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Abstract

Avoidance towards innocuous stimuli is a key characteristic across anxiety-related disorders

and chronic pain. Insights into the relevant learning processes of avoidance are often gained

via laboratory procedures, where individuals learn to avoid stimuli or movements that have

been previously associated with an aversive stimulus. Typically, statistical analyses of data

gathered with conditioned avoidance procedures include frequency data, for example, the

number of times a participant has avoided an aversive stimulus. Here, we argue that further

insights into the underlying processes of avoidance behavior could be unraveled using

computational models of behavior. We then demonstrate how computational models could

be used by reanalysing a previously published avoidance data set and interpreting the key

findings. We conclude our article by listing some challenges in the direct application of

computational modelling to avoidance data sets.
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Decomposing conditioned avoidance performance with computational models

Excessive avoidance towards innocuous cues, situations, or movements is a central

characteristic of anxiety-related disorders and chronic pain (American Psychiatric

Association, 2013; Treede et al., 2015). Avoidance of aversive events is generally a protective

strategy (e.g. avoid passing a red traffic light), fostering an organism’s well-being and

survival (i.e., adaptive avoidance). When avoidance is expressed in largely safe situations

(e.g., flight phobics avoiding boarding planes), it may impede individuals’ everyday

functioning (i.e., maladaptive avoidance). To date, a major bulk of research in Clinical and

Health Psychology focuses on unveiling the basic conditions under which adaptive and

maladaptive avoidance is acquired, via mostly laboratory research (Arnaudova, Kindt,

Fanselow, & Beckers, 2017; Beckers & Craske, 2017; Dymond, 2019; Meulders, Franssen,

Fonteyne, & Vlaeyen, 2016; Pittig, Wong, Glück, & Boschet, 2020). It has been argued that

by studying the basic processes of avoidance learning in experimental settings, more insight

can be gained regarding both adaptive and maladaptive forms of avoidance (Krypotos,

Vervliet, & Engelhard, 2018).

Avoidance learning procedures typically entail the learning of pairings between different

stimuli/contexts with an aversive event and how the occurrence of such events can be

prevented (Krypotos, Effting, Kindt, & Beckers, 2015; LeDoux, Moscarello, Sears, &

Campese, 2017; Pittig et al., 2020). Such procedures have proven paramount in unveiling the

basic learning processes (e.g., Mowrer, 1951), and the relevant neural substrates (LeDoux &

Daw, 2018) of how defensive responses (e.g., escape or avoidance) arise. To date, avoidance

learning procedures have been extended so as to include costs (e.g., Pittig & Dehler, 2019;

Rattel, Miedl, Blechert, & Wilhelm, 2017), competing goals (e.g., Claes, Karos, Meulders,

Crombez, & Vlaeyen, 2014), and virtual reality contexts (e.g., Glotzbach, Ewald, Andreatta,

Pauli, & Mühlberger, 2012).
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Most often researchers use traditional analytic methods confined to the experimental

design to make statistic inferences. Specifically, these entail the binomial categorization of

avoidance and non-avoidance responses, and the corresponding calculations of the rate of

(non-)avoidance. If, for example, a participant avoided in 5 out of the 10 trials, then the

avoidance rate is 50% (Dymond, Roche, Forsyth, Whelan, & Rhoden, 2008; Krypotos &

Engelhard, 2018; Vervliet & Indekeu, 2015). Alternatively, when using a continuous measure

of avoidance, avoidance may be defined as the distance that the participant moves a virtual

stimulus (e.g., an avatar) from a source of potential threat (Meulders et al., 2016; Mobbs et

al., 2007). Despite the two approaches of data handling offer a straightforward way to

measure avoidance responding, they are ambivalent about the involved learning processes.

To illustrate, following Mowrer’s ‘two-factor theory’ (Mowrer, 1951), the observed behavior

could be attributed to current fear levels, with the participants emitting the observed

behavior in order to escape the currently experienced fear, whereas according to Seligman

and Johnston (1973), avoidance is the result of expecting an impending aversive event to

occur. Arguably, our field could move forward faster if our analytic approaches were better

able to disentangle the underlying processes involved during avoidance learning.

Assuming a well-executed experiment, one way to shed light on the underlying

processes of avoidance is by using a computational model (Sharp & Eldar, 2019; Sutton &

Barto, 2018). A computational model is here defined as the quantitative formalization of

theories, hypotheses, and descriptions of narrative models (Schrater, Körding, & Blohm,

2019; see also Stafford, 2009; Thagard, 2018 for relevant discussions about computational

models and their relations to philosophy of science). The goal of computational modeling is

to link theoretical models of psychological processes (e.g., fear, expectancies) to the observed

data (e.g., avoidance rates). As such, it is not a method for drawing statistical inferences of

different distributions (e.g., in case of a t-test) (Lee, 2011). Computational models rely on

translating the key latent processes of a theory (e.g., the prediction that a stimulus will be

followed by an aversive event), into mathematical algorithms that link the latent processes
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with the observed behavior (e.g., frequency of avoidance).

To give an example, many reinforcement computational models characterize behavioral

experiments using two key parameters (e.g., Ahn et al., 2014; Lindström, Selbing, Molapour,

& Olsson, 2014). The first one, is learning rate, which refers to the impact that the

discrepancy between an expected value (e.g., if I do press the button, I will not receive a

painful stimulus) and the actual value (e.g., painful stimulus presentation) of an action may

have on the value of the action the next time it is to be performed. A low learning rate

means that many trials are considered in order to determine the current value of the action,

whereas a high learning rate means that less trials are considered. The second key parameter

is the outcome impact/sensitivity. This parameter reflects how much one values a reward

(e.g., not receiving an electrocutaneous stimulus or receiving a monetary reward), with

higher values meaning that a reward is highly liked and as such the emitted action will be

repeated, or disliked a punishment (e.g., receiving an electrocutaneous stimulus or not

receiving a monetary reward), with again higher values meaning that dislike is strong and as

such the participant is expected to emit a different behavior. Naturally, the number and

type of parameters may differ per model and it is up to the researcher to select, or build,

theoretically principled models.

There are at least three important reasons why research in avoidance learning could

benefit from computational modeling (see Marr, 1982 for extensive discussions). First,

multiple computational models, each referring to the underlying latent processes of different

narrative models, can be directly compared (Claeskens & Hjort, 2008). As such, multiple

theories could be pitted with each other using a single data set. Second, by relying on

computational formalization of theories, rather than only narrative accounts of them,

researchers can make more specific predictions about the to-be-obtained results, rather than

rely on a proposed pattern of results (e.g., one group will avoid less than the second one).

This approach allows the easier modification, or falsification, of a model (see Meehl (1990);
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Palminteri, Wyart, and Koechlin (2017); for extensive discussions). Model falsification is

especially important given the recent replication crisis where non-replications, even when the

same procedures are used as in the original studies, are often not regarded as direct evidence

against a theory (Wagenmakers et al., 2016). Third, there are specific model variances (e.g.,

hierarchical computational models) that could help in the investigation of individual

differences, an area of inquiry especially relevant in the field of fear and avoidance (Lonsdorf

& Merz, 2017). Given these major advantages, computational models are widely used across

scientific fields, such as neuroscience (Forstmann, Wagenmakers, & others, 2015) or

computational psychiatry (Huys, Moutoussis, & Williams, 2011; Maia & Frank, 2011; Wang

& Krystal, 2014). However, they are still to be applied systematically in our field. Here, we

propose that computational models should also be used more routinely in avoidance learning.

Example data set

In order to give an example of how computational modelling could be used in

avoidance learning, we reanalyzed part of the data set originally reported in Meulders et al.

(2016). In that study, participants learned to perform three different movement paths with a

robotic arm to a target location, with each movement paths being associated with different

probabilities of receiving a painful electrocutaneous stimulus as well as different effort to

perform the movement (i.e., the associated cost).

Specifically, Path 1 (i.e., the shortest path) was associated with a reinforcement rate of

100% but no resistance (i.e., no costs), Path 2 (i.e., the middle path) was associated with a

reinforcement rate of 50% and medium resistance, and Path 3 (i.e., the longest path) was

associated with a 0% reinforcement rate but the most resistance compared to the other

paths. In terms of avoidance, participants could avoid the electrocutaneous stimulus 100% of

the times by choosing Path 3 , 50% of the times by choosing Path 2, and 0% of the times by

choosing Path 1. Two groups were tested, an experimental group and a yoked control group,
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with each group undergoing through the following phases: 1) practice, 2) acquisition, 3)

extinction, 4) instructed movement under extinction. For the purposes of our illustration, we

focus only on the acquisition phase (48 trials), which was the most relevant phase for

avoidance’s acquisition. We also present the relevant data for the extinction phase in the

supplemental material.

We chose to fit the data only in the experimental group (N = 25) as in yoked control

group the presentation of the painful electrocutaneous stimulus was independent of

participants’ performance.

