Advanced search
1 file | 1.46 MB Add to list

The scaling of social interactions across animal species

Luis E C Rocha (UGent) , Jan Ryckebusch (UGent) , Koen Schoors (UGent) and Matthew Smith
Author
Organization
Abstract
Social animals self-organise to create groups to increase protection against predators and productivity. One-to-one interactions are the building blocks of these emergent social structures and may correspond to friendship, grooming, communication, among other social relations. These structures should be robust to failures and provide efficient communication to compensate the costs of forming and maintaining the social contacts but the specific purpose of each social interaction regulates the evolution of the respective social networks. We collate 611 animal social networks and show that the number of social contacts E scales with group size N as a super-linear power-law E=CNβ for various species of animals, including humans, other mammals and non-mammals. We identify that the power-law exponent β varies according to the social function of the interactions as β=1+a/4, with a≈1,2,3,4. By fitting a multi-layer model to our data, we observe that the cost to cross social groups also varies according to social function. Relatively low costs are observed for physical contact, grooming and group membership which lead to small groups with high and constant social clustering. Offline friendship has similar patterns while online friendship shows weak social structures. The intermediate case of spatial proximity (with β=1.5 and clustering dependency on network size quantitatively similar to friendship) suggests that proximity interactions may be as relevant for the spread of infectious diseases as for social processes like friendship.
Keywords
Multidisciplinary, complex systems, social networks, complexity, scaling, evolutionary biology, physics, GROUP-SIZE, NETWORKS, BENEFITS, LIFE

Downloads

  • Rocha et al-2021-Scientific Reports Published.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 1.46 MB

Citation

Please use this url to cite or link to this publication:

MLA
Rocha, Luis E. C., et al. “The Scaling of Social Interactions across Animal Species.” SCIENTIFIC REPORTS, vol. 11, 2021, doi:10.1038/s41598-021-92025-1.
APA
Rocha, L. E. C., Ryckebusch, J., Schoors, K., & Smith, M. (2021). The scaling of social interactions across animal species. SCIENTIFIC REPORTS, 11. https://doi.org/10.1038/s41598-021-92025-1
Chicago author-date
Rocha, Luis E C, Jan Ryckebusch, Koen Schoors, and Matthew Smith. 2021. “The Scaling of Social Interactions across Animal Species.” SCIENTIFIC REPORTS 11. https://doi.org/10.1038/s41598-021-92025-1.
Chicago author-date (all authors)
Rocha, Luis E C, Jan Ryckebusch, Koen Schoors, and Matthew Smith. 2021. “The Scaling of Social Interactions across Animal Species.” SCIENTIFIC REPORTS 11. doi:10.1038/s41598-021-92025-1.
Vancouver
1.
Rocha LEC, Ryckebusch J, Schoors K, Smith M. The scaling of social interactions across animal species. SCIENTIFIC REPORTS. 2021;11.
IEEE
[1]
L. E. C. Rocha, J. Ryckebusch, K. Schoors, and M. Smith, “The scaling of social interactions across animal species,” SCIENTIFIC REPORTS, vol. 11, 2021.
@article{8712454,
  abstract     = {{Social animals self-organise to create groups to increase protection against predators and productivity. One-to-one interactions are the building blocks of these emergent social structures and may correspond to friendship, grooming, communication, among other social relations. These structures should be robust to failures and provide efficient communication to compensate the costs of forming and maintaining the social contacts but the specific purpose of each social interaction regulates the evolution of the respective social networks. We collate 611 animal social networks and show that the number of social contacts E scales with group size N as a super-linear power-law E=CNβ for various species of animals, including humans, other mammals and non-mammals. We identify that the power-law exponent β varies according to the social function of the interactions as β=1+a/4, with a≈1,2,3,4. By fitting a multi-layer model to our data, we observe that the cost to cross social groups also varies according to social function. Relatively low costs are observed for physical contact, grooming and group membership which lead to small groups with high and constant social clustering. Offline friendship has similar patterns while online friendship shows weak social structures. The intermediate case of spatial proximity (with β=1.5 and clustering dependency on network size quantitatively similar to friendship) suggests that proximity interactions may be as relevant for the spread of infectious diseases as for social processes like friendship.}},
  articleno    = {{12584}},
  author       = {{Rocha, Luis E C and Ryckebusch, Jan and Schoors, Koen and Smith, Matthew}},
  issn         = {{2045-2322}},
  journal      = {{SCIENTIFIC REPORTS}},
  keywords     = {{Multidisciplinary,complex systems,social networks,complexity,scaling,evolutionary biology,physics,GROUP-SIZE,NETWORKS,BENEFITS,LIFE}},
  language     = {{eng}},
  pages        = {{10}},
  title        = {{The scaling of social interactions across animal species}},
  url          = {{http://dx.doi.org/10.1038/s41598-021-92025-1}},
  volume       = {{11}},
  year         = {{2021}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: