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ON (λ, µ)-CLASSES ON THE ENGEL GROUP

MARIANNA CHATZAKOU

Abstract. The purpose of this note is to compare the properties of the symbolic
pseudo-differential calculus on the Heisenberg and on the Engel groups; nilpotent
Lie groups of 2-step and 3-step, respectively. Here we provide a preliminary analysis
of the structure and of the symbolic calculus with symbols parametrized by (λ, µ) on
the Engel group, while for the case of the Heisenberg group we recall the analogous
results on the λ-classes of symbols.

1. Introduction

In [FR16] the authors developed a global pseudo-differential calculus in the setting
of a graded nilpotent Lie groups. Here we present the analogous preliminary results
in the particular case of the Engel group B4.
We prove that the representation of B4 is associated with the Kohn-Nirenberg

quantization on R
4. This, together with the analogue of the Kohn-Nirenberg quan-

tization on Lie groups (c.f [Tayl84],[RT10],[FR16]) gives rise to the development of
the pseudo-differential calculus on B4 with scalar-valued symbols depending on the
parameters (λ, µ)-the co-adjoint orbits.
In [Tayl84], M. Taylor describes a way one can develop a symbolic non-invariant

calculus by defining a general quantization and the general symbols on any type-I
Lie group, and explained his ideas in the setting of the Heisenberg group Hn, with
symbols defined by some asymptotic expansions. Particularising in the setting of a
large class of nilpotent Lie groups; namely on the class of graded Lie groups, to the
best of our knowledge, the development of a non-invariant calculus with scalar-valued
symbols has been restricted to the case of the Heisenberg group (graded group of 2-
step), see [BFKG12], or [FR14].
Besides the amount of work devoted to the case of the Heisenberg group, the same

motivating aspects appear as well on any graded Lie group. In our consideration
of B4 (graded group of 3-step) our approach differs from the one in [Tayl84] or in
[BFKG12] in the sense that the symbols are operator valued. However, using the
link between the Kohn-Nirenberg quantization and the representations on B4 they
can be expressed on the euclidean level. Concrete formulas for the difference opera-
tors in the setting of B4 are provided, laying down the necessary foundation for the
characterisation of the symbol classes in our setting.

2. Prelimaries on the Engel group B4 and its Lie algebra

We start by fixing the notation required for presenting our results. The map

(x1, x2, x3, x4) ◦ (y1, y2, y3, y4)

:= (x1 + y1, x2 + y2, x3 + y3 − x1y2, x4 + y4 +
1

2
x2
1y2 − x1y3)

1
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endows R4 with a structure of a Lie group, and we shall refer to B4 = (R4, ◦) as the
Engel group. The Lie algebra of B4, say l4, is, by the general theory, the vector space
of (smooth) left invariant vector fields X on R

4 characterised by the property

(XI)(x) = Jτx(0) · (XI)(0) , ∀x ∈ B4 ,

where I is the identity map on R
4 and Jτx(0) denotes the Jacobian matrix at the

origin of the map τx for x ∈ B4 where τx(y) := x ◦ y is the left translation by x on
B4. In particular we have

Jτx(0) =









1 0 0 0
0 1 0 0
0 −x1 1 0

0
x2
1

2
−x1 1









,

so that for example for X1 = ∂x1 , we can recognise that for every x ∈ B4,

(X1I)(x) =









1
0
0
0









=









1 0 0 0
0 1 0 0
0 −x1 1 0

0
x2
1

2
−x1 1









·









1
0
0
0









= Jτx(0) · (X1I)(0) ,

while similarly for the vector fields X2 = ∂x2 − x1∂x3 +
x2
1

2
∂x4 , X3 = ∂x3 − x1∂x4 and

X4 = ∂x4 . Simple calculations show that [X1, X2] = X3, and [X1, X3] = X4
1, are the

only non-zero relations, so that

l4 = span{X1, X2, [X1, X2], [X1, X3]} ,
and X1, X2 satisfy the so-called Hörmander condition. The lower center series of l4
defined inductively by

l4(1) := l4 , l4(j) = [l4, l4(j−1)]
2 ,

terminates at 0 after 3 steps, that is B4 is of 3-step. In addition, B4 is a homogeneous
Lie group on R

4 since the mapping

δλ : R4 → R
4 , δλ(x1, x2, x3, x4) = (λx1, λx2, λ

2x3, λ
3x4) ,

is an automorphism of B4 for every λ > 0, and so the natural gradation of its Lie
algebra l4 appears as

l4 = V1 ⊕ V2 ⊕ V3 ,

where V1 = span{X1, X2} , V2 = span{X3} and V3 = span{X4}, and is such that
[Vi, Vj] ⊂ Vi+j, i 6= j.

Finally, let us note that, from the general theory of homogeneous Lie groups, the
Lebesgue measure on R

4 is invariant with respect to the left and right invariant
translation on B4, that is the Lebesgue measure on R

4 is the Haar measure for B4

and we can formulate as
∫

B4

· · · dx1dx2dx3dx4 =

∫

R4

· · ·dx1dx2dx3dx4 .

1For smooth vectors X , Y in R
n, we define the Lie-bracket [X,Y ] := Y X −XY .

2For V,W spaces of vector fields, we denote by [V,W ] the set {[v, w] : v ∈ V,w ∈ W}.
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3. Group representation and quantization of the Fourier transform

The representations of the Engel group B4 are the infinite dimensional unitary
(equivalence classes of) representations of B4. Parametrised by λ 6= 0 and µ ∈ R,
following [Dix57, p.333], they act on L2(Rn). We denote them by πλ,µ, and realise
them as

πλ,µ(x1, x2, x3, x4)h(u) = exp

(

i

(

− µ

2λ
x2 + λx4 − λx3u+

λ

2
x2u

2

))

h(u+ x1) ,

for h ∈ L2(R), u ∈ R. The group Fourier transform of a function f ∈ L1(B4) is by
definition the linear endomorphism on L2(R)

FB4(f)(πλ,µ) ≡ f̂(πλ,µ) ≡ πλ,µ(f) :=

∫

B4

f(x)πλ,µ(x)
∗ dx .

Rigorous computations show that f̂(πλ,µ)h(u) can be written as
∫

R4

[

f(x1, x2, x3, x4)

· exp
(

i

(

µ

2λ
x2 − λx4 + λx3(u− x1)−

λ

2
x2(u− x1)

2

))

h(u− x1)

]

dx1 dx2 dx3 dx4

(1)

= (2π)−2

∫

R4

∫

R4

[

FR4(f)(ξ, η, τ, ω) · eix1ξ · eix2η · eix3τ · eix4ω

· exp
(

i

(

µ

2λ
x2 − λx4 + λx3(u− x1)−

λ

2
x2(u− x1)

2

))

· h(u− x1)

]

dx1 dx2 dx3 dx4dξ dη dτ dω

= −(2π)

∫

R

∫

R

[

eix1ξF(f)R4(ξ,
λ

2
(u− x1)

2 − µ

2λ
, λ(x1 − u), λ)h(u− x1)

]

dx1 dξ

= (2π)

∫

R

∫

R

[

ei(u−v)ξF(f)R4(ξ,
λ

2
v2 − µ

2λ
,−λv, λ)h(v)

]

dv dξ ,

for h ∈ L2(R) and u ∈ R, that is

FB4(f)(πλ,µ) = Op[af,λ,µ(·, ·)] , (2)

where

af,λ,µ(v, ξ) = (2π)2FR4(f)(ξ,
λ

2
v2 − µ

2λ
,−λv, λ) .

Here the Fourier transform FR4 is defined via:

FR4f(ξ) = (2π)−2

∫

R4

f(x)e−ixξ dx (ξ ∈ R
4, f ∈ L1(R4)) , (3.1)

and Op denotes the Kohn-Nirenberg quantization, that is for a smooth symbol a on
R× R the operator

Op(a)f(u) = (2π)−1

∫

R

∫

R

ei(u−v)ξa(v, ξ)f(v) dv dξ ,
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for f ∈ S(R) and u ∈ R.

