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Abstract
Recently, the possibilities of detecting psychosocial stress from speech have been discussed. Yet, there are mixed effects and a
current lack of clarity in relations and directions for parameters derived from stressed speech. The aim of the current study is – in a
controlled psychosocial stress induction experiment – to apply network modeling to (1) look into the unique associations between
specific speech parameters, comparing speech networks containing fundamental frequency (F0), jitter, mean voiced segment
length, and Harmonics-to-Noise Ratio (HNR) pre- and post-stress induction, and (2) examine how changes pre- versus post-stress
induction (i.e., change network) in each of the parameters are related to changes in self-reported negative affect. Results show that
the network of speech parameters is similar after versus before the stress induction, with a central role of HNR, which shows that
the complex interplay and unique associations between each of the used speech parameters is not impacted by psychosocial stress
(aim 1). Moreover, we found a change network (consisting of pre-post stress difference values) with changes in jitter being
positively related to changes in self-reported negative affect (aim 2). These findings illustrate – for the first time in a well-
controlled but ecologically valid setting – the complex relations between different speech parameters in the context of psycho-
social stress. Longitudinal and experimental studies are required to further investigate these relationships and to test whether the
identified paths in the networks are indicative of causal relationships.
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Introduction

Stress is an increasingly relevant topic in modern society, with
the majority of people experiencing regular stress symptoms.
Considering the broad range of physiological and psycholog-
ical factors that are influenced by stress, a plethora of methods
have been developed to assess individuals’ stress levels.
Currently, commonly used methods determine stress levels

by self-report questionnaires on factors that are affected by
stress (e.g., mood) or broader indicators of psychological
well-being (Monroe, 2008). Besides self-reports, stress is also
commonly assessed through the measurement of biological
processes involved with stress exposure. The main advantage
of measuring stress through biomarkers, as compared to inter-
views and self-report instruments, is that these measures are
not subject to self-report biases. Furthermore, biomarkers al-
low continuous monitoring of stress levels. Many different
biological markers of stress have been identified such as heart
rate, blood pressure, cortisol, skin conductance, and many
more (for an extensive overview, see: Fink, 2017; Shields &
Slavich, 2017). Even though many of these methods are high-
ly effective in determining one’s stress levels, they are often
costly, requiring the attachment of electrodes (e.g., electrocar-
diography; ECG) or the extraction of a blood or saliva sample,
and demanding since they generally require interaction with a
physician or expert and specialized apparatus to collect the
data. With the emerging market of wearables (e.g.,
smartwatches), it has become increasingly easy to collect con-
tinuous data of stress-related physiological markers such as
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heart rate, skin conductance, and skin temperature. Although
the quality of these methods is constantly improving, it is not
always evident to continuously collect this data (e.g., costs,
privacy) besides often reported problems with regards to con-
tinuity of its accuracy (e.g., loss of connection). Therefore, the
need to further explore alternatives for stress measurements
remains. Recently, speech analysis has been proposed as a
possible physiological marker for stress, however, further re-
search is required (Giddens et al., 2013; Slavich et al., 2019).

Speech production is a complex process that requires the
involvement of many different parts of the body. To produce
speech, one first considers what words to say, tone of voice,
and manymore conscious aspects. However, the practical part
happens more automatically, which is the actual sound pro-
duction. When producing speech, the body modulates the ten-
sion of numerous muscles to push air through the vocal folds
and out the vocal tract to produce sound waves (Titze &
Martin, 1998). Since stress increases both muscle tension
and respiration rate, which in turn influence speech produc-
tion, it has been proposed that stress should be detectable from
the way speech sounds (Sondhi et al., 2015). A major advan-
tage of stress detection from speech is the non-intrusive ob-
tainability of speech data and the possibility of swift, cost-
effective, and remote stress assessments. As such, speech is
considered a promising psychophysiological measure for
stress assessment.

However, relatively little is known with regards to how
specific speech parameters interact in a context with or with-
out stress, and how this interaction of speech parameters
changes following a stressor. That is, speech research in the
context of stress is still in its infancy and has mostly flourished
at the fundamental level of parameter identification and devel-
opment. Speech consists of many different parameters (i.e.,
characteristics), which are contingent on many factors, both
conscious and automatic. Fundamental frequency,
Harmonics-to-Noise Ratio, and jitter are such speech param-
eters that have been found to change in stressed subjects
(Giddens et al., 2013; Kreiman & Sidtis, 2011; Mendoza &
Carballo, 1998; Orlikoff, 1990; Orlikoff & Baken, 1989).
Based on the available literature, 1) Fundamental frequency
(F0) can be considered a key speech parameter in the context
of different types of stressors. F0 refers to the frequency at
which the vocal cords vibrate, and gives rise to the idea of the
pitch of the voice. Research suggests a universal trend of
increase in F0 in stressed subjects (Giddens et al., 2010,
2013; Godin & Hansen, 2008; Johannes et al., 2007;
Koblick, 2004; Kreiman & Sidtis, 2011; Mendoza &
Carballo, 1998; Rothkrantz et al., 2004; Williams &
Stevens, 1972). Another widely used speech parameter is 2)
Harmonics-to-Noise Ratio (HNR), which indicates one’s vo-
cal quality by measuring the additive noise in the speech sig-
nal during voiced periods (e.g., when uttering vowels). HNR
has mainly been studied in physical stress tasks (e.g.,

