
IEEE/ACM TRANSACTIONS ON NETWORKING 1

Prioritized Deployment of Dynamic
Service Function Chains

Behrooz Farkiani, Bahador Bakhshi, S. A. Mirhassani, Tim Wauters, Bruno Volckaert, and Filip De Turck

Abstract—Service Function Chaining and Network Function
Virtualization are enabling technologies that provide dynamic
network services with diverse QoS requirements. Regarding the
limited infrastructure resources, service providers may prioritize
some service requests over others and even reject some of the
low-priority requests to satisfy the requirements of high-priority
services. In this paper, we study the problem of deployment and
reconfiguration of a set of chains with different priorities with
the objective of maximizing the service provider’s profit; wherein,
we also consider management concerns including the ability to
control the migration of virtual functions. We show the problem
is more practical and comprehensive than the previous studies,
and propose an MILP formulation of it along with two solving
algorithms. The first algorithm is a fast polynomial-time heuris-
tic that calculates an initial feasible solution to the problem.
The second algorithm is an exact method that utilizes the initial
feasible solution to achieve the optimal solution quickly. Using
extensive simulations, we evaluate our algorithms and show the
proposed heuristic can find a feasible solution in at least 83%
of the simulation runs in less than 7 seconds, and the exact
algorithm can achieve 25% more profit 8 times faster than the
state-of-the-art MILP solving method.

Index Terms—Service function chaining, network function
virtualization, priority, exact solution.

I. INTRODUCTION

SERVICE function chaining is an emerging technology that
enables service providers to dynamically order service

functions, which results in flexible management of network
services. Alongside, Network Function Virtualization (NFV)
utilizes the virtualization technologies to consolidate various
types of network appliances onto standard high-volume off-
the-shelf servers. These technologies bring about significant
advantages to service providers including reducing the capital
and operation expenditures , such as equipment costs and
energy bill, and improving the flexibility and innovation in
the offered services. One of the key challenges of these
technologies is handling diverse QoS requirements of different
service via proper chain composition and deployment [1], [2].

Network flows have various QoS requirements, including
but not limited to bandwidth and delay [3]. Due to the limited
physical resources, flow provisioning should be prioritized: at

B. Farkiani and B. Bakhshi are with Department of Computer Engineering,
Amirkabir University of Technology (Tehran Polytechnic), Iran (e-mail:
behrooz.farkiani@aut.ac.ir, bbakhshi@aut.ac.ir)

S. A. Mirhassani. is with Department of Mathematics and Computer
Science, Amirkabir University of Technology (Tehran Polytechnic), Iran (e-
mail: a mirhassani@aut.ac.ir)

T. Wauters, B. Volckaert, and F. De Turck are with IDLab,
Department of Information Technology Ghent University, Belgium
(e-mail: tim.wauters@ugent.be, bruno.volckaert@intec.ugent.be,
filip.deturck@ugent.be)

first, the high priority flows with more strict QoS requirements
should be provisioned, and then the low priority flows use the
remaining resources. Here, we assume emergency use cases
[4], such as processing the high-resolution output video of
a fire department’s drone, and define two types of flows:
emergency flows with strict bandwidth requirements and best-
effort flows. The best-effort flows have flexible bandwidth
requirements and only use the remaining resources of the
infrastructure after the requirements of the emergency flows
are satisfied. We define two categories of chains, namely
emergency and best-effort chains, to process the emergency
and best-effort flows, respectively. While emergency chains
have higher priorities and strict bandwidth requirements, the
allocated bandwidth for a best-effort chain is a function of
remaining resources and the profit of the service provider who
deploys the chains on the physical infrastructure.

In the described settings, the main problem is how to
allocate processing, memory, and bandwidth resources to the
chains to maximize the total profit of the service provider. The
service provider also must consider changes in the number
of chains and their bandwidth requirements: the input traffic
to the chains can vary over time, or new chains may arrive.
There are also management concerns, including defining a
set of the permitted locations to deploy each function and
the possibility of migrating deployed functions. Therefore,
the question that this paper answers is ”how to deploy or
reconfigure the deployment of a set of emergency and best-
effort chains to maximize the service provider’s profit while
satisfying the bandwidth and management requirements?” To
answer this question, we first propose an MILP formulation
of the problem named Prioritized Service Function Chain
Deployment (PSFCD) problem. Then, we propose two algo-
rithms to solve the PSFCD efficiently. Although a great deal of
research has been conducted on resource allocation and SFC
deployment problems in NFV environments [5], [6], to the
best of our knowledge, we are the first in investigating the
PSFCD problem.

A. Contributions

In this paper, we formulate the PSFCD problem with the
following features:
• It can deploy a set of best-effort and emergency chains

with the objective of maximizing the total profit. The in-
put traffic to the emergency chains must be satisfied, and
the best-effort chains can use the remaining resources.

• It allows the service provider to define a set of candidate
servers to deploy each function.

IEEE/ACM TRANSACTIONS ON NETWORKING 2

• It allows the service provider to define whether it is
possible to migrate a function or not.

• It considers the limited processing, memory, and band-
width resources of the infrastructure.

• It considers the limited traffic processing capability of
VNF instances and utilize horizontal scaling to handle
the input traffic.

We assume the service provider requires an optimal solution
to the PSFCD problem in the shortest possible time. In order
to achieve this goal, we propose two algorithms and evaluate
them by using extensive simulations. The first algorithm is
a fast polynomial-time heuristic that can calculate a feasible
solution for large instances of the PSFCD problem in less than
7 seconds, with a success ratio of at least 83%. The obtained
solution can be used as an initial solution in other algorithms.
To achieve the optimality, we propose an exact algorithm that
uses decomposition and achieves the optimality over a number
of limited iterations. The results show the combination of the
exact algorithm and the initial heuristic can outperform the
state-of-the-art MILP solving algorithm with achieving 25%
more profit 8 times faster.

In summary, the major contributions of this paper are as
follows:
• We introduce and formulate the PSFCD problem to

deploy and reconfigure a set of best-effort and emergency
chains with the objective of maximizing the total profit.
To the best of our knowledge, the PSFCD problem is
the most comprehensive service function deployment and
management problem.

• We develop a fast polynomial-time heuristic algorithm to
calculate a feasible solution to the PSFCD problem.

• We propose an exact algorithm that can calculate the
optimal solution to the PSFCD problem.

• By using extensive simulations, we show the proposed
algorithms can outperform the state-of-the-art MILP solv-
ing methods.

B. Paper Structure

The rest of this paper is organized as follows. In Section II,
the most relevant research is discussed. Section III presents the
formulation of the PSFCD problem, and Section IV describes
the proposed algorithms for solving it. The performance of
the algorithms is evaluated in Section V. Finally, Section VI
concludes this paper.

II. RELATED RESEARCH

The SFC deployment problem and its variations have gained
a lot of attention during the past few years [5], [6], [15]. In
this section, we briefly review and compare the most relevant
research. A summary of the comparison is shown in Table I,
which is done based on the following criteria. We consider
the objective function of the defined problems and whether
changes in the requested services and admission control are
considered or not. We also consider the assumptions used
in the problem definition. More precisely, we focus on the
following aspects: the first one is whether the limited traffic
processing capacity (throughput) of the VNF instance is taken

into account or not. Then, whether the input rates to the
chains are considered to be predefined values or can be treated
as variables. Moreover, the SFC deployment problems may
assume that the input traffic to a chain is limited in a way not
to exceed the processing capacity of VNF instances, which
is denoted by ”Limited” and ”Not limited” in Table I. If the
input traffic to an abstract function exceeds the throughput
of one instance of the corresponding VNF, it is necessary
to instantiate more instances and distribute the load between
them. However, it is possible to consider vertical scaling or
other assumptions to tackle the situation; ”Other assumptions”
in Table I refers to these assumptions. Finally, we investigate
whether it is possible to reject requested chains or not.

A VNF deployment problem to minimize the overall net-
work OPEX and physical resource fragmentation was studied
in [16]. Kuo et al. in [11] dealt with the joint VNF placement
and path selection problem with the objective of maximizing
the sum rate of the admitted demands. The authors proved that
finding a non-trivial feasible solution to the problem is NP-
Hard. The provisioning of service chains with the objective
of minimizing the bandwidth requirement was studied in [12].
Jang et al. [13] assumed the input traffic was variable and
designed an MILP problem to deploy a set of requests with
the objective of maximizing the acceptable flow rate and min-
imizing the energy cost. Sun et al. [17] focused on an online
and energy-efficient deployment of SFC requests. The authors
in [18] studied the problem of VNF sharing with the objective
of minimizing the cost for the mobile operator. Farkiani et
al. investigated the energy-aware SFC deployment problem
in [14] with the objective of minimizing the total energy
consumption of the infrastructure servers and switches. The
authors also proposed a polynomial-time solvable algorithm
to calculate near-optimal solutions quickly.

The above-mentioned studies did not consider dynamic
changes in the input traffic or the arrival of new requests. In
[7], the authors proposed an MILP problem with the objective
of minimizing the average link utilization and the number of
utilized servers in the provisioning of new requests. Moreover,
the authors also considered traffic changes and used the same
problem with a modified objective function to minimize the
server and link changes. To deploy new chains and readjust
in-service requests for moving users, in [8] an MILP problem
with the objective of maximizing the service provider’s profit
was proposed. The authors in [9] investigated two problems:
a VNF-placement problem and a resource-consolidation/de-
consolidation problem. The former dealt with the deployment
of requests by considering the peak traffic with the objective of
maximizing the amount of data that can be processed, and the
latter utilized the live instance migration and vertical scaling
to reconfigure and migrate the deployed instances when traffic
changes. The objective function of the second problem was
minimizing the sum of energy consumption costs and revenue
loss due to migration. A similar problem was studied in [19]
that considered cold migration. In [10], the authors considered
changes in the input traffic and showed that better resource
utilization could be achieved by dynamically scaling in or
out VNF instances. The authors proposed a traffic forecasting
method along with two dynamic VNF scaling algorithms for

IEEE/ACM TRANSACTIONS ON NETWORKING 3

TABLE I: Summary of related research

Ref. Admission
control

Input traffic Changes Instance throughput

Variable Fixed
parameter Limited Not

limited
Other

assumptions

Number
of

chains

Input
traffic Limited Not

limited

[7] X X X X X
[8] X X X X X
[9] X X X X X
[10] X X X X
[11] X X X X
[12] X X X
[13] X X X
[14] X X X
This
paper X X X X X X X

two problems with different objectives. In the first problem,
it was assumed that a whole chain was placed inside a rack;
therefore, the objective function was minimizing the number of
VNF instances. In the other problem, it was assumed each rack
could only host one type of VNF, and the objective function
was minimizing the amount of traffic carried between racks.
The authors in [20] proposed a proactive approach to provision
new VNF instances ahead of time, based on estimated flow
rates. In [21], a VNF migration problem was investigated, and
the authors proposed a method to predict resource require-
ments. The objective was minimizing the sum of migration
and bandwidth overhead, which depended on the migrated
memory. The authors in [22] proposed an online learning
algorithm to predict the incoming rate to chains along with a
problem to manage the deployment of the VNF instances with
the objective of minimizing the total operational expenditure.
In [23], the authors utilized both vertical and horizontal scaling
and designed a problem with the objective of maximizing
the number of accepted requests under a predefined limited
budget.

