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ABSTRACT
In this paper, we represent (moving) point configurations along 
a curved directed line qualitatively by means of a system of relational 
symbols based on two distance descriptors: one representing distance 
along the curved directed line and the other representing signed 
orthogonal distance to the curved directed line. The curved directed 
line represents the direction of the movement of interest. For instance, 
it could be straight as in the case of driving along a highway or could 
be curved as in the case of an intersection or a roundabout. Inspired by 
the Point Calculus, the order between the points on the curved 
directed line is described by means of a small set of binary relations 
(< ;¼; > ) acting upon the distance descriptors. We call this represen-
tation the Point-Descriptor-Precedence-Static (PDPS) representation at 
a time point and Point-Descriptor-Precedence-Dynamic (PDPD) repre-
sentation during a time interval. To illustrate how the proposed 
approach can be used to represent and analyse curved movements, 
some basic micro-analysis traffic examples are studied. Finally, we 
discuss some extensions of our work to highlight the practical benefits 
of PDP in identifying motion patterns that could be useful in GIS, 
autonomous vehicles, sports analytics, and gait analysis.
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1. Introduction

Qualitative spatiotemporal representations provide an intuitive way of modelling the 
most relevant facets of space and time for a particular task, whether it relates to designing 
intelligent systems or logical deductions for cognitive computing. The way how ‘objects’ 
are perceived in such representations depends on the context of the application. For 
instance, certain applications not involving the mass and other dimensions of objects 
consider objects as ‘points’ to simplify calculations; others consider them as lines or 
regions. Since object motion is centric in many of such representations, significant 
research has been carried out to conceptualize movements following a straight path. 
However, curved path movements are equally important since not all movements tend to 
follow a straight path in the real life just like movement at road intersections, roller 

CONTACT Amna Qayyum amna.qayyum@ugent.be

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 
2021, VOL. 35, NO. 7, 1374–1391 
https://doi.org/10.1080/13658816.2020.1864378

© 2021 Informa UK Limited, trading as Taylor & Francis Group

http://orcid.org/0000-0003-0464-4308
http://orcid.org/0000-0002-3876-620X
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2020.1864378&domain=pdf&date_stamp=2021-06-03


coasters, motion of a basketball into the basket, and the earth’s rotation around the sun. 
To the best of our knowledge, we are not aware of any such representation that can 
describe curved movements in a specific direction and can be used for pattern detection, 
which is the primary goal of our work. We use ‘points’ to represent objects moving along 
a curved line in a specific direction and use distance descriptors to describe the order 
between their positions qualitatively with respect to the curved line.

The concept of ordering between points was first introduced by Vilain and Kautz (1986) 
in their Point Calculus, which represents time points along a line defined by the constraints 
(< ;¼; > ) and their combinations ( �;�;� ) in 1-D. The n-D Point Calculus was intro-
duced by Balbiani and Condotta (2002) from an AI-theoretical perspective to reason about 
points across the n-D Euclidean space. The idea of spatial reasoning by using cardinal 
directions was introduced by Frank (1996), whereas relative directions were explored in 
the Double-Cross Calculus by Zimmermann and Freksa (1996). Then came the binary-Cyclic 
Calculus (CYCb) (Isli and Cohn 2000), which symbolically represents four base relations 
(equal, left, right and opposite) between the directions of the points in a 2-D plane, along 
with their union and intersection. The ternary-CYC (CYCt), which operates on a set of 
(ternary) relations on 2-D orientations, was an important breakthrough in the field of 
ternary calculi and is more expressive than CYCb. However, ternary calculi are complex 
and difficult to interpret from a cognitive perspective (Condotta et al. 2006).

In what followed, Skiadopoulos and Koubarakis (2001) used cardinal directions for 
locating spatial regions along the x- and y-axes. Their work was extended into the Cardinal 
Direction Relations calculus (CDR), which places the regions in corresponding tiles of 
a bounded 2-D frame of reference (Skiadopoulos and Koubarakis 2005). Another direction 
calculus that deals with the relative locations of the domain entities is the Oriented Point 
Relation Algebra (OPRA) devised by Moratz (2006) and extended to multiple directions by 
Dylla and Lee (2010) and Mossakowski and Moratz (2012). Note that these approaches do 
not allow to represent curved movements in a specific direction.