workout), and has shown to decrease with increased physical
task stress (Godin et al., 2012; Godin & Hansen, 2015;
Koblick, 2004), but has shown mixed results in the context
of cognitive load/psychological stress (e.g., tongue twister,
reciting the alphabet backwards; Mendoza & Carballo,
1998). 3) Jitter refers to the frequency variation from cycle
to cycle and has been found to reduce in the context of stress,
however this trend has not shown to be universal (Giddens
et al., 2013; Mendoza & Carballo, 1998). Moreover, 4)
formants have been opted as promising features of speech in
distinguishing stress from speech, more specifically, the
shifting of formant 1 (F1) and formant 2 (F2) have shown to
be decent indicators of psychological stress (Sigmund, 2012;
Van Puyvelde et al., 2018). Formants are the primary reso-
nances of the vocal tract and can shift due to numerous con-
scious and unconscious processes and are dependent on one's
speech style (Shahin & Botros, 2001). There has, however,
not been consensus on the effects of psychological stress on
F1 and F2, which indicates it to be heavily influenced by
individual trends rather than global trends valid for all
speakers (Kirchhuebel, 2010; Sigmund, 2012). Since both
change in F1 and F2 play a role in stress, a ratio score could
be computed that is reactive to changes in either formant;
formant 1:2 ratio. Lastly, it has been suggested that with in-
creased physical stress, breathing patterns and muscle tension
impact different aspects of speech, such as inappropriate pause
placements (Van Puyvelde et al., 2018). As a final feature, 5)
Mean voiced segment length can be used to gain insight into
such speaking patterns, as it is the mean length of the contin-
uously voiced regions which is expected to decrease under
stress.

Even though research is currently lacking, the combination
of these speech parameters is highly promising for the detec-
tion and understanding of increased stress. However, it should
be noted that each of these parameters reflect unique features
of a complex speech production process. Therefore, these pa-
rameters are highly interrelated, where the unique interplay
between each of these measures remains to be modeled. In
particular, little is known regarding the complex interplay be-
tween speech parameters and how it is affected by stress
(Giddens et al., 2013; Kreiman & Sidtis, 2011). Much of the
recent work in stress detection from speech has been conduct-
ed in controlled, quiet lab settings or with vocal actors acting
out a stressful monologue rather than truly experiencing psy-
chological stress (Giddens et al., 2013), limiting the ecological
validity of previous findings. Moreover, it has been suggested
that the effect of stress on the formants, which are shifted as a
consequence, and jitter is heavily influenced by individual
differences in stress reactivity (Giddens et al., 2013; Scherer,
1986). This is likely to also be the case for other speech pa-
rameters and could explain the mixed results observed in the
literature. Considering the variety of environments, micro-
phones with different qualities, and interindividual differences
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in stress expression in speech, a number of researchers have
expressed the need for high-quality studies, using real partic-
ipants rather than voice actors, to compose large datasets of
speech data with high-quality stress labels and recorded in a
variety of contexts (Giddens et al., 2013; Slavich et al., 2019).
Moreover, many researchers investigated stressful versus non-
stressful events in their experimental designs without verify-
ing whether participants truly experienced stress by using
physiological markers or inquiries. Lastly, previous research
has primarily focused on how the entirety of indicators is
associated with stress, without highlighting the complex dy-
namics amongst the indicators and how each of the speech
features are uniquely related to stress.

The current study uses a design that takes the above-
mentioned shortcomings into consideration to establish a
common ground from which new insights can be developed.
Healthy individuals will be instructed to read out loud stan-
dardized texts both prior to and after exposure to a highly
controlled psychosocial stressor. Psychosocial stressors are
often described as one of the most powerful and ecologically
valid stressors (Kirschbaum & Hellhammer, 1994).
Psychosocial stress is induced in situations of social evalua-
tion, social exclusion, and other situations in which social
threat occurs (Dickerson & Kemeny, 2004). The need to be
associated with others and to maintain a social-self are core
psychological needs (Panksepp, 2003; Tossani, 2013). When
one of these needs is threatened, for example when being
negatively compared to others, social threat and thus stress is
induced (Dickerson & Kemeny, 2004). Social evaluation in-
duces an increased stress response, which is expressed in in-
creased electrodermal activity (i.e., skin conductance), subjec-
tive (experienced) stress, and negative affect (Dedovic et al.,
2009; Dickerson & Kemeny, 2004).