Table I compares the most important studies based on the
described criteria. This paper has the following differences
with previous studies regarding the problem definition:
• We consider prioritization in the deployment of network

service and define two categories of SFCs, namely best-
effort and emergency chains.

• In the PSFCD, we consider initial deployment, migration,
modification of input traffic to the chains, and admission
control in both deployment and migration of network ser-
vices, which makes it a comprehensive problem.

• We consider real-world assumptions and provide a for-
mulation that is 1) easy for the operator to work with it,
and 2) the obtained solution is easy to implement.

III. PROBLEM FORMULATION

In this paper, we investigate the problem of deploying
a set of best-effort and emergency SFC requests with the
objective of maximizing the total profit. First, the assumptions
and models of the infrastructure network, the SFC requests,
and the provider’s profit are discussed. Then, we present
the formulation of the Prioritized SFC Deployment problem
(PSFCD). The set of all notations used in this paper is shown
in Tables II and III.

A. Infrastructure Model
The infrastructure is comprised of servers and switches and

modeled as a directed graph G = (V,E). All infrastructure
links are bidirectional with a limited bandwidth capacity in
each direction. Each directed link from node i to node j is
shown by pair (i, j). Each infrastructure server has limited
processing and memory resources and has one link attached
to one switch. We denote the set of servers and switches
by V S and V N , respectively, and V = V S ∪ V N . To use
similar terminology, we represent the set of ingress/egress
points of the infrastructure network traffic by a set of dummy
servers Dum. Dummy servers are always on and have infinite
resources. Traffic from these points enters the infrastructure to
be processed by the chains, and the processed traffic from the
chains flows to these points.

B. SFC Requests Model
Each best-effort or emergency chain q is modeled by a

linear SFC graph GV,q =
(
V V,q, EV,q

)
, wherein V V,q con-

tains a source, a destination, and a set of unique abstract
functions such as NAT and firewall, and EV,q contains the
links between functions. The source and destination nodes are
dummy functions, which are located on the dummy servers,
and respectively represent the ingress and egress points of the
input traffic to the chain. The set of sources and destinations of
all chains are represented by Src and Dst sets, respectively.
We denote the function u of chain q by uq . The input traffic
to a best-effort chain q, represented by Θq , is a variable that is
determined by the solution of the PSFCD problem, and it must
be in a range defined by the requesting user. On the other hand,
the input traffic to an emergency chain, represented by Θ̇q , is a
given parameter that must be satisfied by the solution. Similar
to [13], we assume there is a traffic modification ratio, denoted
by ωq,u, assigned with each function, which determines the
change in the input traffic rate after being processed by the
function. For example, if the modification ratio of a firewall is
1.2, the ratio of the output traffic rate to the input traffic rate
will be 1.2 at maximum. We assume there is a set of candidate
or preferred locations to deploy each function of the requested
chains.

C. Assumptions
We assume that at any given time, there is a set Q of SFC

requests that contains both new and previously deployed best-

IEEE/ACM TRANSACTIONS ON NETWORKING 4

TABLE II: Notations: Parameters

Parameters

Dum
Set of ingress/egress points of the infrastructure
network ωq,u

Traffic modification ratio of function u of
chain q

Q = {1, .., |Q|} The set of SFCs Θ̇q Input traffic to emergency chain q (Mb/s)

Q = B ∪M B: best-effort chains M : emergency chains φ̇q,u = Θ̇q ×
u−1∏
i=1

ωq,i
Input traffic to function u of emergency chain
q (Mb/s)

GV,q =
(
V V,q , EV,q

) Graph of chain q, including the source
and destination nodes θq,UB , θq,LB

Upper and lower bounds on the input traffic to
best-effort chain q

F = {1, 2, . . . , |F |} Set of VNF types such as firewall and NAT ς′q,u The current number of instances for function uq
V NFs The set of all abstract functions uq of all chains ACPU i/AMEM i Available vCPU/MEM resources on server i

ηq,ui ∈ {1, 0} Equals to 1 if it is permitted to deploy
function uq on server i ICPU i Installed number of vCPUs on server i

=q,u
The amount of traffic that an instance of VNF
u of chain q can process (Mb/s)
based on its template

xCq,ui ∈ {1, 0} The current placement of function uq

CPUq,u/MEMq,u
The required amount of vCPU/MEM resources to
create an instance of VNF u of chain q
based on its template

Pmig Additional power consumption for migration

UMEMq,u
The utilized memory of function u of chain q
based on the total utilized memory of
its VNF instances

BWmig Dedicated bandwidth for migration

P imax The maximum power consumption of server i ABW(i,j) Available bandwidth on link (i, j)

P iidle The idle power consumption of server i πq,u If 1, migration is permitted for function uq

Statei ∈ {1, 0} Current on/off state of server i ∆
Considered duration (in hours) in calculating
the energy price

E Energy price (kWh) ψq
Price of processing 1 Mb of incoming traffic
to chain q

TABLE III: Notations: Variables

Variables

xq,ui ∈ {1, 0} Placement of abstract function uq
on server i

ςq,ui ∈ Z≥0
Number of instances of function uq
on server i

y
q,(u,v)
(i,j)

∈ R≥0
The allocated bandwidth of the link (u, v)
of SFC q over the physical link (i, j)

φq,u = Θq ×
u−1∏
i=1

ωq,i
Input traffic to the function u of
best-effort chain q (Mb/s)

Θq ∈ R≥0 Input traffic to best-effort chain q (Mb/s)

CRq,ui / REMq,u
i ∈ Z≥0

Number of created/removed instances
of function uq on server i

mq,u ∈ {1, 0} If 1, the function uq will migrate
to another server

αq ∈ {1, 0} Must be equal to 1 to accept chain q,
otherwise 0

βi ∈ {1, 0} If 1, server i must be on
LinQXq,u

i = Θq × xq,ui Linearization variables

effort and emergency requests. It is possible that some chains
of set Q have different input rates from their current deploy-
ment. To deploy each chain, the service provider must de-
termine the placement of all abstract functions and the virtual
links between them. We assume there is a VNF corresponding
to each abstract function; for example, there will be a firewall
VNF corresponding to the function firewall. The set of all
VNFs is shown by V NFs.

To deploy an abstract function, a sufficient number of VNF
instances must be created to process the input traffic to the
function. To instantiate from a VNF, the service provider uses
a VNF template that determines the required processing and
memory requirements to process a specified and limited vol-
ume of traffic, known as the instance throughput. If the input
traffic rate to an abstract function is larger than the instance
throughput, the service provider must create more than one

instance and distribute the input traffic between them. In this
condition, we assume all of the created instances must be de-
ployed on the same server to avoid the complexity of net-
work-wide load balancing among the instances of the func-
tion. We also assume there is only one template for each VNF
type. For example, all of the firewall instances have the same
specifications. For each best-effort chain, the service provider
must decide whether to accept the request or not. Moreover,
if a best-effort request is accepted, the input traffic to it must
be decided according to the requested ranges. We assume all
emergency chains must be deployed, and there are enough
resources to deploy them. We also utilize the multi-commodity
flow formulation in the deployment of virtual links. Therefore,
each virtual link can be mapped on multiple physical paths of
the infrastructure network. In addition, we assume a virtual
link cannot completely be placed inside a server, i.e., each
end of a virtual link must be placed on different servers. This
is because it requires the service provider to measure the inter-
VM throughput of each server, which is not practical.

For each abstract function, a set of preferred or candidate
servers to deploy the function is determined by the service
provider or requesting user. In order to achieve this, parameter
ηq,ui must be set to 1 to allow the function u of chain q to
be placed on server i. By using this parameter, the service
provider can force a function to be placed on a specific server,
which facilitates the management. In addition, the number of
chains and their input traffic may change over time. Therefore,
it is necessary to allow the deployed instances to migrate from
a server to another server. The service provider can control the
migration of the abstract functions by using parameter πq,u.
If this parameter is set to zero, the deployed function stays at
the same place. Using this parameter, the service provider can
avoid the burden of reconfiguring instances, and it can reduce

IEEE/ACM TRANSACTIONS ON NETWORKING 5

the problem solution time. The PSFCD deploys chains without
sharing the instances of similar functions between them; since
we assumed all instances of a function reside on the same
server, migration of a shared instance requires transferring all
instances of all functions that are using the shared instance to
the same physical server. To avoid the complexity of this sce-
nario, we chose not to share VNF instances between different
chains. A similar assumption was made in previous studies
[16]. Finally, We assume that there is a reserved amount of
bandwidth in the infrastructure network for transferring the
memory images of the migrated VNF instances.

D. Provider’s Profit Model

The service provider deploys the set of requested chains
with the objective of maximizing the total profit. In recent
years, energy efficiency has been considered as one of the
main concerns of the data center operators, and even in
some cases, the energy costs exceeded the cost of purchasing
hardware [24]. Consequently, in this paper, we assume the total
profit consists of three terms: 1) the income from accepted
emergency and best-effort chains, 2) the energy costs due to
the energy consumption of servers, and 3) the energy costs due
to migrations. We define the income from a chain as a function
of the input traffic to the chain and the considered duration.
More specifically, the total income is defined as follows:∑

q∈Q

(
Θq + Θ̇q

)
× ψq ×∆


where, ψq is the price of processing 1 unit of incoming traffic
to chain q, and ∆ is the considered duration.