We note that for the case of the Heisenberg group Hn the group Fourier transform
has been computed in [FR14] as being the operator

FHn(f)(πλ) = (2π)
n
2OpW [FR2n+1(f)(

√

|λ|·,
√
λ·, λ)] , (3)

where OpW denotes the Weyl-quantization, i.e.

OpW (a)f(u) = (2π)−n

∫

Rn

∫

Rn

ei(u−v)ξa

(

ξ,
u+ v

2

)

f(v) dv dξ ,

for f ∈ S(Rn) and u ∈ R
n, where πλ denotes the Schrödinger representations of Hn,

Going back to our case, of one keeps the same notation πλ,µ for the infinitesimal
representation, we compute that:

πλ,µ(X1) = ∂u = Op(iξ) ,

πλ,µ(X2) =
i
2

(

λu2 − µ

λ

)

= Op
(

iλu2

2
− iµ

2λ

)

,

πλ,µ(X3) = −iλu = Op(−iλu) ,
πλ,µ(X4) = iλ = Op(iλ) ,

thus

πλ,µ(L) = πλ,µ(X1)
2+πλ,µ(X2)

2 =
d2

du2
−1

4

(

λu2 − µ

λ

)2

= −Op

(

ξ2 +
1

4

(

λu2 − µ

λ

)2
)

.

With our choice of notation, the Plancherel measure of the Engel group B4 is (2
−3π−4)dλ dµ,

in the sense that following expression for the Plancherel formula
∫

B4

|f(x1, x2, x3, x4)|2 dx1 dx2 dx3 dx4 = 2−3π−4

∫

λ6=0

∫

µ∈R

‖πλ,µ(f)‖2HS dµ dλ , (4)

holds for any f ∈ S(R), where ‖ · ‖HS denotes the Hilbert-Schmidt norm of an op-
erator on L2, that is ‖A‖HS := Tr(A∗A). The last allows for an extension of the
group Fourier transform to L2(B4), and in particular formula (4) holds true for any
f ∈ L2(B4).

Indeed, by using (2) the operator πλ,µ(f) has integral kernel

Kf,λ,µ(u, v) = 2π

∫

R

ei(u−v)ξFR4(f)(ξ,
λ

2
v2 − µ

2λ
,−λv, λ) dξ ,

or equivalently

Kf,λ,µ(u, v) = (2π)
3
2FR3(f)(v − u,

λ

2
v2 − µ

2λ
,−λv, λ) ,

where the Fourier transform is taken with respect to the second, the third and the
fourth variable of f . Integrating the L2(R×R)-norm of Kf,λ,µ (or the Hilbert-Schmidt
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norm of πλ,µ(f)) against dλ, dµ we obtain
∫

R\{0}

∫

R

∫

R

∫

R

|Kf,λ,µ(u, v)|2 du dv dµ dλ

= (2π)3
∫

R\{0}

∫

R

∫

R

∫

R

|FR3(f)(u− v,
λ

2
v2 − µ

2λ
,−2λ, λ)|2 du dv dλ dµ

= (2π)3
∫

R\{0}

∫

R

∫

R

∫

R

|FR3(f)(x1, w2, w3, w4)|2
1

2
dw2 dw3 dw4 dx1 ,

where the constant 1
2
comes from the calculation of the determinant of the Jacobian

matrix of the linear transformation F (u, v, λ, µ) = (w1 = u− v, w2 =
λ
2
v2 − µ

2λ
, w3 =

−λv, w4 = λ). Finally, the Plancherel formula on R
3 in the variable (w2, w3, w4) with

dual variable (x2, x3, x4) gives
∫

R\{0}

∫

R3

|Kf,λ,µ(u, v)|2 dv du dµ dλ = 22π3

∫

R4

|f(x1, x2, x3, x4)|2 dx1 dx2 dx3 dx4 ,

and the last implies (4).