In the original study of Meulders et al. (2016), the authors quantified avoidance per

phase as the mean maximum deviation of a virtual ball from its starting position (i.e.,

extreme left on the screen) to the target position (i.e., the extreme left, Path 1, middle Path

2, or extreme right parts of a screen, Path 3 ). The left panel of Figure 1 visualizes the mean

distance from the initial starting position to one of the three paths. We observe that there is

a gradual increase from choosing Path 1 and 2 to choosing Path 3.

For our modelling approach, we categorized responses in one of the three paths (i.e.,

Path 1, Path 2, Path 3). Then, we fitted different reinforcement computational learning

models to the data. These models have been previously used in the literature (see Ouden et

al., 2013; Ahn et al., 2014; Aylward et al., 2019; Haines, Vassileva, & Ahn, 2018; Seymour,

Daw, Roiser, Dayan, & Dolan, 2012; Worthy, Pang, & Byrne, 2013) and are readily available

at the hBayesDM (Ahn, Haines, & Zhang, 2017) package1 for the R (R Core Team, 2018) or

Python (Van Rossum & Drake, 2011) programming languages. Note, that although the used

computational models were originally developed for n-bandit tasks (Sutton & Barto, 2018)

or the Iowa Gambling Task (Buelow & Suhr, 2009), all models encompass basic

reinforcement learning principles (e.g., the use of prediction errors). However, models differ

1 We have modified the models slightly as they referred to experiments were participants had to choose

among 4 options, instead of 3 as it is here.
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on different levels. For example if they include a lapse (or noise) parameter that would

account for random choices that do not follow the inferred values of each path, or the decay

parameter that reflects the reduction in the weight that each choice gets the less it is

chosen.2 Our analysis at this stage is exploratory and used for didactic reasons. We do not

have specific predictions about the pattern of results.

To decide which model fits the data best, we compared the Leave-out-One value

(Gelman, Hwang, & Vehtari, 2014; Vehtari, Gelman, & Gabry, 2017) of each model with each

other, and chose the model with the lowest value. Leave-out-One cross validation entails the

training of a computational model on all but one observation in the data set. Then, this

excluded observation is the test data set, where a predictive score is computed. After

performing the same procedure for all observations in the data set, the predictive

performance of the model is the sum of all the computed, predicted scores. The model with

the lowest Leave-out-One value is the one with the best performance. Table 1 shows the

Leave-out-One values for each model fitted in the present data.3 The model with the lowest

value is that described by Haines et al. (2018). The relevant model parameters are: Reward

learning rate, Punishment learning rate, Outcome frequency weight, and Perseverance weight.

Below, we present some of the most significant parameters of the model and their meaning,

with the explanation of the parameters being available in Table 2.

According to the initial study of Meulders et al. (2016), the main conclusion drawn

from the acquisition data was that participants in the experimental group chose Path 3.

This conclusion, however, in not informative about how individuals chose between the

different paths. For example, it is unclear whether participants preferred to explore the

2 As the goal of this article was not to give an extensive review of each of the tested models, we refer to Ahn

et al. (2017) for detailed description of each model and each model parameter.

3 We have modified the models slightly as they referred to experiments were participants had to choose

among 4 options, instead of 3 as it is here.
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different options than exploit a single one.

This information could be acquired by the analyses of our computational model. We

now present how the parameter estimates could provide a richer interpretation about the

same data set. We start with the learning rate parameter. If a learning rate parameter (see

also above) has a value closer to 1, it suggests that more weight is given to recent outcomes

whereas for values closer to 0 more weight is placed on older outcomes. The selected model

had two different learning rates, one for rewards — defined as not receiving the painful

stimulus and putting the maximum effort — and punishments – defined as receiving a

painful stimulus but putting the minimum resistance effort. The parameter value reveals

that participants needed more trials to learn which stimulus was followed by rewards (M =

0.05) than punishments (M = 0.26). This parameter provides an assessment of whether

outcome recency plays a role. In other words, individuals will learn more from recent

outcomes rather than outcomes happening earlier in the experiment. The perseverance decay

parameter indicates the tendency of the participants to repeat the same choice as the

previous trial (positive values) or switch (negative values). The mean value of this parameter