Kurata and Shi (2008) modelled regions based on their relative directions as Region-in- 
the-frame-of-Directed-Line (RfDL-3-12). Van de Weghe et al. (2005) and Glez-Cabrera et al. 
(2013) targeted traffic modelling at the microscale and established the possible relations 
of a point (vehicle) with respect to the trajectory of another point depending on the cross- 
point of the trajectories. This work takes into account the direction of moving points in 
a 2-D plane but is ill-defined if one of the vehicles is at rest. Li and Liu (2015) represented 
the cardinal directions of two regions by direction-relation matrices. Arrufi and Kirsch 
(2018) described the motion of points (vehicles) in a Cartesian frame only by using their 
velocity representations, thereby ignoring relative directions. In addition, there is no 
direct link between the Qualitative Trajectory Calculus on Networks (QTCN) given by 
Delafontaine et al. (2011) and our approach, since QTCN uses a single dimension only 
(i. e., the shortest path distance) to represent objects moving along a network, making it 
impossible to conduct micro-traffic analyses. QTCN is thus interesting for macro-traffic 
analyses, whereas our approach is interesting for micro-traffic analyses as we describe 
objects with respect to a specific curved movement direction by means of two distance 
descriptors and it is possible to combine several descriptors.

Every spatiotemporal approach listed above has its strong points as well as its limita-
tions. Not all of them take traffic vehicles as their moving objects, yet traffic has remained 
central in the majority of representations. Besides, the traditional approaches either focus 
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on the cardinal directions or the relative directions to locate moving entities. Whereas in 
PDP, the direction of the movement of interest is dependent upon the context of the 
application. Apart from representing points along a straight line, PDP is capable to handle 
curved movements in any spatial arrangement. In order to illustrate this, we will present 
some basic traffic micro-analysis examples where the moving objects (vehicles) are 
described in terms of their precedence given by two distance descriptors: one in the 
driving direction, which is represented as a parametrized curved directed line and one in 
an orthogonal direction to the curved directed line. In an extension, we added a third 
descriptor to differentiate between a safe and a dangerous overtake movement pattern. It 
is pertinent to mention here that the proposed approach determines the precedence 
between the points by using the path subtype of the extrinsic frame of reference 
(Clementini 2013).

This paper is organized as follows: In Section 2, the basics of our proposed approach 
are introduced. Section 3 illustrates PDP using real-world traffic situations. Section 4 
extends the basics of PDP with various traffic examples showing that it holds a rich 
potential for many extensions. Finally, our findings are discussed and summarized along 
with some possible future extensions.

2. Defining the Point-Descriptor-Precedence (PDP) representation

2.1. Conventions

In the Point-Descriptor-Precedence (PDP) representation, we start with n (moving) points 
(objects) o1; o2; . . . ; on in an m-D space. Throughout this paper, we use ‘Points’ as our 
spatial entities. We then select the movement of interest, which is parametrized and can 
be a straight or curved directed line depending upon the context of the application. With 
respect to this directed line, we construct s descriptors d1; d2; . . . ; ds, which mainly 
describe the distance of points travelled along and away from the directed line. Next, 
we order the n points in terms of their qualitative distances described by the descriptors 
by using a system of relational symbols (< ;¼; > ) and refer to it as descriptor-precedence 
(i.e., d1-precedence, d2-precedence, . . . , ds-precedence).

Figure 1 illustrates the idea of PDP by showing two examples of a directed line: straight 
and curved. Here, the first descriptor d1 describes the distance of points travelled along the 
directed line and the second descriptor d2 describes the signed orthogonal distance of the 
points to the directed line measured positive on the left, and negative on the right with 
respect to the direction. It is pertinent to mention here that if the directed line represents 
a movement along the x-axis, the two distance descriptors are just the coordinates in the 
Euclidean system for which the ordering relations between the points have already been 
explored in the n-D Point Calculus given by Balbiani and Condotta (2002). Hence, the n-D 
Point Calculus is just a specialized case of PDP suitable for representing points along 
a straight line. However, the spatial reasoning concepts described in the Point Calculus are 
in no way related to PDP.

Sections 2.2 and 2.3 outline the two types of PDP representations: static and dynamic, 
with the help of some basic micro-traffic examples.
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2.2. Point-Descriptor-Precedence-Static (PDPS) representation

PDPS describes point configurations at specific time points. For illustration purposes, consider 
a simple overtake movement pattern depicted in Figure 2(a) at time points 
t1 < t2 < t3 < t4 < t5. Here, vehicle l is overtaking vehicle k on a two-lane road. The two distance 
descriptors are shown in Figure 2(b), where the first descriptor d1 represents the distance 
travelled by the vehicles along the driving direction taken at the centre of the road and 
the second descriptor d2 represents the signed orthogonal distance of the vehicles from d1. 