We utilize a well-known power consumption model for
servers which was broadly used in previous research [24], [25]
as follows.

PServer = P iidle +
(
P imax − P iidle

)
× (# allocated vCPUs)

(# installed vCPUs)

The above equation formulates the power consumption of an
arbitrary server i based on its allocated vCPUs.

Finally, to formulate the energy consumption due to mi-
gration, we consider the live migration technique and use the
results in [26]. Strunk and Dargie in [26] discovered that the
power consumption during migration is about 63% more than
the idle state. Accordingly, we use the following equation to
consider migration cost:(

P srcmig + P dstmig

)
× tmig

where P srcmig and P dstmig are the additional power consumption
at the source and destination nodes during migration, and tmig
is the migration duration. As stated in [26], the migration
duration increases as utilized memory increases and decreases
as the available bandwidth for migration increases. Since the
exact value of additional power consumption varies with server
architectures and vendors, we use parameter Pmig to represent
both source and destination additional power consumption.

Therefore, the following equation can be used to calculate the
consumed energy due to migration of function u of chain q:(

UMEMq,u

BWmig
× 2Pmig

)
× E

If it is not necessary to migrate the memory of a function,
for example a stateless function, the corresponding utilized
memory UMEMq,u can be set to zero. Here we assume the
utilized memory of each function equals the total reserved
memory of the corresponding instances. More precisely, when
we say a function migrates from a server, it means all instances
of the function on that server migrate to the destination server.
Therefore, we use the following equation in the formulation
of the PSFCD:(

ς ′
q,u × MEMq,u

BWmig
× 2Pmig

)
× E

E. PSFCD Formulation
The formulation of the PSFCD problem is presented in

Appendix A. As previously discussed in Section III-D, the
objective function maximizes the total profit of the service
provider. Constraint (1) enforces that all emergency chains
must be deployed while Constraint (2) controls the admission
of the best-effort chains. Constraints (3) and (4) control the
number of instances to be adequate to process the input
traffic to the abstract functions by taking the limited traffic
processing capacity of the VNF instances into account. Since
PSFCD considers changes in the input traffic and migration,
the currently deployed instances and possible migrations must
be considered in calculating the required number of instances,
which is the role of Constraint (5). Constraints (6)-(9) enable
the service provider to manage the changes in the number of
SFCs or changes in the input traffic to the deployed chains;
for emergency chains, the deployed functions can migrate, and
for best-effort chains, it is possible to migrate the deployed
functions or even reject some chains. By setting parameter πq,u

to 1 in Constraint (6), the service provider can allow an already
deployed function of an emergency chain to migrate to another
server. However, for best-effort chains, the admission control
must also be considered along with the migration permission,
which is formulated in Constraints (7)-(9). Constraints (10)
and (11) respect the limited processing and memory resources
of the servers, respectively. Constraint (12) guarantees if the
PSFCD decides to deploy a function on a powered-off server,
the server will be turned on. Constraint (13) enforces that
a virtual link cannot completely be placed inside a server.
Flow conservation for infrastructure switches is enforced by
Constraint (14) and for infrastructure servers by Constraints
(15) and (16). Constraint (17) respects the limited bandwidth
of the infrastructure links. Finally, Constraint (18) limits the
input traffic rate to each accepted best-effort chain to be in the
range defined by the requesting user. It is worth mentioning
that the source and the destination node of each chain are
already mapped to one of the ingress/egress points of the
network, and the presence of them in Constraints (1) and (2)
is because of simplicity in the modeling.

Since Constraints (4) and (16) contain a multiplication
of two variables xq,ui and Θq , linearization techniques must

IEEE/ACM TRANSACTIONS ON NETWORKING 6

be used to convert the PSFCD to an MILP problem. We
use the following equations to linearize the above-mentioned
constraints. To linearize the input traffic to function u of chain
q, we introduce variable LinQXq,u

i = xq,ui ×Θq and rewrite
xq,ui × φq,u as follows:

xq,ui × φ
q,u = xq,ui ×Θq ×

u−1∏
i=1

ωq,i = LinQXq,u
i ×

u−1∏
i=1

ωq,i

We add the following constraint to the PSFCD to define the
relation between LinQXq,u

i and other variables:

LinQXq,u
i ≤ Θq

∀i ∈ V S ∪Dum, q ∈ B, uq ∈ V NFs ∪ {Src,Dst} (19)

LinQXq,u
i ≤ θq,UB × xq,ui

∀i ∈ V S ∪Dum, q ∈ B, uq ∈ V NFs ∪ {Src,Dst} (20)

LinQXq,u
i ≥ Θq −

(
1− xq,ui

)
θq,UB

∀i ∈ V S ∪Dum, q ∈ B, uq ∈ V NFs ∪ {Src,Dst} (21)

LinQXq,u
i ∈ R≥0

∀i ∈ V S ∪Dum, q ∈ B, uq ∈ V NFs ∪ {Src,Dst}

The PSFCD problem and its modeling are independent of
time; the decision about when the model should be executed
is completely dependent on the operator’s condition. Indeed,
the operator can execute the problem whenever they want to
initialize the network, deploy new chains, or manage and re-
optimize the current deployment.

F. An Illustrative Example
This section presents an example to clarify the PSFCD prob-

lem. The infrastructure is illustrated in Figure 1, and the set of
SFCs are shown in Table IV. Chains 0 to 3 are best-effort and
chains 4 and 5 are emergency chains. A green circle above
a server denotes the server is on, and a red circle means the
server is off. The specifications of the servers are according
to Table VIII of the simulation section. Servers 1, 2, 7, and
8 are of Class 3-Low, and servers 3 to 6 are of Class 2-Low.
The available processing units for servers 1, 3, 5, 7 are 40, 20,
20, and 50 vCPUs, and the available memories are 60, 40, 60
and, 100 GB, respectively. The bandwidth of all links equals
40 Gbps in each direction. The problem is solved two times
at Time 1 and 2 for the given set of SFC requests. The service
provider can deploy requested functions on any server. There
is just one exception for the video optimizer function that can
only be deployed on server 1 because of the specific hardware.
Also, the service provider is not allowed to migrate firewall
instances due to high reconfiguration overhead. The source and
the destination nodes of each chain point to the ingress point
of the infrastructure. The specifications of the VNFs and the
rest of the simulation parameters are equal to the parameters
described in Tables VII, IX, and X in the simulation section.

At Time 1, the first set of chains arrives, and the service
provider uses the PSFCD problem to deploy them. All the
chains are accepted at their maximum requested input rate,
and server 6 is turned on. The total profit equals 81668.71$.
The placement is shown in Table V using the tuples of the form
(x, y, z) in which x represents the chain number, y represents

TABLE IV: The set of requested SFCs

Time Chain Input (Mbps)

1

0 Src->FW->IDS->Dst [1000-8000]
1 Src->FW->Router->NAT->Dst [5000-10000]
2 Src->FW->NAT->Dst [1000-10000]
3 Src->FW->NAT->Dst [2000-10000]

2
- Chains 0-3 without any modifications
4 Src->FW->Video Optimizer->NAT->Dst 7000
5 Src->FW->IDS->NAT->Dst 6000

10

9

1312 14
15

11

1 2 3 4 5 6 7 8

Ingress/Egress

Fig. 1: The topology used in the example

the function number, and z denotes the number of deployed
instances. For example, (0, 1, 8) means 8 instances are created
to process the input traffic to the firewall function of chain 0.

Later, at Time 2, a set of emergency chains arrive. Again,
the service provider uses the PSFCD to deploy the new chains
and reconfigure the deployment of the first set. Therefore, the
inputs to the PSFCD are the set of all (both old and new)
demands and also the placement of the current instances of
the old chains. The solution to the problem is as follows; the
input rate to chain 0 is decreased from 8000 to 7000 Mbps, and
chain 3 is rejected. The other chains are accepted with their
maximum input traffic. Moreover, function Router of chain
1 migrates to server 6. The total profit equals 97838.3$, and
the placement of the functions is presented in Table 4 under
the name of the second run. Therefore, the arrival of new
emergency chains resulted in a decrease in the input rate to
a best-effort chain, migration of a function, and the rejection
of a best-effort chain to satisfy the bandwidth requirements of
the emergency chains.

Moreover, if the service provider needs to deploy the
arriving emergency chains as fast as possible, they can set the
migration parameter πq,u to zero for the first set of chains. In
this case, the solution time decreases and the input traffic rates
to all chains remain the same as the second run; However,
the solution is suboptimal with a total profit of 97801.37$
because server 4 should be turned on. With this approach, the
service provider can handle emergency situations quickly, and
after the emergency is resolved, they can re-run the PSFCD
problem with enabled migrations to re-optimize the whole
infrastructure.

IV. PROPOSED SOLUTION METHODOLOGY

In this section, we propose two approaches to solve the PS-
FCD problem. First, we consider there are some cases in which
the operator needs to deploy emergency chains quickly. To
satisfy this requirement, we introduce a fast heuristic algorithm

IEEE/ACM TRANSACTIONS ON NETWORKING 7

TABLE V: Placement of functions

Server Placed Functions
First run (before emergency) Second run (after emergency)

1 (3,1,10) (4,2,13)
3 (2,2,9) (2,2,9)
5 (1,2,9) (5,1,6) (5,3,5)

6 (0,2,15) (3,2,9) (0,2,13) (1,2,9) (4,1,7)
(4,3,4) (5,2,11)

7 (0,1,8) (1,1,10) (1,3,9)
(2,1,10)

(0,1,7) (1,1,10) (1,3,9)
(2,1,10)

that can find a feasible solution by considering only emergency
chains. The obtained solution can be used as an initial solution
and be fed to another algorithm to improve it. Second, to max-
imize the service provider’s profit, we introduce the second
algorithm that solves the PSFCD problem optimally and faster
than the state-of-the-art MILP solving methods. The second
algorithm uses the solution obtained from the first algorithm
and decomposes the PSFCD into two sub-problems.

A. Finding a Feasible Solution

In this section, we utilize some ideas of the feasibility pump
methods [27]–[29] and propose a heuristic, named Fast Initial
Heuristic (FIH), to calculate an initial feasible solution to the
PSFCD problem.