(M = .81) shows the tendency to repeat the previous trials, something in line with also the

descriptive data (see Figure 1). This parameter is especially relevant in decision-making

literature as how individuals balance between exploration-exploitation is a popular research

topic across scientific fields (see Mehlhorn et al., 2015 for a recent review on the

exploration-exploitation dilemma). The outcome frequency weight indicate the weight that

participants put on the outcomes of each stimulus. The negative value (M = 1.72) indicates

the preference to stimuli with low rewards, or in our case the stimuli with higher chances of

not receiving a painful stimulus and maximum resistance. Lastly, the perseverance weight

again indicates the switch or non-switch in choices, but now for each stimulus at the current

trial. The negative value indicates that participants have the tendency to switch from recent

trials, but the large standard deviations (SD = 0.55) make this parameter difficult to

interpret in this specific data set. Collectively, the results provide a deeper insight of the
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learning processes in avoidance, in particular how participants choose between potential

aversive or pleasant stimuli, whether they tend to explore or exploit more, and whether their

performance was based on what was learned in the recent trials or not. Such insights would

be difficult to obtain by using a standard model for drawing statistical inferences where the

analyses are focused more on whether an individual avoided an aversive stimulus or not.

Collectively, the results provide a deeper insight of the learning processes in avoidance,

in particular how participants choose between potential aversive or pleasant stimuli, whether

they tend to explore or exploit more, and whether their performance was based on what was

learned in the recent trials or not. Such insights would be difficult to obtain by using a

standard model for drawing statistical inferences where the analyses are focused more on

whether an individual avoided an aversive stimulus or not.

In follow-up studies, predictions can be formulated based on the meaning of each

parameter. For example, it would be worthwhile to test how the value of the learning rate

changes in case the value of the outcome changes. If a more aversive outcome would result in

lower learning rates, or the opposite, could inform future studies and clinical therapists when

tailoring interventions -– e.g., how many sessions are needed – to reduce avoidance in the

clinic. It would be also informative to test how the perseverance decay parameter changes in

presence of conflicting outcome, where each one of the different paths are now associated

with a rewarding outcome (e.g., monetary outcome). Another relevant inquiry is how this

parameter could be different if more individually tailored rewards were chosen rather than a

one-size-fits-all approach. These examples serve more than little in showing that

computational modeling makes room for many research questions both of scientific and

clinical relevance.
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Concluding remarks

We argue that computational modelling could be a helpful tool towards better

understanding adaptive and maladaptive avoidance. As we have shown above, by analyzing

avoidance data using theory-driven computational models, it is possible to draw conclusions

about the latent processes that govern avoidance, something that following traditional

statistical analyses would typically need several experiments, and several experimental

manipulations. To showcase our arguments for computational modeling as well as for

encouraging its broader use, we have reanalysed a published avoidance data set and by

drawing inferences according to the values of each model parameter. We conclude our

manuscript by sketching some avenues for future research as well as highlighting some

challenges when using computational models.

Here, we have used computational models already presented in the literature.

Although these models are based on reinforcement learning principles (Sutton & Barto,

2018), also present in avoidance learning theories (see Krypotos et al., 2015 for a review), we

still miss the direct translation of avoidance learning models (e.g., models by Lovibond, 2006;

Vlaeyen, Crombez, & Linton, 2016) to computational models that could be directly

compared with each other. We hope that our work could inspire such translation in the

future, something that could potentially transform past theories or even generate new ones.

One challenge when building original computational models is that mathematical and

programming skills are required, which are not typically acquired during the standard

curriculum of Psychology. Although nowadays there are programming platforms that allow

the relatively easy implementation of complex models (e.g., Stan Development Team, 2018),

challenges remain. These challenges stress once more the need for more interdisciplinary

collaboration (Ledford, 2015).

Two words of caution should be mentioned. First, whenever using a computational
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model, researchers should follow a standard, principled workflow in order to ensure that the

conclusions follow logically the results of the model, and all the relevant model assumptions

have been met. Such workflows have been presented in the literature (e.g., Lee et al., 2019;

Wilson & Collins, 2019). From this literature, we would like to highlight 3 suggestions. First,

and prior to seeing the actual data, it is a good practice to simulate data according to the

model parameters and subsequently fit the data to the model. Unless the parameter values

are recovered, it is doubtful whether the model is appropriate for the real data. Second, after

a model has been chosen from competitive models, the researcher should check whether

predictions made by this data set now fit the real data. This can be done by the so-called

post-prediction checks, where the model parameters are used for generating synthetic data

and then these data are compared to the real data. To illustrate this point, on Figure 2, we

plotted the real data against the data predicted by the model for two participants. For the

first participant (left panel) the model does a poor job as it predicts the correct choice only

18 out of the 48 trials. On the other hand, for the second participant the model predicts

correctly 44 out of 48 trials. Given that the two participants had different performance

patterns – with participant 24 switching much more than participant 13 – then that should

inform the experimenters that the model maybe not good enough whenever frequent switches

are present. Lastly, and despite our enthusiasm for computational models, a computational

model can never substitute a good experiment; a poorly designed experiment does not allow

researchers to draw stable inferences of the underlying processes, no matter how principled

the computational model might be. For example, before the interested reader may attempt

to fit the data in an archived data set, we suggest to first think carefully whether the

described models could be meaningful for the collected data or not. No matter how

sophisticated a computational model could be, there is no escape from poor data quality.