Figure 1. PDP (Point-Descriptor-Precedence) representation for straight and curved directed lines.

Figure 2. An overtake movement pattern comprised of three vehicles k; l and m on a two-lane road 
(a), two distance descriptors: d1 taken along the centre of the road and d2 is the signed orthogonal 
distance of the vehicles from d1 (b), PDPS representation using the centroid of each vehicle (c).
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Figure 2(c) shows the corresponding precedence of the centroids ‘c’ of the vehicles at every 
time point by means of the two descriptors.

The usefulness of PDPS will be elaborated later in Section 3 of this paper.

2.3. Point-Descriptor-Precedence-Dynamic (PDPD) representation

Unlike PDPS where the points (vehicles) are represented at time points, PDPD symbolizes 
points during time intervals. For that purpose, the velocity vector representing the rate of 
change of the position of each point (vehicle) is captured and it is possible to see the 
vehicles’ driving behaviour during these intervals. For instance, consider the overtake 
movement pattern shown in Figure 3(a). Figure 3(b) represents the precedence of vehicles 
k; l and m during every time interval corresponding to the initial state (denoted by ‘ � ’ 
sign) and final state (denoted by ‘þ ’ sign) of each vehicle (hence defining the velocity 
vector).

By using the velocity vector, PDPD can also be used to represent bi-directional traffic 
motion in adjacent lanes. For instance, consider four motion scenarios of bi-directional 
traffic on adjacent lanes during different intervals ðie; if ; ig and ihÞ in Figure 4. By analysing 
the velocity vector of both vehicles ðk and lÞ given by the distance descriptors ðd1 and d2Þ, 

Figure 3. An overtake movement pattern comprised of three vehicles k; l and m (a) shown using the 
PDPD representation of the centroid of each vehicle (b).

Figure 4. Four motion scenarios of bi-directional traffic during different intervals (a) with the 
corresponding PDPD representations (b).
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the change in the vehicles’ heading direction can be easily observed in the corresponding 
precedence (Figure 4(b)).

3. Applying PDP to traffic analysis

PDP can be used to identify movement patterns in a given motion dataset. How this can 
be implemented mainly depends on whether we use the interval-based approach, the 
event-based approach, or a combination of both approaches to model spatiotemporal 
data. In the event-based approach, the time associated with each change (i.e., each event) 
is stored in an increasing order from the initial ‘state’ at a time point t0 to the latest 
recorded change at a time point tn (Peuquet and Duan 1995). Similarly, the interval-based 
approach or, strictly speaking, the time-based approach represents an ordered progres-
sion of known changes on a timeline (Peuquet and Duan 1995). Typically in this interval- 
based approach, the time intervals have the same length (e.g., the temporal resolution of 
a tracking device). For applying PDP in real-world traffic analysis, we have used 
a combination of both event-based and equal-interval approaches to extract a specific 
movement pattern from a particular traffic scenario as illustrated in this section.

3.1. Dataset

We started with the analysis of a series of images extracted from a video (Kumar 2018) that 
contains a top-view of traffic on a busy three-lane highway in downtown Los Angeles, 
USA. The duration of the video is 9.6 seconds. We applied two distance descriptors d1 and 
d2 on the video: d1 describes the distances travelled by the vehicles in the driving 
direction and d2 describes the signed orthogonal distances of the vehicles to the driving 
direction. The video has been rotated 180� clockwise, and for reference, only the first and 
the last frames of the video are displayed in grey-scale, respectively, in Figures 5 and 6. For 
our current analysis, we only considered 16 vehicles labelled a–p. The centroids of these 
16 vehicles were logged in x-, y- and t-coordinates at a temporal resolution of 10 Hz. By 
adjusting the temporal resolution of the dataset, we implemented an equal-interval- 
based approach in our procedure.

Figure 5. The first frame of the video.

Figure 6. The last frame of the video.
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The selected video is an example of a movement along a straight directed line that has 
been chosen as parallel to the driving direction. Though we did not see a lane-changing 
event, there were patterns where a vehicle passed some other vehicles on its right. This 
represented a change in the precedence of the vehicles described by d2 whereas the 
precedence of vehicles described by d1 remained the same. Therefore, our main objective 
was to identify which vehicles in our selected sample of 16 vehicles displayed this 
particular movement pattern (passing some other vehicles on the right). For the ease of 
referencing throughout our process, we call this a pass movement pattern.

