio-inspired SLAM ap-

proaches. We validated our approach on real-world data captured by a mobile680

robot in a warehouse setting. We think that this research direction might offer

new insights both on how navigation works in the mammal brain, as well as

how to scale active inference to real-world applications.
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