Given that our literature review demonstrates mixed effects
for parameters derived from stressed speech (and thus a lack
of clarity in their relations and direction), and that the interre-
lation between each of these constructs in the context of stress
(i.e., speech parameters, skin conductance levels, and self-
reported mood) remains to be explored, we will make use of
psychological network models (Borsboom & Cramer, 2013;
Newman, 2010). Network methodology is an increasingly
used technique to gain insight into complex relationships in
a data-driven manner, allowing mapping how each of the con-
structs of interest is uniquely related to one another. As such,
network models are well suited to explore whether and how
the complex interplay between each of the above-presented
core speech parameters is impacted by stress. In addition,
network analysis allows us to map how changes in speech
due to experimental manipulation of stress relate to changes
in negative affect. This study has two main aims: 1)We aim to
model the impact of a psychosocial stressor (the Montreal
Imaging Stress Task (MIST); Dedovic et al., 2005) on the
unique associations between the speech parameters of interest

(fundamental frequency, jitter, Harmonics-to-Noise Ratio,
formant 1:2 ratio, and mean voiced segment length) before
and after the stressor (aim 1); 2) we will model how stress
induced change in the speech parameters relates to change in
the negative affect ratings (measured with VAS) as these anal-
yses will shed light on the unique associations between the
change in speech features and negative affect following a psy-
chosocial stressor (aim 2). Given the exploratory data-driven
approach and undirected nature of the models, the obtained
network models are likely to allow further hypothesis gener-
ation, which will be informative for future confirmatory
studies.

Methods

Participants

A convenience sample of 148 students (M age = 26.7, SD age
= 12.5, 51 female, 97 male) was recruited through flyers,
social media, and University of Ghent mailing lists informing
them on the duration of the experiment, the possibility to win a
25 euro gift card, and a link to www.vopexperiment.be where
participants could plan their session through a youcanbookme
synchronization. The study was conducted in accordance with
the ethical guidelines of the Faculty of Psychology and
Educational Sciences of Ghent University, and all
participants gave written consent before participating.

Apparatus and procedure

Participants were seated in one of two nearly identical rooms
in front of a Huawei MediaPad M5 tablet. The task was writ-
ten in Java using Android Studio. Before any instructions
commenced, participants signed the informed consent form.
Then, participants were instructed on the procedure, how the
tablet and application worked (how to record, etc.), and the
cover story (cf. infra) was repeated to minimize the likelihood
of the actual purpose of the study being identified. Next, par-
ticipants were given a smartwatch (Chill+ Band) to put on
their dominant hand (from which electrodermal activity was
measured; EDA), and ECG electrodes were placed on the
sternum. The participants were informed on the purpose of
each of these measures with the cover story of it being used
to validate the smartwatch measures. Data quality was shortly
inspected before the actual experiment started. Firstly, partic-
ipants were requested to rate the VAS. Next, participants were
instructed to rest for 5 min to ensure they were relaxed and to
minimize the impact of any events occurring previous to the
experiments (e.g., rushing or nervousness). Following the
resting phase, participants were instructed to read-out-loud a
five-sentence piece of text that was the same for all partici-
pants and an often-used text in Dutch speech therapy:
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“Papa en Marloes staan op het station. Ze wachten op
de trein. Eerst hebben ze een kaartje gekocht. Er stond
een hele lange rij, dus dat duurde wel even. Nu wachten
ze tot de trein eraan komt. Het is al vijf over drie, dus het
duurt nog vier minuten. Er staan nog veel meer mensen
te wachten. Marloes kijkt naar links, in de verte
ziet ze de trein al aankomen.” From: van de Weijer
and Slis (1991)

Participants were instructed that the recording of the speech
was to train speech-to-text algorithms to hide the actual pur-
pose but to ensure the accurate pronunciation of the text. Next,
once again, the VAS sliding scales were answered, providing
a baseline measure for NA in a relatively unstressed state (i.e.,
following the first resting block). After that, the MIST (see
Stress induction procedure header) commenced, starting with
instructions and 2 min of practice trials during which no social
comparison was made and without a trial time limit. After the
testing phase of the MIST, another speech recording and VAS
segment was conducted, which corresponds to the post-stress
measurement. The end phase of the experiment consisted of
another 5-min resting block to prevent participants from leav-
ing the experiment in a stressed state, followed by another
block of VAS questions. The experiment was concluded by
conducting the Ruminative Response Scale (RRS) and the
Depression, Anxiety, and Stress Scale (DASS) in order to
get an estimation of the sample characteristics. At the end,
the participants were debriefed and informed on the actual
purpose of the study.

Stress induction procedure

In order to induce acute stress in our participants and investi-
gate the effects of stress on networks of speech parameters, we
used the Montreal Imaging Stress Task (MIST; Dedovic et al.,
2005). This is a sequence of arithmetic questions designed as a
stress induction task. To ensure a proper understanding of the
task, participants could practice for 2 min. Trials consisted of
mathematical tasks where the correct answer was situated be-
tween 0 and 9. Participants were instructed to answer these
trials as quickly as possible using arrow buttons to select the
right answer on a number wheel. After the practice block, the
actual task started and was performed for 5 min. During this
task, participants were shown a time limit per trial, which was
set at 90% of their average time during the practice block. In
addition, time limits were reduced by another 10% when they
answered three consecutive trials correctly. Throughout the
task, participants were presented a performance indicator
showing their performance as compared to the ‘average
participant’, which in reality was an unfeasible, fictional
benchmark. Participants were instructed that they should not
deviate from the average performance too much, and that if
they would the data would be unusable for the purpose of the

study. Throughout the task, the experimenter was sitting
across from the participant and taking notes. Since the partic-
ipant is always performing worse than the ‘average
participant’, and with the experimenter taking notes and the
constant time pressure, stress is induced. As a cover story,
participants were told that the study attempts to link biometric
signals to quick arithmetic solving skills.

Trial

Trials showed a numbered wheel from 0 to 9 on which the
participant could select the desired answer using arrow but-
tons and confirm when ready. Above the numbered wheel, an
arithmetic task was presented. The top of the screen showed a
red bar that was slowly disappearing, indicating the time left
for that specific trial. Another bar was shown representing
how well the participant was performing compared to others,
which was always negative. After answering, participants
were either shown a green overlay saying correct or a red
overlay saying incorrect. If they ran out of time, a red overlay
saying timeout was presented. The practice trials, which were
offered at the beginning of the task, did not have a time limit
and did not show a comparison to other participants. These
were used to familiarize the participant with the task as well as
getting a reference reaction time to calculate the trial time
limits in the experimental phase. See supplemental material
for screenshots.

Self-report measurement – negative affect; NA

To evaluate negative affect (NA) as an indicator of stress, self-
reported mood was measured at four time points (baseline
[T1], pre-stress [T2], post-stress [T3], post-recovery [T4]),
by using the three NA items of a seven-item mood question-
naire (adopted from the Profile ofMood States (POMS); Rossi
& Pourtois, 2012) presented on a sliding scale from 0 to 100
on different states (angry, tense, dejected). The answers to
these VAS are used as a manipulation check for the stress
induction procedure. More specifically, we used the items
representing negative affect (angry, tense, dejected) allowing
a compound score for NA (ranging from 0 to 100) where high
scores reflect being in a more negative mood state.

Extraction of speech parameters

Speech parameters were extracted using OpenSmile 2.3.0
(Eyben et al., 2010) and the GeMAPS configuration (Eyben
et al., 2015), a parameter set used in voice research and affec-
tive computing. Fundamental frequency is the central tenden-
cy of the frequency of vibration of the vocal folds during
speech, and as such, is closely related to pitch, which is de-
fined as our perception of fundamental frequency. Jitter is the
deviation in the F0 computed across consecutive time
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segments. Formant 1:2 ratio is the ratio of the energy of the
first formant (F1) to the energy of the second formant (F2).
Harmonics-to-Noise Ratio (HNR) is the relation of energy in
harmonic components to energy in noise-like components,
and lastly, mean voiced segment length is the average length
of continuously voiced regions (F0 > 0), thus sounds made
while the vocal cords vibrate. For more detailed information
on parameter calculation and extraction procedure, we refer
the reader to Eyben et al. (2010) and Eyben et al. (2015) and
the Supplemental Material.

Statistical analyses

The network analyses were conducted in R (for detailed ver-
sion information of the statistical software and packages used,
see supplemental materials). As part of the manipulation
check, we fitted generalized linear mixed models (GLMMs)
using the ‘lme4’ (Bates et al., 2014) and ‘car’ (Bates et al.,
2014; Fox et al., 2012) packages. The sum of squares for the
models was estimated using the type III approach, and the
statistical significance level was set to p < .05. Follow-up tests
with pairwise comparisons of the estimated marginal means
(EMMs) were performed with the ‘emmeans’ R Package
(Lenth, 2018).

We relied on Gaussian graphical models (GGMs), also
referred to as regularized partial correlation networks, to mod-
el the impact of stress on the unique associations between the
speech parameters of interest (fundamental frequency, jitter,
Harmonics-to-Noise Ratio, formant 1:2 ratio, and mean
voiced segment length), as well as the relation between
change in speech parameters and change in NA throughout
the stress induction procedure. For this purpose, we estimated
three separate GGMs. In particular, we computed: (1) a net-
work including each of the speech parameters of interest,
assessed following a resting phase (referred to as resting state
network), (2) a network including the speech parameters,
assessed immediately following the stress induction procedure
(referred to as stress network), and (3) a network including the
change scores for each of the speech parameters and the com-
pound measure for NA (referred to as stress reactivity
network). Change in NA / speech parameters was computed
by subtracting the resting state measure from the post-
stressor measure. As such, a positive value reflects an
increase in NA / the speech parameters throughout the
induction procedure.

Data preparation and network estimation To improve nor-
mality, all variables underwent nonparanormal transformation
using the huge package (Zhao et al., 2012), after which the
GGMs were estimated using the qgraph package (Epskamp
et al., 2012). As the name suggests, GGMs or regularized
partial correlation networks depict the unique associations
(partial correlations) between each of the variables (referred

to as “nodes”) included in the analyses. In network models,
the unique associations between each of the nodes are referred
to as “edges“. However, given that absence of an association
between two constructs does not always result in a correlation
coefficient of exactly zero, the need arises for a phase of reg-
ularization to prevent the inclusion of spurious associations.
For this purpose, we relied on the Graphical Least Absolute
Shrinkage and Selection Operator (gLASSO; Friedman et al.,
2014), which shrinks small associations, likely reflecting spu-
rious / false-positive findings, to zero (similar to multiple
comparison corrections, for more information see Friedman
et al., 2014 and Epskamp & Fried, 2018 for a tutorial on
GGMs including this regularization technique). The model
with the best fit was then selected using the extended
Bayesian information criterion with hyperparameter γ = 0.5.
This hyperparameter setting errs on the side of parsimony,
maximizing model specificity (Epskamp & Fried, 2018). As
a result, the obtained network model is less likely to include
false-positive associations (for a more detailed discussion of
estimation of GGMs, including an extensive tutorial, see
Epskamp & Fried, 2018). To examine which nodes take a
more central role in the model, we estimated node strength
centrality. Strength centrality is calculated as the sum of ab-
solute edge weights connected to each node in the model
(Costantini et al., 2015). As such, high scores on strength
centrality reflect that the node is more strongly connected.
Finally, we used a node-wise regression approach to estimate
node predictability, the proportion of variance of each node
that is explained by its neighboring nodes (Haslbeck & Fried,
2017). For this purpose, we relied on the mgm package
(Haslbeck & Waldorp, 2015).

Network visualization The network models were plotted with
qgraph, using a modification of the Fruchterman–Reingold’s
algorithm (Fruchterman & Reingold, 1991). This algorithm
aims to position nodes in the network based on their level of
connectivity (but see Jones et al., 2018). Unique associations
between nodes are represented by edges. The thickness of
each of the edges reflects the strength of the association,
whereas the color and type of line (full/dashed) reflects the
valence of the edge (blue/full: positive association; red/
dashed: negative association). The GGMs are undirected and
as such allow no interpretation regarding the direction of
effects. To facilitate visual comparison between the resting
state and stress network, the layout of these two networks
was constrained to be identical (using the average layout of
both models). In addition, for these two networks, we plotted
the thickness of each of the edges relative to the strongest edge
observed over both models. Moreover, for each of the nodes,
we present the proportion of explained variance by the
neighboring nodes as a pie chart in the outer ring of the
node (node predictability). Strength centrality was
standardized to facilitate interpretation.
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Network comparison To compare the resting state network
and stress network, we first correlated the two obtained adja-
cency matrices. Similarly, we examined how the estimates of
Strength centrality obtained for each of the network models
correlated, as well as node predictability. We then proceeded
with permutation tests for network structure invariance,
allowing to test whether the network structures significantly
differed, and global strength invariance, testing potential dif-
ferences between the resting state- and stress network in
(overall) strength of connectivity (van Borkulo et al., 2017).
For this purpose, we relied on the NetworkComparisonTest
package (for dependent samples; van Borkulo et al., 2016).

Evaluation of the stability and accuracy of the models To
evaluate the stability and accuracy of each of the obtained
network models, we followed bootstrapping procedures set-
out by Epskamp, Borsboom, and Fried (2018). In particular,
using the bootnet package (Epskamp & Fried, 2017) we
modeled sampling variability in edge weights (edge accuracy)
and plotted significant differences in edge weights.
Furthermore, we evaluated the stability of the indicator of
node centrality, modeling the extent to which the order of
strength centrality remained stable in subsets of the data (cf.
case-dropping subset bootstrap). To be considered stable, the
corresponding correlation stability coefficient should be ≥ .25
(Epskamp et al., 2018).

Results

Due to technical malfunctions, all ECG data was unusable and
a part of the EDA has not been collected properly for some
participants throughout the experiment (n = 32). Therefore,
the EDA data (together with self-reported mood data)
that was collected accurately is used to validate the
stress induction method, but will not be included in
the network analyses (n = 148).

Manipulation check

Before the main analysis, a manipulation check was conduct-
ed to verify whether the stress induction was successful by
comparing both negative affect (NA) pre- and post-stress in-
duction, and EDA pre-, during-, and post-stress induction.
Given the non-normality of the EDA data, a series of
(G)LMM (generalized linear mixed models) were conducted
to ensure the use of a statistical model that best fits the under-
lying distribution (e.g., normal, gamma). Based on the Akaike
information criterion (AIC), EDA was best described by a
gamma model with a log-link (AIC = 802.5).

Corresponding models were fit with only time (pre - post
for negative affect (two levels) and pre - during - post for EDA

(three levels)) as an independent variable and subject ID as
random intercept. The LMM for negative affect showed a
significant effect of time (see Fig. 1a), p < .001 with post-
stress scores showing significantly more negative affect than
pre-stress, b = 6.45, SE = .877, t = – 7.35, p < .001. Moreover,
the GLMM for EDA also showed a significant effect of time
(see Fig. 1b), χ2 = 247.59, p < .001, with EDA increasing
during the task versus prior to the task, b = .621, SE = .029, z =
– 10.29, p < .001, EDA after the task being higher than during
the task b = .776, SE = .035, z = –5.53, p < .001 and EDA after
the task being higher than prior to the task, b = .482, SE =
.023, z = –15.513, p < .001.