3.2. Pre-processing of the dataset

As discussed in Section 3.1, apparently the vehicles represented a change in their d1- 
precedence only for exhibiting a pass movement pattern. Nonetheless, we arranged 16 
vehicles in their corresponding d1-precedence and d2-precedence for each frame and 
recorded the changes in the precedence of the vehicles given by each distance descriptor. 
The first five changes in the d1- and d2-precedence of the vehicles are presented in Table 1. 
Note that the changes (highlighted in bold) occurred at a specific time point (frame) in the 
dataset and we recorded only these time points to make a new dataset out of the original 
one. We refer to this as pre-processing of our original dataset, which is consistent with the 
event-based approach where the changes occurring at certain time points are recorded. 
This pre-processing is important for removing the redundant information from the main 
dataset (i.e., where the precedence remains unchanged). Technically, this also reduced the 
calculation time for our analysis and the original dataset was compressed from 102 time 
points to 32 time points only. Moreover, the equality relations between the vehicles were 
derived within a threshold of � 0:5m meaning that if the difference between the vehicles’ 
coordinates was found within the range of ð� 0:5;þ0:5Þ, the positions of the vehicles were 
considered as equal while deriving precedences using the respective descriptor.

3.3. Construction of a reference movement pattern

After pre-processing the dataset, we constructed a reference movement pattern of three 
vehicles s; t and u that describes the pass movement pattern introduced in Section 3.1. 

Table 1. First five changes in the precedence of vehicles recorded at specific time 
points (frames).

Time point Precedence

t1 d1 : p< j< d< i< o< h< g< c< n< b< a ¼ f < l< e< k
d2 : k ¼ l ¼ m ¼ n ¼ o ¼ p< e ¼ f ¼ g ¼ h ¼ i ¼ j< a ¼ b ¼ c ¼ d

�

t2 d1 : p< j< d< i< o< h< g< c< n< b< f < a< l< e< k
d2 : k ¼ l ¼ m ¼ n ¼ o ¼ p< e ¼ f ¼ g ¼ h ¼ i ¼ j< a ¼ b ¼ c ¼ d

�

t8 d1 : p< j< d< i< o< h< g< c< n< b< f < a¼l< e< k
d2 : k ¼ l ¼ m ¼ n ¼ o ¼ p< e ¼ f ¼ g ¼ h ¼ i ¼ j< a ¼ b ¼ c ¼ d

�

t10 d1 : p< j< d< i< o< h< g< c< n< b< f < l< a< e< k
d2 : k ¼ l ¼ m ¼ n ¼ o ¼ p< e ¼ f ¼ g ¼ h ¼ i ¼ j< a ¼ b ¼ c ¼ d

�

t16 d1 : p< j< d< i< o< h< g< c< n< b< f < l< a¼e< k
d2 : k ¼ l ¼ m ¼ n ¼ o ¼ p< e ¼ f ¼ g ¼ h ¼ i ¼ j< a ¼ b ¼ c ¼ d

�

t17 d1 : p< j< d< i< o< h< g< c< n< b< f < l< e< a< k
d2 : k ¼ l ¼ m ¼ n ¼ o ¼ p< e ¼ f ¼ g ¼ h ¼ i ¼ j< a ¼ b ¼ c ¼ d

�
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Vehicle u is passing two vehicles t and s. Our reference movement pattern was logged in 
x- and y-coordinates at five time points (Figure 7). We represented this reference move-
ment pattern using the PDPS representation. Each of the five time points represents 
a change in the d1-precedence of the vehicles. This was done deliberately since we 
have adopted an event-based approach where the change in the sequence of events is 
important. At t1: u is behind t and s; at t2: u comes adjacent to t but is still behind s; at t3: u 
crosses t; at t4: u comes adjacent to s and at t5: u crosses s.

3.4. Retrieving the reference movement pattern using PDPS

In Section 3.2, we created a new dataset having 32 time points by transforming the 
original dataset from equal-interval-based to event-based. From here on, we refer to this 
new dataset as ‘target dataset’. In this particular dataset, there is no change in the 
ordering among the vehicles along d2, whereas the ordering does change along d1. 
Therefore, for retrieving the reference movement pattern from the target dataset, we 
generated a set P consisting of all 3-tuples of the 16 vehicles in view of their d1- 
precedence by scanning the entire target dataset.

As a next step, the d1- and d2-precedences of each tuple in P are compared with those 
of the reference movement pattern. Comparing both d1- and d2-precedences is important 
for finding an exact match; otherwise, tuples displaying a pass movement pattern where 
a vehicle is passing two vehicles on the other side in our reference movement pattern 
would also be detected as a match for the reference. If a tuple exactly follows the 
sequence of the reference movement pattern (i.e. five time points) for both descriptors 
along the period of 32 time points of the target dataset, then it is considered as an exact 
match of the reference movement pattern irrespective of the temporal length between 
the events. There might be an event-based matching, i.e., a tuple of the target dataset 
matches with the precedences given at the first time point of the reference movement 
pattern from t3–t7, the second time point from t8–t10 and the third time point from t11–t17, 

Figure 7. Reference movement pattern of three vehicles u; s and t using PDPS representation. u is 
passing t and s on its right.
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etc., or an equal-interval-based matching where a tuple matches with the reference 
movement pattern from t3–t7 or t24–t28. A tuple is dropped for further comparison if 
either there is a change in its d1- or d2-precedence as compared with that of the reference 
movement pattern or it follows the sequence of the reference movement pattern in 
a disordered way, e.g., it matches with the precedences at the second time point of the 
reference movement pattern from t2–t4, but it also matches with the precedences at the 
first time point of the reference movement pattern from t5–t8.

The above procedure is described in Table 2, where the pre-processing of the original 
dataset T takes place in lines 2–9, generating a new dataset Tnew containing the time 
points at which a change occurs in the d1-precedence or d2-precedence of the vehicles as 
well as the precedences of the vehicles. Next, a set P containing all 3-tuples of the target 
vehicles OT is generated in lines 10–13 for further analysis. The goal is to retrieve a list of 
tuples L matching with the d1- and d2-precedences of the reference objects (OR) at time 
points t0v , as implemented in lines 14–35. Note that if a tuple matches with the prece-
dences at t02 of the reference dataset R first and follows the sequence of the reference 
movement pattern later on, it is also added to L.

Consider, for instance, that we need to verify whether tuple (o; h; g) is an exact match 
for the reference (u; t; s). Starting from t1 of the target dataset, the d1-precedence of 
(o; h; g), i.e., o< h< g, and the d2-precedence of (o; h; g), i.e., o< g ¼ h, are compared with 

Table 2. Finding a reference movement pattern in a 2-D dataset using PDPS.

Step Procedure

1 Input a target dataset T of n point objects OT ¼ foT
1 ; oT

2 ; . . . ; oT
ng whose location is tracked for u time points 

t1; t2; . . . ; tu
2 Input a reference dataset R of r point objects OR ¼ foR

1; oR
2; . . . ; oR

r g whose location is tracked for v time points 
t01; t02; . . . ; t0v

3 Initialize L: A list of r-tuples from OT matching the reference dataset R
4 p1  (d1-precedence of OT at t1 of T , d2-precedence of OT at t1 of T)
5 T new  {(t1, p1)}; //initialize a new dataset
6 for every two successive time points ti , tiþ1 of T do
7 pi  (d1-precedence of OT at ti , d2-precedence of OT at ti)
8 piþ1  (d1-precedence of OT at tiþ1, d2-precedence of OT at tiþ1)
9 if pi � piþ1 //if the precedences are not equal
10 add (tiþ1; piþ1) to T new

11 P  ;

12 for each ðti; piÞ in Tnew do
13 P  P [ {r-tuples of OT at ti according to pi}
14 L  ()
15 w  Tnew .size() //time points in the target dataset
16 i  1
17 for each tuple k in P do
18 M  ()
19 j  1
20 while i � w do
21 qi ¼ (d1-precedence of k at ti , d2-precedence of k at ti)
22 while j � v do //time points in the reference dataset
23 qj= (d1-precedence of OR at t0 j , d2-precedence of OR at t0 j)
24 if qi ¼ qj
25 add t0 j to M
26 j ¼ j þ 1
27 i ¼ i þ 1
28 if M. sort() = True
29 add k to L
30 return L

1382 A. QAYYUM ET AL.



the d1-precedence u< t< s and the d2-precedence u< s ¼ t of (u; t; s) at t01. The tuple 
(o; h; g) matches with the precedences at t01 of (u; t; s) from t2–t6. At t7, (o; h; g) matches 
with the precedences of (u; t; s) at t02. From t8–t29, (o; h; g) matches with the precedences 
of (u; t; s) at t03. At t30, (o; h; g) matches with the precedences of (u; t; s) at t04 and, at t31, 
(o; h; g) matches with the precedences of (u; t; s) at t05. Hence, (o; h; g) is an exact match 
for (u; t; s).