According to Constraints (1) and (2), a feasible solution
must deploy all emergency chains and can reject all the best-
effort chains. Therefore, first, we consider only the emergency
chains and solve the following LP problem:

max

(∑
q∈M

(
Θ̇q
)
× ψq ×∆

)

−
(∑
q∈M&uq∈V NFs

mq,u ×
(
ς′q,u × MEMq,u

BWmig
× 2Pmig

)
× E

)
−
(∑
i∈V S

(
βi × Pidlei ×

(
1− Statei

)
+

∑
q∈M&uq∈V NFs

ςq,ui × CPUq,u × P i
max−P

i
idle

ICPUi

)
×∆× E

)
Constraints (1), (3), (5), (6), (10− 15), (17) of the PSFCD

xq,ui ,mq,u, βi ∈ [0− 1]

ςq,ui , y
q,(u,v)
(i,j)

, CRq,ui , REMq,u
i ∈ R≥0

This problem is very similar to the PSFCD problem; how-
ever, only the emergency chains are present in the formulation,
and the best-effort chains are removed.

Then, we use the Round function that executes Algorithm
1 to convert the obtained LP solution to an integer solution.
Algorithm 1 processes VNFs according to their order in the
chains, adds a random amount to the obtained not-integer
values, and calculates x̃q,ui as the rounded integer solution.
According to the calculated placement, the integer solution
for variables mq,u, ςq,ui , CRq,ui , REMq,u

i and βi are also
calculated. The random function used in Lines 9 and 11 of
Algorithm 1 was already proposed in [27].

If the rounded solution is feasible, we save the solution
and exit ; otherwise, we pass the solution to the FallBack
mechanism to repair it over a predefined number of iterations.
In each iteration of the FallBack mechanism, as illustrated

Algorithm 1 The Round algorithm

1: Save the LP solutions as X∗

2: for each chain q do
3: for each function u ∈ V V,q do
4: List Placement← ∅
5: for each i ∈ V S ∪Dum if ηq,ui = 1 do
6: if function u−1 is not already placed on i then
7: Generate a random number r ∈ [0 1]
8: if (r < 0.5) then
9: add server i to list Placement with

weight x∗q,ui + 2r (1− r)
10: else
11: add server i to list Placement with

weight x∗q,ui + 1− 2r (1− r)
12: Select server s with the biggest weight from list

Placement and place function u on it: x̃q,us ← 1
and x̃q,ui ← 0 ∀i 6= s

13: Calculate m̃q,u, ς̃q,ui , C̃R
q,u

i , R̃EM
q,u

i and β̃i for all
chains.

14: if the calculated solution was visited before then
15: Return 1.
16: else
17: Return 0.

in Figure 2, a different formulation of the PSFCD problem,
named PSFCD-FP, is solved. We utilize the idea of binarizing
the integer variables, which was shown to be very effective in
calculating integer solutions [14]. Consequently, In PSFCD-
FP, we substitute the variables ςq,ui ∈ Z≥0 with their binary
representation, i.e., for emergency chains, instead of ςq,ui , we

use
Kq,u∑
k=0

ςq,ui,k ×2k where 2K
q,u ≥ φ̇q,u

=q,u and Kq,u is the smallest

integer value that satisfies the equation. Then, we solve the
PSFCD-FP problem as follows:

min
∑
i∈V S

(∑
q∈M&uq∈V NFs|x̃q,ui =0&η

q,u
i =1

xq,ui

+
∑

q∈M&uq∈V NFs|x̃q,ui =1&η
q,u
i =1

(
1− xq,ui

))
xq,ui × φ̇q,u ≤ =q,u ×

∑Kq,u

k=1 ςq,ui,k × 2k

∀q ∈M,uq ∈ V NFs, i ∈ V S |ηq,ui = 1∑Kq,u

k=1 ςq,ui,k × 2k =
(
ς′q,u ×

(
xCq,ui + (1− xCq,ui)× xq,ui

))
+
(
CRq,ui −REMq,u

i

)
∀q ∈M,uq ∈ V NFs, i ∈ V S

∑
q∈M&uq∈V NFs

(∑Kq,u

k=1 ςq,ui,k × 2k
)
× CPUq,u ≤ ACPU i ∀i ∈ V S∑

q∈M&uq∈V NFs

(∑Kq,u

k=1 ςq,ui,k × 2k
)
×MEMq,u ≤ AMEM i ∀i ∈ V S

Constraints (1) , (6) , (12− 15) , (17) of the PSFCD

ςq,ui,k , x
q,u
i , mq,u, βi ∈ [0− 1]

y
q,(u,v)
(i,j)

, CRq,ui , REMq,u
i ∈ R≥0

The objective function of the PSFCD-FP problem minimizes

IEEE/ACM TRANSACTIONS ON NETWORKING 8

the distance between the current infeasible integer solutions
x̃q,ui and xq,ui , i.e., it tries to find an LP solution close to
the current infeasible solution. A similar objective function
was already proposed in [28]. After the PSFCD-FP has been
solved, the solution will be given to the Round function shown
in Algorithm 1. The Round function checks the calculated
placement to see whether it is a new solution or the solution
is visited before. If the solution is new, it returns 0; otherwise,
the Reboot function is invoked to calculate a random solution.

The Reboot function simply assigns random values between
0 to 1 to xq,ui , sorts these values, and selects the biggest value
as placement of the function. Finally, the Reboot function
checks whether the calculated solution is a new solution and,
if it is, it returns 0. Otherwise, the control is returned to the
loop.

At the end of each loop, the feasibility of the last calculated
solution is checked. If the solution violates Constraint (10) or
(11) of the PSFCD problem, then the solution is infeasible,
and we remove it from the solution space. Please note that the
Constraints (1) and (13) are already satisfied by Algorithm 1.
If both the constraints hold, then we check Constraints (14),
(15), and (17) of the PSFCD and, if they hold, the solution is
feasible, and we exit the loop.

We can use a cut to remove an infeasible solution from
the solution space. Consider a solution that violates any of
the Constraints (10) or (11) for a server s and set uq ∈
V NFs |x̃q,us = 1 is shown by usq . Then, to prevent the future
placement of functions usq on server s the following constraint
can be added to the PSFCD-FP:∑

uq∈us
q

(1− xq,us) ≥ 1

The termination condition of the FallBack mechanism is
defined as a combination of reaching a maximum number of
iterations or finding an integer feasible solution. If the solution
obtained by this algorithm is a feasible solution, it can be fed
into another algorithm to improve the solution. The choice of
the next algorithm depends on the service provider’s priorities.
The service provider may prefer to use an exact algorithm to
calculate the optimal solution to maximize its profit, or they
may want a fast near-optimal solution. This paper considers
the former and proposes an exact algorithm that can quickly
calculate the optimal solution to the PSFCD problem.

1) Complexity Analysis: In the FIH heuristic, first, we have
to solve an LP problem that contains only emergency chains.
An LP problem is polynomial-time solvable [30] , and its com-
plexity is O(n3.5) in which n is the total size of variables [13]
and [31]. Subsequently, Algorithm 1 iterates for |V NFs| ×
|V S∪Dum| iterations to calculate an integer solution. In each
iteration, it sorts the candidate servers based on their weights.
Before exiting the Round function, the values of variables ex-
pressed in Line 13 is determined based on Constraints (3),
(5), (6), and (12) of the PSFCD problem by substituting the
calculated placement.

If the rounded solution is not feasible, we resort to the Fall-
Back mechanism in Figure 2. In each iteration of the Fall-
Back mechanism, the PSFCD-FP is solved, which is an LP
problem and can be solved in polynomial time. In addition,

Counter ← 0

Set up the PSFCD-FP problem using

the current infeasible integer solution

Solve PSFCD-FP and

 save the solution as FPSol

Did Round (FPSol)

return 0?

Is the last found

solution feasible?

Save the integer solution as

the current integer solution

No

Yes

Did Reboot

return 0?

Yes

No

Yes

Exit
Save the final

solution

Counter < MaxIteration

Yes

No

No

Remove the solution

Counter=Counter+1

Fig. 2: The FallBack mechanism

after each execution, the Round or Reboot functions are called.
The complexity of the Reboot function is less than the Round
function since it randomly assigns values to variables without
any sorting. To check whether the calculated solution is fea-
sible or not, it is sufficient to first check the limitations of the
memory and processing resources of the servers, Constraints
(10) and (11) of the PSFCD, are respected or not. Then, the
PSFCD-SP problem is solved to check, for a given placement,
the placement of virtual links is possible or impossible. The
PSFCD-SP is an LP problem and can be solved in polynomial
time. Therefore, Since the FallBack mechanism is executed at
most MaxIteration times, the FIH heuristic is polynomial-
time solvable according to the aforementioned explanation.

B. Exact Solving Algorithm
We utilize the idea of the Benders decomposition method

[32] and the variation used in [33] to decompose the PSFCD
into two subproblems: PSFCD-RMP and PSFCD-SP. Then we
use our proposed algorithm to solve the problems iteratively
to reach the optimal solution. The flow chart of the proposed
exact algorithm, named Accelerated Exact Approach (AEA),
is displayed in Figure 3. The the PSFCD-RMP decides on
the placement of the functions, and the PSFCD-SP uses the
obtained placement to calculate the routing of the virtual links
regarding the limited capacity of the physical links. We use
the objective function of the PSFCD problem for the PSFCD-
RMP. Therefore, the PSFCD-SP acts as a feasibility problem
without any objective function.

IEEE/ACM TRANSACTIONS ON NETWORKING 9

The the PSFCD-SP problem is defined as follows which is
a set of constraints without any objective function:

∑
(i,j)∈E

y
q,(u,v)
i,j −

∑
(j,i)∈E

y
q,(u,v)
j,i = 0 ∀i ∈ V N , q ∈ Q, (u, v) ∈ EV,q

λ
q,(u,v)
(i,j)

: y
q,(u,v)
(i,j)

− yq,(u,v)
(j,i)

= φ̇q,v ×
(
x̂q,ui × ηq,ui − x̂q,vi × ηq,vi

)
∀i ∈ V S ∪Dum, (i, j) ∈ E, q ∈M, (u, v) ∈ EV,q

µ
q,(u,v)
(i,j)

: y
q,(u,v)
(i,j)

− yq,(u,v)
(j,i)

=
v−1∏
i=1

ωq,i ×
(
L̂inQX

q,u

i × ηq,ui − L̂inQX
q,v

i × ηq,vi
)

∀i ∈ V S ∪Dum, (i, j) ∈ E, q ∈ B, (u, v) ∈ EV,q

$(i,j) :
∑
q∈Q

∑
(u,v)∈EV,q

y
q,(u,v)
(i,j)

≤ ABW(i,j) ∀ (i, j) ∈ E

y
q,(u,v)
(i,j)

∈ R≥0

In the PSFCD-SP, λq,(u,v)(i,j) , µq,(u,v)(i,j) and $(i,j) are the dual

variables. x̂q,ui and L̂inQX
q,u

i are parameters, and their values
are directly substituted from the solution to the PSFCD-RMP.