To further underline the stress induction effectiveness, we
ran a Pearson correlation between the delta scores computed
for EDA and negative affect. The delta scores were computed
by subtracting the data from the resting state measure from the
post-stressor measure for these variables, resulting in scores
that indicate an increase after the stress induction when posi-
tive, and a decrease when negative. A significant correlation,
r(114) = .19, p = .04, was found following the expected trend
of negative interrelatedness, therefore supporting the stress-
induction method.

Impact of stress on the interrelations
between speech parameters (aim 1)

Our first aim was to model the impact of stress on the interre-
lations between the speech parameters of interest by compar-
ing a pre-stressor network with a post-stressor network. These
networks consist of nodes representing variables, connected
by edges representing regularized partial correlations. As
such, every edge (connection) between two nodes (variables)
represents the sign (positive/negative) and the weight
(strength) of the connection, depicting the unique associations
between two nodes while controlling for all other nodes in the
network (Epskamp et al., 2018). Figure 2a presents the
unique associations between fundamental frequency (F0),
jitter (JIT), Harmonics-to-Noise Ratio (HNR), formant 1:2
ratio (F1/2), and mean voiced segment length (VO) at rest
(n = 148). The strongest connection in the network occurs
between HNR and F0 (.75). HNR is positively associated
with F0 and VO. The latter two constructs are negatively
associated with one another. In addition, VO and HNR are
negatively associated with JIT. For HNR, an additional
negative edge emerges with F1/2. Finally, we observe a
negative association between JIT and F1/2.

The pattern of unique interrelations between the speech
parameters of interest does not seem to be affected by the
stress induction procedure. That is, the network model obtain-
ed based on the speech fragments that were collected imme-
diately following the stressor (Fig. 2b, n = 148), is highly
similar to the resting state network (Fig. 2a). This is also
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reflected by the indicator of node centrality (Fig. 3), which
quantifies how well a node is directly connected to other
nodes by adding up the strength of all connected edges to a
node (Epskamp et al., 2018). In particular, in terms of node
strength, HNR is the most central node in each of the net-
works, followed by F0, VO, and JIT. F1/2 is the least connect-
ed node in the model. This is also reflected by the amount of
explained variance for each of the nodes (i.e., node predict-
ability). In particular, node predictability of HNR was .85 and
.83 in the resting state and stress network, respectively, where-
as only 24% and 31% of the variance in F1/2 was explained by
the neighboring nodes in the resting state and stress network
respectively (see Table 1 for estimates of node predictability

and supplemental material for, edge accuracy, edge
differences, and centrality stability).

In line with the visual interpretation of the obtained net-
work models, a statistical comparison of the models suggested
strong overlap. That is, we observed a correlation of r = .99
between the adjacency matrices of both networks. Similarly,
centrality strength and node predictability for the resting state
and post stressor networks each reached r = .99. Indeed, the
network comparison test suggested no significant differences
in terms of overall network structure (M = 0.06, p = .93;
network invariance test) or strength of connectivity (resting
state network = 2.33; post stressor network = 2.44; S = 0.11,
p = .57; global strength invariance test).

Fig. 1 a; left Negative affect pre- and post-stress induction. b; right EDA pre-, during, and post-stress induction

Fig. 2 Unique associations between the voice parameters pre- (a; left) and
post-stressor (b; right). Note. Edges in the models represent the unique
associations between each of the nodes. Edge thickness reflects the
strength of association, where strong associations are presented using
thicker edges. Blue/Full edges represent positive associations, whereas

red/dashed edges represent negative associations; the edge weights pre-
sented in the model can also be found in the edge weight matrix
(Supplemental Tables 6, 7). Node predictability (R2) is visualized as a
pie chart around each node and can also be found in Supplementary
Table 1
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Modeling the unique associations
between stress reactivity and change
in speech parameters (aim 2)

Figure 4 (n = 148) depicts the unique associations between
change in negative affect (NA) and change in the speech pa-
rameters following the stress induction procedure with every
edge (connection) between two nodes (variables) represents
the sign (positive/negative) and the weight (strength) of the
connection, depicting the unique associations between the two
nodes while controlling for all other nodes in the network
(Epskamp et al., 2018). Interestingly, change in JIT was the
only speech parameter that was directly connected to change
in NA. In particular, the experience of more negative affect
throughout the stress induction procedure was directly related
to increased JIT. All other speech parameters were only indi-
rectly connected to change in NA through JIT. Change in JIT
was negatively related to change in HNR and F0, and VO,
which suggests that increases in JIT due to the stress induction
procedure were related to decreases in HNR, F0, and VO. In
addition, we observed positive associations between HNR and
VO/F0, and F0 and F1/2. Finally, we observed negative asso-
ciations between F1/2 and VO/HNR. Based on node strength,
change in HNR and jitter emerged as the most central nodes in
the network, whereas change in NAwas the least central node

Table 1 Node predictability for pre-stressor network (aim 1), post-
stressor network (aim 1), and change network (aim 2)