To conclude, we argue that scientific progress in the field of avoidance learning could

accelerate by using computational models for statistical analysis, rather than relying on

statistical inferences based on traditional models. Although this change in the field comes
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with challenges, we are convinced that such challenges may not stand as obstacles towards

better understanding how adaptive and maladaptive avoidance is learned and reduced, issues

of high relevance for the individuals and the society as a whole.
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Table 1

Model selection table. The Model names, first column, refers to the models as those referred

in the hBayesDM R package (Ahn, et al. 2017). Please see Ahn, et al. (2017) for a detailed

description of the parameters of each model. The LOOIC columns includes the leave-out-One

information criterion for each model. Lastly, the Reference column includes the reference to

where the relevant models are described.

Model LOOIC Reference

Hierarchical Bayesian Modeling of the

Iowa Gambling Task using

Outcome-Representation Learning Model

1945.88 Haines et al., (2018)

Hierarchical Bayesian Modeling of the

Iowa Gambling Task using

Value-Plus-Perseverance

1983.07 Worthy et al. (2013)

Hierarchical Bayesian Modeling of the

Probabilistic Reversal Learning Task

using Reward-Punishment Model

2159.89 Ouden et al., (2013)

Hierarchical Bayesian Modeling of the

Iowa Gambling Task using Prospect

Valence Learning Delta

2637.82 Ahn et al. (2008)

Hierarchical Bayesian Modeling of the

Iowa Gambling Task using Prospect

Valence Learning

2637.84 Ahn, et al., (2014)

Hierarchical Bayesian Modeling of the

3-Armed Bandit Task using 4 Parameter

Model, without ’Choice perseveration’

but with ’noise’

2638.78 Aylward et al., (2019)
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Hierarchical Bayesian Modeling of the

3-Armed Bandit Task using 5 Parameter

Model, without ’Choice perseveration’

but with ’noise’

2638.84 Seymour et al. (2012)

Hierarchical Bayesian Modeling of the

3-Armed Bandit Task using 3 Parameter

Model, without ’choice perseveration’,

’reward sensitivity’, and ’punishment

sensitivity’, but with ’noise’

2638.84 Aylward et al. (2019)

Hierarchical Bayesian Modeling of the

3-Armed Bandit Task using 5 Parameter

Model, without ’Choice perseveration’

but with ’noise’

2640.33 Aylward et al. (2019)



DECOMPOSING AVOIDANCE 23

Table 2

Mean, standard deviations, and description for each parameter for the winning model.

Detailed explanation of the parameters is included in Haines et al. (2018).

Mean SD Interpretation

Reward

learning rate

0.05 0.04 Learning rate after receiving a reward (i.e., not receiving a painful

stimulus) Values close to 1: More weight is given to recent outcomes.

Values close to 0: More weight is placed on older outcomes.

Punishment

learning rate

0.26 0.07 Learning rate after receiving a punishment (i.e., receiving a painful

stimulus) Values close to 1: More weight is given to recent outcomes.

Values close to 0: More weight is placed on older outcomes.

Perseverance

decay

0.81 0.62 Negative values: tendency to switch the stimulus chosen on the

previous trials.

Positive values: tendency to persevere the stimulus chosen on the

previous trials.

Outcome

frequency

weight

-1.72 0.37 Negative values: Preference for stimuli with low win frequency (i.e.,

high resistance)

Positive values: Preference for stimuli with high win frequency (i.e.,

low resistance)

Perseverance

weight

-0.10 0.55 Negative values: Switch from recently selected stimuli

Positive values: Non-switch from recently selected stimuli
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Figure 1 . Left panel: Mean horizontal position that the haptic arm was moved during each

extinction trial. With horizontal lines we visualise the limits for each path. Right panel:

Frequencies of each one of the selected paths per trial (x-axis) and per participant (y-axis) of

Meulders et al. (2016).
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Figure 2 . Post prediction check plots for Participant 1 (left panel) and 5 (right panel) of the

used data set. The black dots refer to the choices made by each participant. The red crosses

refer to the choices predicted by the model that fitted the data best (i.e., winning model).

The model does a poor job for participant 1, as 14 out of the 24 trials were not predicted

well by the model. On the other hand, the model does a good job for participant 5 where the

model missed only 1 point.
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