If we denote the objective function of the PSFCD by Z, the
PSFCD-RMP is defined as follows:

min−Z

Restate Constraints (1)− (3), (5)− (13) and (18)− (21)

of the PSFCD as Constraints (1)− (16)

LinQXq,u
i ×

u−1∏
i=1

ωq,i ≤ =q,u × ςq,ui

∀ q ∈ B, uq ∈ V NFs, i ∈ V S |ηq,ui = 1 (17)∑
q∈Q

∑
(i,j)∈E

∑
(u,v)∈EV,q

(
φ̇q,v ×

(
λ̂
q,(u,v)
(i,j)

)k
×
(
xq,ui × ηq,ui − xq,vi × ηq,vi

)
+
v−1∏
i=1

ωq,i ×
(
µ̂
q,(u,v)
(i,j)

)k
×
(
LinQXq,u

i × ηq,ui − LinQXq,v
i × ηq,vi

))
+

∑
(i,j)∈E

(
$̂(i,j)

)k ×ABW(i,j) ≤ 0 ∀k ∈ K (18)∑
q∈M&uq∈V NFs

xq,ui × φ̇q,u+1 × ηq,ui +

∑
q∈B&uq∈V NFs

LinQXq,u
i ×

u∏
i=1

ωq,i × ηq,ui ≤ ABW(i,j)

∀i ∈ V S , (i, j) ∈ E (19)∑
q∈M&uq∈V NFs

xq,ui × φ̇q,u × ηq,ui

+
∑

q∈B&uq∈V NFs
LinQXq,u

i ×
u−1∏
i=1

ωq,i × ηq,ui ≤ ABW(j,i)

∀i ∈ V S , (j, i) ∈ E (20)

Constraint (17) is the linearization of Constraint (4) of the
PSFCD problem. The additional Constraints (18)-(20) of the
PSFCD-RMP, in comparison to the PSFCD, are added to im-
prove the decomposition.

If the solution to the PSFCD-RMP is not a feasible so-
lution to the PSFCD, i.e., it violates any of the PSFCD-
SP constraints, a feasibility cut in the form of Constraint
(18) will be added to the PSFCD-RMP. Constraint (18) is
derived from the objective function of the dual problem of the
PSFCD-SP as follows. If the PSFCD-SP problem becomes an
infeasible problem, after substituting the values of x̂q,ui and
L̂inQX

q,v

i , its dual becomes an unbounded problem. Then,
we use the extreme directions of the dual problem to create

TABLE VI: Different possibilities in solving the subproblems

PSFCD-RMP
Optimal Sub-optimal

PSFCD-SP Feasible Optimal Solution Depends on the
optimality gap

Infeasible Remove the solution Remove the solution

Constraint (18), known as the Benders feasibility cut and add
it to the PSFCD-RMP. In this way, we prevent the PSFCD-
RMP to find these infeasible solutions in the future. The

values of
(
λ̂
q,(u,v)
(i,j)

)k
,
(
µ̂
q,(u,v)
(i,j)

)k
, and

(
$̂(i,j)

)k
represent

the extreme direction at iteration k, and set K contains all
extreme directions up to the current iteration.

Since there is no connection between the variables of the
PSFCD-RMP and PSFCD-SP, it is likely to generate infeasible
solutions at first iterations, leading to an increase in the solu-
tion time. To remedy this situation, we add Constraints (19)
and (20) to the PSFCD-RMP. Constraint (19) states that for
each server, the total amount of output traffic from all functions
placed on that server must be lower than the available output
bandwidth of the server. Constraint (20) states that the total
amount of input traffic to all functions must be lower than the
input bandwidth of the server. Adding these two constraints
improves the solution time significantly.

We set a time limit in the proposed exact algorithm. After
solving the subproblems, four possibilities may happen: The
PSFCD-RMP reaches the optimal or sub-optimal solution,
and after substituting the solution in the PSFCD-SP, it either
becomes a feasible or infeasible problem. In each case, we
treat the solution in different ways that are depicted in Table
VI.

At the first iteration, we use the solution obtained by the
proposed heuristic as a warm-start [34] solution to solve the
PSFCD-RMP. Using an initial solution significantly enhances
the performance of the Benders method [14] [33]. After
solving the PSFCD-RMP, we substitute the solution in the
PSFCD-SP and solve that problem. If the PSFCD-SP becomes
a feasible problem, we check whether the optimality gap is
smaller than the predefined value or not. The optimality gap
is defined similarly to [35]. If it is smaller, then the algorithm
stops; otherwise, the obtained solution is used as a warm-
start solution to solve the PSFCD-RMP again. On the other
hand, If the PSFCD-SP becomes an infeasible problem, the
corresponding extreme direction will be added to set K in
Constraint (18).

The termination condition of the proposed exact algorithm is
a combination of reaching a global time limit or satisfying the
predefined gap, or reaching a predefined number of iterations.
As already stated, we also set a time limit for solving the
PSFCD-RMP, which is smaller than the global time limit. In
the initialization step, we set all these parameters.

V. NUMERICAL RESULTS

In this section, we compare the performance of our proposed
exact algorithm, the AEA, with CPLEX Branch & Cut algo-
rithm (B&C) [36], our implementation of the standard Benders
decomposition, and the CPLEX implementation of Benders

IEEE/ACM TRANSACTIONS ON NETWORKING 10

Initialization

Feasible and bounded?

Save the optimal value, solution and the

optimality gap

Exit

Substitute the solution in the

PSFCD-SP and solve it

Infeasible or solved to

optimality?

Add the extreme direction

to set K in Constraint (18)

Update the upper bound

value

Gap is satisfied?

Use the previuos

solution as warm start

Yes

No

Optimality

Infeasible

Yes

No

Termination Condition

is satisfied?

Solve the PSFCD-RMP to

reach time limit or

optimality

Yes

No

Fig. 3: The exact solving algorithm

[37] in terms of average solution time and total profit. We also
investigate the performance of the FIH in terms of the average
number of iterations, the percentage of successfully calculating
a feasible solution, and the solution time. In calculating the
solution time, we only consider the total time spent in solving
the models. Finally, the performance of the AEA and B&C is
compared in emergency scenarios.

A. Evaluation setup

We performed our simulations on 6-port Fat-tree [38] and
USNet topologies [39]. Each simulation run was composed of
two steps. The first step was to create a complete topology
by randomly attaching servers to the switches and specifying
the amount of power profiles, CPU, memory, and bandwidth
resources. The next step was to generate a set of best-effort
and emergency chains.

For the first step, we configured the USNet topology as
follows. We selected 6 switches 0, 4, 9, 10, 18, 23 as core
switches and the rest of the switches as edge switches. In
each iteration, we randomly attached 54 servers to the edge
switches and 6 ingress/egress points to the core switches. We

limited the maximum number of servers attached to a switch
to 4. The specification of the Fat-tree topology was the same
as [38], and we attached 3 servers to each edge switch.

The specifications of all servers and other infrastructure
parameters were randomly chosen according to Table VII and
VIII. If a server was off, its parameters AMEM i and ACPU i

were set to the installed CPU and memory resources. We set
the bandwidth of the links between ingress/egress points and
switches to 40 Gbps. The bandwidth of the links and the
rest of the infrastructure parameters were randomly selected
according to Table VII. The power profiles of the servers were
based on the data of Cisco UCS servers [40], and each server
powered off with a probability of 0.25

In each iteration, we randomly generated a set of chains by
using the data shown in Table IX and X. The specifications
of firewall and router VNFs were based on [41], [42]. The
value of the parameter ηq,ui was randomly set to 1 with the
probability of 0.5 for each server. Also, we allowed all VNFs
to migrate, i.e., πq,u = 1 ∀q ∈ Q, uq ∈ V NFs. The source
and destination of each chain were randomly mapped to one
of the ingress/egress points.

We used four scenarios to evaluate the performance of the
algorithms:
• IND scenario: There were no previously deployed chains.

A set of best-effort and emergency chains was created.
40% of chains were emergency chains.

• CHGINPUT scenario: This scenario simulates the
changes in the input traffic. First, we generated and
deployed a set of best-effort and emergency chains with
an optimality gap of 0.1 by using the relative mip-
gap function [43]. 40% of the generated chains were
emergency chains. Then, we saved the locations of the
deployed functions and their instances. After that, we
selected a subset of chains with a probability of 50%,
changed their input traffic, and applied the algorithms.

• CHGADD scenario: This scenario simulates the arrival
of new chains. First, we generated a set of best-effort
and emergency chains of which 40% of were emergency
chains. Then we selected 1/3 and 1/2 of the best-effort
and emergency chains, respectively, and deployed them
with an optimality gap of 0.1. After that, we saved the
current instances and locations of the deployed functions
and applied the algorithms with the whole set of chains.

• MIX scenario: This scenario is a combination of
CHGINPUT and CHGADD scenarios. First, similar to
CHGADD, we generated a set of chains and deployed
1/3 of the best-effort and 1/2 of emergency chains with
an optimality gap of 0.1. Then, we selected a subset of
deployed chains with a probability of 50% and changed
their input traffic. Finally, all algorithms were executed
for the whole set of chains.

All algorithms were implemented by CPLEX v12.8 in Java,
and all simulations were carried out on a server with 16 GB
of memory and 2 E5-2687 CPU cores operating at 3 GHz. In
the B&C, we set the optimality gap to 0.01 and the maximum
runtime to 410 seconds. The maximum runtime for solving
the Benders master problem in our implementation of Benders
was set to 400 seconds. We set the MaxIteration parameter of

IEEE/ACM TRANSACTIONS ON NETWORKING 11

TABLE VII: Infrastructure parameters

Links between switches Uniform [25 Gbps - 40 Gbps]
Links between powered-on

servers and switches Uniform [5 Gbps - (10 or 40) Gbps]

Links between powered-off
servers and switches 10 Gbps or 40 Gbps

AMEM i Uniform [20 - installed Memory]
ACPU i Uniform [10 - installed vCPU]

Number of
Servers-Switches-Ingress/Egress

54-45-9 (Fat-tree)
54-24-6 (USNet)

Energy Price (kWh) 10 cents [44]
Simulation Duration 72 hours

Bandwidth Price (1 Mb/Month) 9.5$ [45]
ψq Number of VNFs × Bandwidth price
Pmig 400 W
BWmig 100 Mbps

TABLE VIII: Servers specifications

Class 3 Class 2 Class 1
High Low High Low High Low

Installed vCPU 160 144 104 72 48 32
Installed Memory (GB) 2048 1408 1536 288 768 192
Link (Gbps) 40 40 40 40 10 10
Idle Power (W) 280 270 260 190 180 170
Max Power (W) 1220 1160 960 950 700 600

the FallBack to 30. For the AEA, we set the time limit of the
PSFCD-RMP to 50 seconds and the termination condition to
reaching 500 iterations or exceeding 400 seconds or achieving
an optimality gap below 0.0001. In our implementation of
Benders, we calculate the difference between lower and upper
bound values [14], [33], and if this value becomes less than
0.01 or the algorithm reaches 500 iterations or exceeds 400
seconds of execution, the algorithm will be terminated. Con-
sequently, the execution of the algorithms may be terminated
before reaching the global optimal solution. In the CPLEX
implementation of Benders, we set the strategy to FULL and
let CPLEX decide about the decomposition. We also set the
termination time to 410 seconds. Finally, each point in the
figures is the average of at least 30 simulation runs, and the
standard deviations are shown as error bars.

TABLE IX: VNFs specifications

VNF Type CPU MEM Throughput
(Mbps)

Modification
Ratio

Firewall 1 2 1000 0.9
NAT 2 4 1000 1.2

Intrusion Detection
System (IDS) 2 3 500 0.8

Router 1 4 1000 1
Deep Packet

Inspection (DPI) 2 4 500 0.8

Video Optimizer 3 4 500 0.5

TABLE X: Chains parameters

Chain length (including
source and destination) Uniform [3 - 7]

θq,LB Uniform [500 - 4750]
θq,UB Uniform [(θq,LB+250) - 5000]

Θ̇q Uniform [500 - 5000]

B. Performance Evaluation of the FIH

In this section, we investigate the performance of the
proposed heuristic in terms of the following metrics:
• Solution time: The average of the total time spent solving

the models until satisfying the termination condition.
• Success ratio: The number of times a feasible solution is

calculated divided by the total number of simulation runs
multiplied by 100.

• Iterations: the average total number of iterations until
satisfying the termination condition.

As already stated, the FIH only considers the emergency
chains. The results are shown in Figure 4. As it is shown, by
increasing the total number of requests, the average solution
time and the number of iterations increase. On the other hand,
the success ratio decreases. Please note that 40% of all requests
are emergency SFC requests. For example, if the total number
of requests is 50, then there are 20 emergency and 30 best-
effort requests.

Increasing the number of requests from 5 to 50 leads to an
increase in the solution time from below 1 second to 6.36 and
2.42 seconds in Fat-tree and USNet topologies, respectively.
Moreover, the success ratio drops from 100% to 84% and 83%
in Fat-tree and USNet topologies, respectively. As it is shown
in Figures 4(e) and 4(f), by increasing the number of requests,
the average number of iterations increases and reaches 11.8
and 10.36 for Fat-tree and USNet topologies, respectively.

The results show that the proposed heuristic can calculate
a feasible solution in less than 7 seconds with a worst-case
success ratio of 83% in both Fat-tree and USNet topologies.
Therefore, the FIH can be used as a fast and effective heuristic
to speed up the main solving algorithm.

C. Performance Evaluation of the AEA

In this section, we compare the performance of the AEA
with our implementation of the Benders algorithm, denoted
by Benders, along with the CPLEX implementation Benders,
denoted by ABenders, and B&C in terms of solution time
and the total profit of the service provider. The results are
shown in Figures 5, 6, 7, and 8. As it is shown, by increasing
the number of requests, the solution time and total profit
increase. In all scenarios, the Benders algorithm fails to find a
feasible solution after reaching a specific number of requests.
Therefore, we removed the results of the Benders algorithm
after that number.

In the IND scenario, there is no previous placement, and the
PSFCD must deploy the whole set of requests at once. As it is
shown in Figures 5(a) and 5(c), the AEA is 4.63 and 1.18 times
faster than the B&C method in deploying 50 chains in the
Fat-tree and USNet topologies, respectively, and the Benders
algorithm is the slowest algorithm. As it is shown in Figure
5(b), in the Fat-tree topology, the AEA achieves 6.59% more
profit than the B&C method in deploying 50 chains. Figure
5(d) compares the performance of the algorithms in the USNet
topology and shows the performance of the AEA and B&C is
very close in deploying chains up to 45 requests ; however,
the B&C outperforms the AEA in deploying 50 chains with
4.02% more profit. Therefore in the USNet topology, the AEA

IEEE/ACM TRANSACTIONS ON NETWORKING 12

5 10 15 20 25 30 35 40 45 50
Total number of requests

0
2
4
6
8

10
12
14
16
18

S
ol

ut
io

n
tim

e
(s

)

Fat-tree:All scenarios

IND
CHGINPUT
CHGADD

(a)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

S
ol

ut
io

n
tim

e
(s

)

USNet:All scenarios

IND
CHGINPUT
CHGADD

(b)

5 10 15 20 25 30 35 40 45 50
Total number of requests

80

85

90

95

100

S
uc

ce
ss

 r
at

io
 (

%
)

Fat-tree:All scenarios

IND
CHGINPUT
CHGADD

(c)

5 10 15 20 25 30 35 40 45 50
Total number of requests

80

85

90

95

100

S
uc

ce
ss

 r
at

io
 (

%
)

USNet:All scenarios

IND
CHGINPUT
CHGADD

(d)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

2

4

6

8

10

12

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

Fat-tree:All scenarios

IND
CHGINPUT
CHGADD

(e)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

2

4

6

8

10

12

A
ve

ra
ge

 n
um

be
r

of
 it

er
at

io
ns

USNet:All scenarios

IND
CHGINPUT
CHGADD

(f)

Fig. 4: The performance of the FIH in all scenarios.

performs faster than B&C with a similar performance up to 45
requests. Moreover, in the Fat-tree scenario, the AEA performs
better than the B&C in both solution time and total profit.

The CHGINPUT scenario investigates the changes in the
input of previously deployed chains. Therefore, there is no new
request. The results of the CHGINPUT scenario are shown in
Figure 6. As it is shown in Figures 6(a) and 6(c), the AEA
performs faster than B&C while the standard Benders method
is the slowest algorithm. In the requests with a size of 50, the
AEA is 7.94 and 2.26 times faster than the B&C in the Fat-
tree and USNet topologies, respectively. Moreover, the AEA
achieves 8.4% and 1.25% more profit than the B&C in the
Fat-tree and USNet topologies, respectively. Therefore, under
the CHGINPUT scenario, the AEA outperforms the B&C and
Benders algorithms.

CHGADD scenario deals with the arrival of new SFC
requests. The results of the CHGADD are shown in Figure
7. Similar to the previous scenarios, the AEA performs faster
than the B&C and Benders algorithms, and the Benders
algorithm is the slowest algorithm. In deploying 50 chains,
the AEA performs 8.1 and 2.7 times faster than the B&C in
Fat-tree and USNet topologies, respectively. As it is shown
in Figure 7(b), the AEA achieves 25% more profit than the
B&C in the Fat-tree topology. In the USNet topology, the two
algorithms AEA and B&C perform very similar in terms of
total profit. For example, while the AEA achieves 1.59% more
profit in requests of size 45, the B&C achieves 0.37% more
profit in the requests of size 50, which is ignorable. Therefore,
in the CHGADD scenario, the AEA is the fastest algorithm
and can achieve a higher profit than the B&C and the Benders
algorithms.

The MIX scenario compares the algorithms in more realistic
situations in which there are changes in both the number of
requests and the input to them. The results are shown in Fig-
ure 8. In both topologies, our implementation of the standard
Benders method fails to find a feasible solution to deploy 25
chains or larger. In the USNet, the AEA performs 2.01 and

2.56 times faster than the B&C and ABenders in deploying
50 chins, respectively. In the same size, the AEA reaches 3%
and 241%, on average, more profit than the B&C and ABen-
ders, respectively. A similar situation happens in the Fat-tree
scenario: the AEA outperforms other algorithms in terms of
profit and solution time. The AEA solves the PSFCD prob-
lem 3.53 and 3.62 times faster than the B&C and ABenders,
respectively. Moreover, the AEA calculates solutions that can
gain 37.31% and 228.7% more profit than B&C and ABenders,
respectively. In comparison to the Benders, ABenders succeeds
in finding feasible solutions in all input sizes. However, the
ABenders suffers from a considerably high solution time, even
in comparison with Benders. As it is shown in Figures 8(a)
and 8(c), the ABenders reaches the time limit in the input of
size 15 or higher.

It is also noteworthy to investigate the improvement in the
quality of the solution obtained by the AEA from the initial
solution calculated by the FIH. A comparison between the
profit of these algorithms in the deployment of 50 chains in
the MIX scenario is shown in Tabe XI. The last row of Table
XI presents a case in which the FIH fails to find a solution
while the AEA can successfully calculate a solution. For the
other 5 rows, the AEA improves the initial solution by 246%
and 215% in Fat-tree and USNet topologies, respectively.