Node R2 Pre-stressor
network

R2 Post-stressor
network

Change
network

F0 .78 .72 .16
HNR .85 .83 .37
JIT .41 .42 .35
VO .40 .44 .19
F1/2 .24 .31 .12
NA .02

Fig. 3 Strength centrality

Fig. 4 Unique associations between change in negative affect and speech
parameters. Note. Edges in the model represent the unique associations
between each of the nodes. Edge thickness reflects the strength of
association, where strong associations are presented using thicker
edges. Blue/Full edges represent positive associations, whereas red/
dashed edges represent negative associations; the edge weights
presented in the model can also be found in the edge weight matrix
(Supplemental table 8). Node predictability (R2) is visualized as a pie
chart around each node and can also be found in Table 1

Behav Res



(see supplemental material for estimates of node predictabili-
ty, edge accuracy, edge differences, and centrality stability).

Discussion

The two aims of the present study were to gain insight into (1)
the unique associations between specific speech parameters
(fundamental frequency, jitter, Harmonics-to-Noise Ratio,
voiced segment length, and formant 1:2 ratio) after as com-
pared to before experiencing psychosocial stress, and (2) how
change in these speech parameters was uniquely associated
with change in self-reported NA following the stressor. We
measured (change in) speech in the context of experimentally
induced stress in a large sample of individuals selected from
the community. The psychosocial stress induction was suc-
cessful, as evidenced by higher skin conductance levels after
the stress induction as compared to baseline, as well as in-
creased negative affect following the stress induction.
Moreover, we observed a significant positive association be-
tween these measures, indicating that the more skin conduc-
tance levels were increased following the psychosocial stress
induction, the more negative mood was reported, providing
support for the validity of the stress-induction method. As
such, the comparison between the resting state and stress net-
work allows us to test for changes in interrelations between the
speech parameters after experiencing stress (aim 1).

First, network analyses were conducted on the selected
speech parameters of interest at baseline, representing the
unique associations between each of these parameters in a
resting non-stressed state. This network shows Harmonics-
to-Noise Ratio (HNR) as the most central node, being con-
nected to all other speech parameters. The strongest connec-
tion that occurs is the positive connection between HNR and
fundamental frequency (F0), implying that less noise is pres-
ent in higher-pitched voices and vice versa, as has been re-
ported by Ferrand (2002). Furthermore, results show that sev-
eral connections between most parameters are observed,
which differ in their strength and orientation, indicating an
interacting and cohesive network.

When comparing this baseline network with the post-
stressor network, no differences between the interrelations of
the different speech parameters were observed, suggesting
that the relations between the parameters (selected as nodes
in the current study) do not change after a stress induction
procedure. More specifically, in both models, (1) HNR
emerged as the most central node, (2) the strongest connection
was observed between HNR and F0, and (3) all parameters
were connected to at least two out of four other nodes in the
network. The fact that the network of speech parameters was
highly similar after versus prior to the stress induction proce-
dure is an interesting and innovative observation, as it shows
that the complex interplay between each of the above

presented core speech parameters is not impacted by stress,
and as such cannot be used as an indicator for stress. In par-
ticular, the unique interrelations remained stable in a stressed
versus a non-stressed state.

In addition to comparing the pre- and post-stress networks
of speech parameters, we composed an individual network
model of change (delta) scores of each of the parameters and
self-reported negative affect to gain insight into the unique
relations between speech parameters and individual differ-
ences in stress reactivity (aim 2). We found that changes in
jitter (JIT), a fairly central speech parameter in the estimated
network, were directly positively related to changes in self-
reported negative affect, after controlling for the influence of
other parameters in the network. Even though after the regu-
larization procedure the strength of this association was rela-
tively weak, this finding is important as it suggests a unique
association between speech and self-reported negative affect.
Jitter quantifies the modulation of the periodicity of the voice
signal and as such is related to the amplitude variation of the
sound wave and is mainly affected by the lack of control of
vibration of the cords (Teixeira et al., 2013). Increased jitter
has been observed in pathological voices (Teixeira et al.,
2013) and in physical task stress (Koblick, 2004), whereas
decreased jitter is often discussed in the context of psycholog-
ical stress (Giddens et al., 2013; Van Puyvelde et al., 2018).
Yet, the literature is inconsistent, as both a decrease and an
increase in jitter have been observed with increased stress in
different task designs (Giddens et al., 2013). However, jitter
has not been reported in relation to negative affect (Giddens
et al., 2013). In early studies, it has been suggested that jitter
decreases in direct relation to stress levels (as described in
Giddens et al., 2013; Van Puyvelde et al., 2018) and pointed
out that jitter might be a better indicator of stress than F0
(Hecker et al., 1968;Mendoza&Carballo, 1998).More recent
studies have shown jitter to be a crucial feature in the classi-
fication of stress and emotion (e.g., Li et al., 2007; Rothkrantz
et al., 2004). However, jitter has especially been highlighted in
the field of speech pathology, being mainly affected by a lack
of control over the vibration of the cords, which could explain
its occurrence in psychosocial stress (Teixeira et al., 2013). As
such, the unique association between the change in jitter and
the change in self-reported negative affect following a potent
psychosocial stressor, while controlling for other effects and
variables, opens a new avenue to the research field of speech
parameters in the context of psychological stress.