4. Difference operators

Difference operators on the setting of a compact Lie group introduced in [RT10] as
acting on Fourier coefficients, while on graded Lie groups in [FR16]. In the setting
of the Engel group B4 this yields the definition of the difference operators ∆xi

as:

∆xi
κ̂(πλ,µ) := πλ,µ(xiκ) , i = 1, · · · , 4 ,

for suitable distributions κ on B4.

To find the explicit expressions of the difference operators ∆xi
we make use of

the following property: For X and X̃ being a left and a right invariant vector field,
respectively, in the Lie algebra l4, and for a distribution κ on B4 we have

πλ,µ(Xκ) = πλ,µ(X)πλ,µ(κ) , πλ,µ(X̃κ) = πλ,µ(κ)πλ,µ(X) .

Notice that the right invariant vector fields that generate l4 can be calculated as:

X̃1 = ∂x1 − x2∂x3 − x3∂x4 , X̃2 = ∂x2 , X̃3 = ∂x3 , X̃4 = ∂x4 .

Proposition 4.1. For suitable distribution κ on B4 we have:

∆x1 κ̂(πλ,µ) =
i

λ
(πλ,µ(X3)πλ,µ(κ)− πλ,µ(κ)πλ,µ(X3)) ,

where πλ,µ(X3) = −iλu, and

∆x2 κ̂(πλ,µ) =
2λ

i
∂µπλ,µ(κ) .

Proof. Since πλ,µ(X4) = iλ, and X̃3 −X3 = X4x1, we have

πλ,µ(x1κ) =
1

iλ
πλ,µ(X4x1κ) =

1

iλ
((X̃3 −X3)κ)

=
i

λ
(πλ,µ(X3)πλ,µ(κ)− πλ,µ(κ)πλ,µ(X3)) .
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Now, for the difference operator corresponding to x2, we differentiate the group
Fourier transform of κ as in (1) at h with respect to µ and get

∂µ{πλ,µ(κ)h(u)} = ∂µ

{

∫

R4

κ(x) exp
(

i
( µ

2λ
x2 − λx4

))

· exp
(

i

(

λx3(u− x1)−
λ

2
x2(u− x1)

2

))

h(u− x1)dx
}

=

∫

R4

κ(x) exp
(

i
( µ

2λ
x2 − λx4

))

· exp
(

i

(

λx3(u− x1)−
λ

2
x2(u− x1)

2

))

h(u− x1)

(

i

2λ
x2

)

dx ,

or in terms of difference operators,

∂µπλ,µ(κ) = πλ,µ

(

i

2λ
x2κ

)

=
i

2λ
∆x2πλ,µ(κ) .

�

Proposition 4.2. For a suitable distribution κ we have:

∆x3κ̂(πλ,µ) =
i

λ
(∆x2πλ,µ(κ)πλ,µ(X3) + πλ,µ(κ)πλ,µ(X1)− πλ,µ(X1)πλ,µ(κ)) ,

where ∆x2|πλ,µ
is given in Proposition 4.1 and πλ,µ(X1) = ∂u, πλ,µ(X3) = −iλu.

Proof. Since X1 − X̃1 − x2X3 = ∂x4x3 we have

πλ,µ(x3κ) =
1

iλ
(X4x3κ) =

1

iλ
((X1 − X̃1 − x2X̃3)κ)

=
1

iλ
(πλ,µ(X1)πλ,µ(κ)− πλ,µ(κ)πλ,µ(X1)−∆x2πλ,µ(κ)πλ,µ(X3)

=
i

λ
(∆x2πλ,µ(κ)πλ,µ(X3) + πλ,µ(κ)πλ,µ(X1)− πλ,µ(X1)πλ,µ(κ)) ,

completing the proof. �

Proposition 4.3. For a suitable distribution κ on B4 we have:

(∆x4πλ,µ(κ))h(u) = i∂λ{πλ,µ(κ)h(u)} −
(

µ

2λ2
+

u2

2

)

{

∆x2πλ,µ(κ)h(u)
}

+ u
{

∆x3πλ,µ(κ)h(u)
}

−
{

∆x3∆x1πλ,µ(κ)h(u)
}

+ u
{

∆x2∆x1πλ,µ(κ)h(u)
}

− 1

2

{

∆x2∆
2
x1
πλ,µ(κ)h(u)

}

,

where the difference operators ∆xi|πλ,µ
, i = 1, 2, 3, are given in Propositions 4.1 and

4.2, respectively.
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Proof. Differentiating the group Fourier transform of κ as in (1) at h with respect to
λ yields

∂λ{πλ,µ(κ)h(u)} = ∂λ

{

∫

R4

κ(x) exp
(

i
( µ

2λ
x2 − λx4

))

· exp
(

i

(

λx3(u− x1)−
λ

2
x2(u− x1)

2

))

h(u− x1) dx
}

=

∫

R4

κ(x) exp

(

i

(

µ

2λ
x2 − λx4 + λx3(u− x1)−

λ

2
x2(u− x1)

2

))

h(u− x1)
{

i
(

− µ

2λ2
x2 − x4 + x3(u− x1)−

x2

2
(u− x1)

2
)}

dx .

Rewriting the above formula in terms of difference operators we obtain

∂λ{πλ,µ(κ)h(u)} = i
[

−
(

µ

2λ2
+

u2

2

)

{

∆x2πλ,µ(κ)h(u)
}

−
{

∆x4πλ,µ(κ)h(u)
}

+ u
{

∆x3πλ,µ(κ)h(u)
}

−
{

∆x3∆x1πλ,µ(κ)h(u)
}

+ u
{

∆x2∆x1πλ,µ(κ)h(u)
}

− 1

2

{

∆x2∆
2
x1
πλ,µ(κ)h(u)

}]

,

completing the proof.
�

For example we have:

∆x1πλ,µ(X1) = −I ,∆x1πλ,µ(X2) = ∆x1πλ,µ(X3) = ∆x1πλ,µ(X4) = 0
∆x2πλ,µ(X1) = ∆x2πλ,µ(X3) = ∆x2πλ,µ(X4) = 0 ,∆x2πλ,µ(X2) = −λI

∆x3πλ,µ(X1) = ∆x3πλ,µ(X4) = 0 ,∆x3πλ,µ(X2) = −λu+ u ,∆x3πλ,µ(X3) = −I

∆x4πλ,µ(X1) = ∆x4πλ,µ(X4) = 0 ,∆x4πλ,µ(X2) =
u2

2
(1−λ)+ µ

2λ
,∆x4πλ,µ(X4) = −I,

where the difference operators ∆xi
πλ,µ(Xj) can be understood as the group Fourier

transform of the distribution xiXjδ0.

5. Quantization and symbol classes

In this note, we may slightly change the notation of the symbol introduced in
[FR16]. We keep the notation

x = (x1, x2, x3, x4) ∈ B4 ,

to denote the coordinates of an element in the Engel group B4, and we may denote
by

σ(x, λ, µ) := σ(x, πλ,µ) , (x, λ, µ) ∈ B4 × R \ {0} × R ,

the symbol σ parametrised by (x, λ, µ). In addition, if the multi-index α ∈ N
4
0 is

written as
α = (α1, α2, α3, α4) , αi ∈ N0 ,

then the homogeneous degree of α is given by:

[α] = α1 + α2 + 2α3 + 3α4 .

For each α we may write:
xα = xα1

1 xα2
2 xα3

3 xα4
4 ,
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so that the corresponding difference operator can be defined as:

∆
′α

= ∆α1
x1
∆α2

x2
∆α3

x3
∆α4

x4
.

Finally for the vector field X we write Xα to denote the following composition of
vector fields:

Xα1
1 Xα2

2 Xα3
3 Xα4

4 .