According to the described results, the AEA outperforms
other algorithms in terms of solution time. Moreover, the AEA
can achieve a comparable or better profit than the B&C. The
considerable difference between the performance of the AEA
and original Benders is mostly because of the initial solution.
The Benders method suffers from a very large number of it-
erations in which it tries to find a feasible solution. Providing
the Benders method with an initial solution will likely im-
prove the solution time. When the FIH fails to find an initial
solution, similar to the last row of Table XI , other improve-
ments will become important: the problem-dependent cuts and
our flowchart of execution (Figure 3). We included problem-
dependent cuts to create a connection between the variables

IEEE/ACM TRANSACTIONS ON NETWORKING 13

TABLE XI: A comparison between the performance of the
FIH and AEA in the MIX scenario

Fat-tree USNet
FIH AEA FIH AEA

1 179002.07 543761.7743 156809.13 518269.24
2 165808.7 565606.12 137438.33 479156.16
3 145481.17 557661.53 174725.25 541131.3
4 160433.53 497175.19 145044.01 451921.6867
5 115908.85 454963.44 156149.38 435260.12
6 – 533699.27 – 389520.02

of sub-problems. This is done by adding Constraints (19) and
(20) to the PSFCD-RMP. We also introduced our flowchart
of execution to achieve the best results. These features result
in the superior performance of the AEA, while the original
Benders and ABenders are the slowest algorithms. In addi-
tion, the Benders cannot find a feasible solution even in the
medium-sized instances of the PSFCD problem, and the ABen-
ders overcomes this issue at the cost of a higher solution time.

D. Performance Evaluation in Emergency Scenarios

In some situations, the service provider must quickly decide
to deploy a set of new emergency chains. In these situations,
the service provider can set the migration parameter πq,u to
zero for all previously deployed chains and solve the PSFCD
problem. This approach results in a suboptimal solution,
but the solution time is much shorter than considering the
migrations. In this section, we investigate the performance of
this approach in terms of solution time. We considered 50
chains of which 20 were emergency chains. First, we deployed
30 best-effort chains with an optimality gap of 0.1. Then we
added 20 emergency chains, forbade the functions of the best-
effort chains to migrate, and solved the PSFCD problem with
the whole 50 chains again. In this situation, some of the best-
effort chains may be rejected or the input rate to them may
be decreased. The solution time and total profit of the Fat-tree
and USNet topologies are shown in Figure 9.

As shown in Figure 9, the AEA can calculate a better
solution faster than the B&C algorithm. The AEA is 2.9
and 1.5 times faster than the B&C while achieving 0.8%
and 0.4% more profit in the Fat-tree and USNet topologies,
respectively. In both topologies, the AEA can optimally deploy
20 emergency chains and reconfigure 30 best-effort chains in
less than 40 seconds, which makes it suitable for emergency
situations of this scale.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated prioritized service function
chain deployment and formulated the PSFCD problem that
satisfies the QoS requirements of emergency chains in the pres-
ence of best-effort chains. The PSFCD aims to maximize ser-
vice providers’ profit subject to satisfying the requested input
traffic to emergency chains and resource limits. We included
admission control for best-effort chains and management capa-
bilities such as migration control to provide a comprehensive
network service deployment and management formulation. In
addition to providing the MILP formulation, we introduced
two algorithms to satisfy the needs of service operators: if a

service provider desires to deploy emergency requests quickly,
they can use our polynomial-time heuristic algorithm, FIH.
On the other hand. If the service provider considers the max-
imization of their profit, they can use our exact algorithm,
AEA, to obtain an optimal solution faster than other state-of-
art algorithms. We showed that the AEA could benefit from
the solution obtained by the FIH and outperform the B&C and
Benders methods in both solution time and total profit.

Ultimately, from a theoretical viewpoint, it would be in-
teresting to design a heuristic polynomial-time algorithm that
considers both best-effort and emergency chains and can find a
suboptimal solution. Such algorithms would likely outperform
the AEA in terms of solution time and be inferior to it in total
profit, which is our main concern. The solution obtained by
such algorithms can be fed to other exact algorithms, such as
the AEA, to improve it.

REFERENCES

[1] “Network function virtualization-introductory white paper,” ETSI, Tech.
Rep., 2012.

[2] J. Halpern and C. Pignataro, “Service function chaining (SFC) architec-
ture,” IETF, Tech. Rep., 2015.

[3] Y. Chen, T. Farley, and N. Ye, “QoS requirements of network applica-
tions on the internet,” Inf. Knowl. Syst. Manag., vol. 4, no. 1, pp. 55–76,
2004-01.

[4] J. Moeyersons, B. Farkiani, B. Bakhshi, S. A. Mirhassani, T. Wauters,
B. Volckaert, and F. D. Turck, “Enabling emergency flow prioritization
in SDN networks,” in Proc. IEEE CNSM, 2019.

[5] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Commun. Surveys Tuts., vol. 18, no. 1, pp.
236–262, 2016.

[6] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic steering
for service function chaining,” IEEE Commun. Surveys Tuts., vol. 21,
no. 1, pp. 487–507, 2019.

[7] W. Rankothge, F. Le, A. Russo, and J. Lobo, “Optimizing Resource
Allocation for Virtualized Network Functions in a Cloud Center Using
Genetic Algorithms,” IEEE Trans. Netw. Service Manag., vol. 14, no. 2,
pp. 343–356, 2017.

[8] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On Dynamic Service
Function Chain Deployment and Readjustment,” IEEE Trans. Netw.
Service Manag., vol. 14, no. 3, pp. 543–553, 2017.

[9] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An Approach
for Service Function Chain Routing and Virtual Function Network
Instance Migration in Network Function Virtualization Architectures,”
IEEE/ACM Trans. Netw., vol. 25, no. 4, pp. 2008–2025, 2017.

[10] H. Tang, D. Zhou, and D. Chen, “Dynamic Network Function Instance
Scaling Based on Traffic Forecasting and VNF Placement in Operator
Data Centers,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 3, pp.
530–543, 2019.

[11] T. Kuo, B. Liou, K. C. Lin, and M. Tsai, “Deploying Chains of Virtual
Network Functions: On the Relation Between Link and Server Usage,”
IEEE/ACM Trans. Netw., vol. 26, no. 4, pp. 1562–1576, 2018.

[12] N. Huin, B. Jaumard, and F. Giroire, “Optimal Network Service Chain
Provisioning,” IEEE/ACM Trans. Netw., vol. 26, no. 3, pp. 1320–1333,
2018.

[13] I. Jang, D. Suh, S. Pack, and G. Dán, “Joint Optimization of Service
Function Placement and Flow Distribution for Service Function Chain-
ing,” IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2532–2541,
2017.

[14] B. Farkiani, B. Bakhshi, and S. Mirhassani, “A Fast Near-Optimal
Approach for Energy-Aware SFC Deployment,” IEEE Trans. Netw.
Service Manag., vol. 16, no. 4, pp. 1360–1373, 2019.

[15] A. Laghrissi and T. Taleb, “A Survey on the Placement of Virtual
Resources and Virtual Network Functions,” IEEE Commun. Surveys
Tuts., vol. 21, no. 2, pp. 1409–1434, 2019.

[16] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating Virtualized Network Functions,” IEEE Trans.
Netw. Service Manag., vol. 13, no. 4, pp. 725–739, 2016.

IEEE/ACM TRANSACTIONS ON NETWORKING 14

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

100

200

300

400

500

S
ol

ut
io

n
tim

e
(s

)

Fat-tree:IND scenario

B&C
Benders
AEA

(a)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

1

2

3

4

5
5.5

T
ot

al
 p

ro
fit

 (
$)

105 Fat-tree: IND scenario

B&C
Benders
AEA

(b)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

100

200

300

400

500

S
ol

ut
io

n
tim

e
(s

)

USNet:IND scenario

B&C
Benders
AEA

(c)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

1

2

3

4

5
5.5

T
ot

al
 p

ro
fit

 (
$)

105 USNet: IND scenario

B&C
Benders
AEA

(d)

Fig. 5: The performance of the algorithms in the IND scenario.

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

100

200

300

400

500

S
ol

ut
io

n
tim

e
(s

)

Fat-tree:CHGINPUT scenario

B&C
Benders
AEA

(a)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

1

2

3

4

5
5.5

T
ot

al
 p

ro
fit

 (
$)

105 Fat-tree: CHGINPUT scenario

B&C
Benders
AEA

(b)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

100

200

300

400

S
ol

ut
io

n
tim

e
(s

)

USNet:CHGINPUT scenario

B&C
Benders
AEA

(c)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

1

2

3

4

5
5.5

T
ot

al
 p

ro
fit

 (
$)

105 USNet: CHGINPUT scenario

B&C
Benders
AEA

(d)

Fig. 6: The performance of the algorithms in the CHGINPUT scenario.

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

100

200

300

400

500

S
ol

ut
io

n
tim

e
(s

)

Fat-tree:CHGADD scenario

B&C
Benders
AEA

(a)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

1

2

3

4

5
5.5

T
ot

al
 p

ro
fit

 (
$)

105 Fat-tree: CHGADD scenario

B&C
Benders
AEA

(b)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

100

200

300

400

500
S

ol
ut

io
n

tim
e

(s
)

USNet:CHGADD scenario

B&C
Benders
AEA

(c)

5 10 15 20 25 30 35 40 45 50
Total number of requests

0

1

2

3

4

5
5.5

T
ot

al
 p

ro
fit

 (
$)

105 USNet: CHGADD scenario

B&C
Benders
AEA

(d)

Fig. 7: The performance of the algorithms in the CHGADD scenario.

5 10 15 20 25 30 35 40 45 50

Total number of requests

0

100

200

300

400

500

S
o
lu

ti
o
n
 t
im

e
 (

s
)

Fat-tree:MIX scenario

B&C

Benders

AEA

ABenders

(a)

5 10 15 20 25 30 35 40 45 50

Total number of requests

0

1

2

3

4

5

5.5

T
o
ta

l
p
ro

fi
t
($

)

105 Fat-tree:MIX scenario

B&C

Benders

AEA

ABenders

(b)

5 10 15 20 25 30 35 40 45 50

Total number of requests

0

100

200

300

400

500

S
o
lu

ti
o
n
 t
im

e
 (

s
)

USNet:MIX scenario

B&C

Benders

AEA

ABenders

(c)

5 10 15 20 25 30 35 40 45 50

Total number of requests

0

1

2

3

4

5

5.5

T
o
ta

l
p
ro

fi
t
($

)

105 USNet:MIX scenario

B&C

Benders

AEA

ABenders

(d)

Fig. 8: The performance of the algorithms in the MIX scenario.