Interestingly, even though the network model of the current
study depicts a direct connection between change in self-
reported negative affect and change in jitter, jitter is by itself
strongly linked to several other speech parameters in the net-
work model. A direct connection with F0 was to be expected
considering that jitter represents the variations that occur in the
fundamental frequency (F0). Moreover, especially a strong
association between change in jitter and change in HNR is
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observed, which together with jitter form the most central
nodes of the network. Prior studies have demonstrated that
HNR is more sensitive to subtle differences in vocal function
than is jitter (Awan & Frenkel, 1994). Although direct con-
nections between the other speech parameters and negative
affect were expected, such as a positive unique association
between negative affect and F0 (Giddens et al., 2013), our
findings suggest that these parameters function through jitter
in their connections to changing mood in the context of psy-
chosocial stress. It could be argued that, at least to some ex-
tent, these parameters function through HNR and its strong
interplay with jitter too.

To the best of our knowledge, this study is the first to
examine the impact of psychosocial stress on the unique in-
terrelations between key speech features, and how change in
these parameters in the context of psychosocial stress relates
to change in self-report measures for stress (i.e., negative af-
fect). Our findings provide several implications for the mea-
surement of speech in the context of psychosocial stress, as
well as for the measurement of stress via speech features. That
is, our findings point towards the stability of the network
structure of speech features in the context of stress, and the
role of jitter as the only speech feature which showed a direct
association with self-reported negative affect, suggesting the
importance of jitter in the context of stress assessment via
speech. The present study used a standardized method of psy-
chosocial stress induction in a highly controlled lab setting.
The analysis has been conducted using an exploratory and
data-driven method which allows to model complex interrela-
tions in an intuitive manner. Therefore, the present study’s
main strength is the generation of trustworthy hypotheses.

Future studies using large sample sizes whilst maintaining
a within-subject design in a controlled setting are absolutely
warranted. On the other hand, considering the accessibility of
high-quality microphones, combining frequent speech record-
ings with continuous smartwatch recordings of heart rate and
skin conductance will generate more dynamic results that
could withstand and overcome prior limitations of controlled
lab settings and can uncover the stability and strength of the
different relations. However, this is to be confirmed by basic
experimental research investigating the complex relation be-
tween speech and stress in a well-controlled setting, which
was the aim of the current study. Finding the key parameters
of stressed speech and being able to use these to assess stress
levels in a wide variety of settings, swiftly and cost-effective-
ly, will enable us to monitor excessive stress levels and set up
interventions where necessary.

Even though the current study has several strengths such as
such as its innovative nature and ecological validity, some lim-
itations should be discussed. Firstly, it should be noted that
network models are merely descriptive rather than predictive.
These networks are undirected and therefore do not allow any
statements regarding the direction of the observed effects. This

data-driven, explorative analysis, is hypothesis generating as
the identified paths in the networks might be indicative of caus-
al relationships which should be tested in future prospective or
experimental research. Secondly, as networkmodels value each
individual relation between the different parameters in an un-
guided manner, we were limited in the number of parameters
that could be included in the model due to the sample size. The
current set of parameters was selected based on literature re-
search and has brought forth a network of interesting relations.
However, an expanded network would give more insight into
the stability of these relations, as well as further explain the
dynamics between speech parameters and negative affect.
Thirdly, the required larger sample size to do so would also
increase the strength of the network comparison (resting state
vs. stressed) made. However, in this context both networks
were highly similar. As such, the non-significant findings for
the network comparison test are unlikely to be driven by a lack
of power. Overall, jitter seems to be a central node in the rela-
tion between speech and negative affect, which should there-
fore be further studied using confirmatory analyses. Fourthly,
due to some technical setbacks, most of the collected data for
ECG and EDAwas not usable. This is especially unfortunate as
this would give insight not only into the interplay between
speech and self-reported negative affect but also into the rela-
tions with other indicators of objectively experienced stress
(e.g., biomarkers).

Conclusions Stress has long been a much-discussed topic, and
as such many different methods for stress measurement have
been proposed over the years. Recently, speech analysis has
been proposed as a possible physiological marker for stress
which can be measured in a remote and non-invasive matter.
The current study deployed network analysis to investigate the
unique associations between specific speech parameters prior
to and following exposure to a psychosocial stressor (aim 1),
and to model the unique associations between specific speech
features and self-reported stress (i.e., experienced negative
affect; aim 2). For this purpose, we relied on a well-
validated stress induction procedure in a controlled lab setting.
The network of speech parameters was highly similar after
versus before the stress induction, suggesting that the complex
interplay between each of the used speech parameters was not
impacted by stress. Interestingly, changes in jitter were direct-
ly positively related to changes in self-reported negative af-
fect, indicating that this speech feature may be of particular
interest in the context of stress assessment. These findings
warrant further investigation in the diagnostic value of speech
features tomonitor stress in daily life, which requires intensive
time series data.
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