Following [FR16] we define the symbol classes Sm
ρ,δ(B4), where 0 ≤ δ < ρ ≤ 1 and

m ∈ R, as the set of symbols σ for which the following quantities are finite:

‖σ‖Sm
ρ,δ,a,b,c

:= sup
λ∈R\{0},µ∈R,x∈B4

‖σ(x, λ, µ)‖Sm
ρ,δ,a,b,c

, a, b, c ∈ N0 ,

where

‖σ(x, λ, µ)‖Sm
ρ,δ

,a,b,c := sup
[a]≤a

[β]≤b,|γ|≤c

‖πλ,µ(I−L) ρ[α]−m−δ[β]+γ

2 Xβ∆
′α
σ(x, λ, µ)πλ,µ(I−L)− γ

2 ‖op .

There is a natural quantization on any type-I Lie group introduced by [Tayl84]
that can be served as the analogue of the Kohn-Nirenberg quantization on R

n. In
particular, the quantization, i.e., the mapping σ 7→ Op(σ) produces operators associ-
ated with a symbol σ (for example in the class of symbols Sm

ρ,δ(B4)) on S(B4) given
by:

Op(σ)φ(x) = 2−3π−4

∫

λ6=0

∫

µ∈R

Tr (πλ,µ(x)σ(x, λ, µ)πλ,µ(φ)) dµ dλ . (5)

Here we have used our notation for the description of the dual, as well as for the
symbol and the Plancherel measure, see (4).

Let us note that by (2), we see that for the symbol σ quantized as:

σ(x, λ, µ) = Op(aκx,λ,µ) ,

then its symbol that is given by

aκx,λ,µ(v, ξ) = (2π)2FR4(κx)(ξ,
λ

2
v2 − µ

2λ
,−λv, λ) ,

shall be called the (λ, µ)-symbol, where {κx(y)} is the kernel of the symbol {σ(x, λ, µ)},
i.e.,

σ(x, λ, µ) = πλ,µ(κx) .

The above, together with the property of the Fourier transform

φ̂(πλ,µ)πλ,µ(x) = FB4(φ(x·))(πλ,µ) ,

and the properties of the trace yield the following alternative formula for the quan-
tization given in (5):

Op(σ)(φ)(x) = 2−3π−4

∫

λ6=0

∫

µ∈R

Tr
(

Op(aκx,λ,µ)Op(aφ(x·),λ,µ)
)

dµ dλ .

The last formula shows that the quantization formula (5) can be expressed in terms
of composition of quantization of symbols in the Euclidean space.
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Similarly, for the case of the Heisenberg group Hn, (3) implies that the operator
Op(σ) on S(Hn) involves ’Euclidean objects’, and in particular:

Op(σ)φ(x) = cn

∫

λ6=0

Tr
(

OpW (ax,λ)OpW [FR2n+1(φ(x·))(
√

|λ|·,
√
λ·, λ)]

)

|λ|n dλ ,

where the symbol ax,λ (also called the λ-symbol) given by:

ax,λ(ξ, u) = FR2n+1(κ
′

x)(
√

|λ|ξ,
√
λu, λ) ,

where {κ′

x(y)} is the kernel of the symbol σ, is such that

σ(x, λ) := σ(x, πλ) = OpW (ax,λ) .

For our notation, especially for the Plancherel measure cn|λ|n on Hn, see [FR16,
Chapter 6].

In contrast with the case of the Engel group B4, in the setting of the Heisenberg
group Hn, one can renormalise ax,λ as

ax,λ(ξ, u) := ãx,λ(
√

|λ|ξ,
√
λu) ,

and therefore, one can characterise the symbol classes Sm
ρ,δ(Hn) by the property that

these λ-symbols belong to some Shubin spaces, called λ-type version of the usual
Shubin classes, leading to sufficient criteria for ellipticity and hypoellipticity of op-
erators on Hn in terms of the invertibility properties of their λ-symbols, see [FR16,
Chapter 6].
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