USNet and Fat-tree:Emergency scenario

50
Total number of requests

0

20

40

60

80

100

120

S
ol

ut
io

n
tim

e
(s

)

B&C:Fat-tree
AEA:Fat-tree
B&C:USNet
AEA:USNet

(a)

USNet and Fat-tree:Emergency scenario

50
Total number of requests

4.6

4.7

4.8

4.9

5

T
ot

al
 p

ro
fit

 (
$)

105

B&C:Fat-tree
AEA:Fat-tree
B&C:USNet
AEA:USNet

(b)

Fig. 9: The performance of the AEA and B&C in the emergency scenario.

[17] G. Sun, Y. Li, H. Yu, A. V. Vasilakos, X. Du, and M. Guizani, “Energy-
efficient and traffic-aware service function chaining orchestration in
multi-domain networks,” Future Generation Computer Systems, vol. 91,
pp. 347–360, 2019.

[18] F. Malandrino, C. F. Chiasserini, G. Einziger, and G. Scalosub, “Re-

ducing Service Deployment Cost Through VNF Sharing,” IEEE/ACM
Trans. Netw., pp. 1–14, 2019.

[19] V. Eramo, M. Ammar, and F. G. Lavacca, “Migration Energy Aware
Reconfigurations of Virtual Network Function Instances in NFV Archi-
tectures,” IEEE Access, vol. 5, pp. 4927–4938, 2017.

IEEE/ACM TRANSACTIONS ON NETWORKING 15

[20] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF Scaling and Flow
Routing with Proactive Demand Prediction,” in Proc. IEEE INFOCOM,
2018, pp. 486–494.

[21] L. Tang, X. He, P. Zhao, G. Zhao, Y. Zhou, and Q. Chen, “Virtual
Network Function Migration Based on Dynamic Resource Requirements
Prediction,” IEEE Access, vol. 7, pp. 112 348–112 362, 2019.

[22] Y. Gu, Y. Hu, Y. Ding, J. Lu, and J. Xie, “Elastic Virtual Network
Function Orchestration Policy Based on Workload Prediction,” IEEE
Access, vol. 7, pp. 96 868–96 878, 2019.

[23] M. Huang, W. Liang, Y. Ma, and S. Guo, “Maximizing Throughput
of Delay-Sensitive NFV-Enabled Request Admissions via Virtualized
Network Function Placement,” IEEE Trans. on Cloud Comput., pp. 1–
1, 2019.

[24] M. Dayarathna, Y. Wen, and R. Fan, “Data Center Energy Consumption
Modeling: A Survey,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 732–794, 2016.

[25] A. Marotta, F. D’Andreagiovanni, A. Kassler, and E. Zola, “On the
energy cost of robustness for green virtual network function placement
in 5G virtualized infrastructures,” Computer Networks, vol. 125, pp. 64–
75, 2017.

[26] A. Strunk and W. Dargie, “Does Live Migration of Virtual Machines
Cost Energy?” in Proc. IEEE AINA, 2013, pp. 514–521.

[27] L. Bertacco, M. Fischetti, and A. Lodi, “A feasibility pump heuristic for
general mixed-integer problems,” Discrete Optimization, vol. 4, no. 1,
pp. 63–76, 2007.

[28] M. Fischetti, F. Glover, and A. Lodi, “The feasibility pump,” Mathemat-
ical Programming, vol. 104, no. 1, pp. 91–104, 2005.

[29] M. Fischetti and D. Salvagnin, “Feasibility pump 2.0,” Mathematical
Programming Computation, vol. 1, no. 2, pp. 201–222, 2009.

[30] L. G. Khachiyan, “Polynomial algorithms in linear programming,” USSR
Computational Mathematics and Mathematical Physics, vol. 20, no. 1,
pp. 53–72, 1980.

[31] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” Combinatorica, vol. 4, no. 4, pp. 373–395, 1984.

[32] J. F. Benders, “Partitioning Procedures for Solving Mixed-variables
Programming Problems,” Numerische Mathematik, vol. 4, no. 1, pp.
238–252, 1962.

[33] B. Farkiani, B. Bakhshi, and S. MirHassani, “Stochastic virtual network
embedding via accelerated Benders decomposition,” Future Generation
Computer Systems, vol. 94, pp. 199–213, 2019.

[34] addmipstart. [Online]. Available: https://ibm.co/32H102c
[35] getmiprelativegap. [Online]. Available: https://ibm.co/3ajE3EQ
[36] CPLEX 12.8 Java API Reference Manual. [Online]. Available:

https://ibm.co/2VG4h09
[37] Benders algorithm. [Online]. Available: https://ibm.co/2IGNo0R
[38] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable, Commodity

Data Center Network Architecture,” in Proc. SIGCOMM. ACM, 2008,
pp. 63–74.

[39] C. Ren, S. Wang, J. Ren, W. Qian, X. Zhang, and J. Duan, “Energy-
efficient virtual topology design in IP over WDM mesh networks,”
Computer Networks, vol. 112, pp. 223–236, 2017.

[40] Cisco NFV Infrastructure. [Online]. Available: http://bit.ly/2HqT1gU
[41] Cisco Adaptive Security Virtual Appliance (ASAv) Data Sheet.

[Online]. Available: http://bit.ly/2TA5TZw
[42] Cisco Cloud Services Router 1000v Data Sheet. [Online]. Available:

http://bit.ly/2Ci5n7B
[43] Mipgap. [Online]. Available: https://ibm.co/2IvDBHL
[44] Electricity Rates by State (December 2019). [Online]. Available:

http://bit.ly/2Tga37b
[45] Comparing Bandwidth Costs of Amazon, Google and Microsoft Cloud

Computing. [Online]. Available: http://bit.ly/2TwPi65

APPENDIX A
THE PSFCD FORMULATION

max

((∑
q∈Q

(
Θq + Θ̇q

)
× ψq ×∆

)

−
(∑
uq∈V NFs

mq,u ×
(
ς′q,u × MEMq,u

BWmig
× 2Pmig

)
× E

)
−
(∑
i∈V S

(
βi × P iidle ×

(
1− Statei

)
+

∑
uq∈V NFs

ςq,ui × CPUq,u × P i
max−P

i
idle

ICPUi

)
×∆× E

))
PSFCD∑

i∈V S∪Dum
xq,ui × ηq,ui = 1 ∀q ∈M,uq ∈ V NFs ∪ {Src,Dst} (1)∑

i∈V S∪Dum
xq,ui × ηq,ui = αq ∀q ∈ B, uq ∈ V NFs ∪ {Src,Dst} (2)

xq,ui × φ̇q,u ≤ =q,u × ςq,ui ∀q ∈M,uq ∈ V NFs, i ∈ V S |ηq,ui = 1 (3)

xq,ui × φq,u ≤ =q,u × ςq,ui ∀q ∈ B, uq ∈ V NFs, i ∈ V S |ηq,ui = 1 (4)

ςq,ui =
(
ς′q,u ×

(
xCq,ui + (1− xCq,ui)× xq,ui

))
+
(
CRq,ui −REMq,u

i

)
∀q ∈ Q, uq ∈ V NFs, i ∈ V S |ηq,ui = 1 (5)

πq,u×mq,u = 1− xq,ui
∀q ∈M, uq ∈ V NFs, i ∈ V S |xCq,ui = 1 (6)

πq,u ×mq,u ≤ 1− xq,ui
∀q ∈ B, uq ∈ V NFs, i ∈ V S |xCq,ui = 1 (7)

πq,u ×mq,u ≤ αq ∀q ∈ B, uq ∈ V NFs (8)

πq,u ×mq,u ≥ αq − xq,ui
∀q ∈ B, uq ∈ V NFs, i ∈ V S |xCq,ui = 1 (9)∑

uq∈V NFs
ςq,ui × CPUq,u ≤ ACPU i ∀i ∈ V S (10)∑

uq∈V NFs
ςq,ui ×MEMq,u ≤ AMEM i ∀i ∈ V S (11)

xq,ui ≤ βi ∀q ∈ Q, uq ∈ V NFs, i ∈ V S (12)

xq,ui + xq,u+1
i ≤ 1

∀q ∈ Q,uq ∈ V NFs, i ∈ V S |
(
ηq,ui = 1&ηq,u+1

i = 1
)

(13)∑
(i,j)∈E

y
q,(u,v)
i,j −

∑
(j,i)∈E

y
q,(u,v)
j,i = 0

∀i ∈ V N , q ∈ Q, (u, v) ∈ EV,q (14)

y
q,(u,v)
(i,j)

− yq,(u,v)
(j,i)

= φ̇q,v ×
(
xq,ui × ηq,ui − xq,vi × ηq,vi

)
∀i ∈ V S ∪Dum, (i, j) ∈ E, q ∈M, (u, v) ∈ EV,q (15)

y
q,(u,v)
(i,j)

− yq,(u,v)
(j,i)

= φq,v ×
(
xq,ui × ηq,ui − xq,vi × ηq,vi

)
∀i ∈ V S ∪Dum, (i, j) ∈ E, q ∈ B, (u, v) ∈ EV,q (16)∑

q∈Q

∑
(u,v)∈EV,q

y
q,(u,v)
(i,j)

≤ ABW(i,j) ∀ (i, j) ∈ E (17)

θq,LB × αq ≤ Θq ≤ θq,UB × αq ∀q ∈ B (18)

https://ibm.co/32H102c
https://ibm.co/3ajE3EQ
https://ibm.co/2VG4h09
https://ibm.co/2IGNo0R
http://bit.ly/2HqT1gU
http://bit.ly/2TA5TZw
http://bit.ly/2Ci5n7B
https://ibm.co/2IvDBHL
http://bit.ly/2Tga37b
http://bit.ly/2TwPi65

	Introduction
	Contributions
	Paper Structure

	Related Research
	Problem Formulation
	Infrastructure Model
	SFC Requests Model
	Assumptions
	Provider's Profit Model
	PSFCD Formulation
	An Illustrative Example

	Proposed Solution Methodology
	Finding a Feasible Solution
	Complexity Analysis

	Exact Solving Algorithm

	Numerical Results
	Evaluation setup
	Performance Evaluation of the FIH
	Performance Evaluation of the AEA
	Performance Evaluation in Emergency Scenarios

	Conclusion and Future Work
	References
	Appendix A: The PSFCD Formulation