Similarly, the same process is for instance repeated for another tuple (o; i; h). At t1, the 
d2-precedence of (o; i; h) is o< i ¼ h, whereas the d2-precedence of (u; t; s) is u< s ¼ t. 
Since the d2-precedence of (o; i; h) is identical to that of (u; t; s), we can say that (o; i; h) 
matches (u; t; s) along d2. However, at t1, (o; i; h) has d1-precedence i< o< h and (u; t; s) 
has d1-precedence u< t< s. Clearly, there is a difference in the d1-precedence of (o; i; h) as 
compared with (u; t; s). Hence, (o; i; h) is not a match for (u; t; s) along d1 and cannot be 
taken for further analysis.

Finally, the exact matches for (u; t; s), which followed the reference movement pattern 
along d1 and d2 in the same sequence, were found to be (o; h; g) and (m; f ; e).

4. Extending PDP

So far, we have discussed the basics of PDP using simple micro-traffic examples and a real- 
world traffic application. We believe that certain extensions of the PDP representations 
might be closer to the real-world applications. We will now briefly explain these possible 
extensions one by one with some brief traffic examples.

4.1. Multiple points

Till now, we have only seen cases where PDP is explained by considering single points 
(using the centroid for each vehicle only). Depending on the context and the needs of the 
application, other points (such as front-end of the vehicle or multiple points per vehicle) 
can be represented as well. For instance, considering the front-end and back-end of the 
vehicle as two points, the PDPS and PDPD two-point representation for three vehicles (k; l 
and m) is shown in Figure 8. This representation is useful when the lengths of two vehicles 
(e.g., difference between vehicles and trucks) have to be taken into account.

Also, the centroid along with a safe following distance (which is much longer than 
a vehicle length) for each vehicle can be represented using PDPS and PDPD as shown in 
Figure 9. Considering a safe following distance into our representation, safe and danger-
ous events can be differentiated. For instance, by visualizing the safe following distance 
points between two vehicles, it can be seen which vehicle is maintaining a proper 
distance from the others and when there is a dangerous situation. The situations of 
sudden brake or improper lane-changing might be detected by adjusting the centroid 
and safety points of the rear vehicle with the back-end of the front vehicle. For example, 
a driving behaviour between vehicles m and k as shown in Figure 9(a) is considered safe if 
mc and ms remain in line with kc and ks along d1 by maintaining the precedence as 
mc <ms < kc < ks. Nevertheless, the driving behaviour is considered as hasty or too close if 
the order between ms and kc reverses along d1 as mc < kc <ms < ks. This means that the 
vehicle m needs to slow down and maintain an appropriate safe following distance from 
the vehicle k that is moving ahead of it.
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Another possibility is to consider the corner points of a vehicle and work with four 
points to take into account the width of vehicles. This is shown in Figure 10, where the 
two front points of a vehicle are represented by subscripts ‘fl’ and ‘fr’ and the rear points 
are represented by ‘bl’ and ‘br’. The ‘l’ and ‘r’ represent the corresponding ‘left’ and ‘right’ 
points for the front and back sides of the vehicle. These points are important to detect, 
e.g., vehicles driving on a parking area or in a garage. The corner points of the garage 
might also be included for a deeper analysis of the situation.

PDP can be useful in differentiating identical movements taking place at different 
locations of the road by adding static and/or dynamic external points in its representation. 
The safe following distance point used in Figure 9 is actually an external dynamic point. To 
illustrate this, consider two identical movement patterns represented by three vehicles k; l 
and m at ti and tj respectively in Figure 11.

At ti and tj, the precedence of the centroids of the vehicles with respect to the static 
external point (bc) on the bridge is given in Figure 11(b,c). By comparing the relational 
symbols along d1, it is evident that the two identical movements actually account for 
a difference in locations and can be easily identified using PDP by adding the external 
point.

Figure 8. A motion scenario of three vehicles k; l and m for two time points t1 and t2 and during a time 
interval i1 (a) with PDPS ((b) and (d)), and PDPD representations (c) for two-points (‘f’ for front-end and 
‘b’ for back-end of each vehicle).

Figure 9. A motion scenario of three vehicles k; l and m (a) with PDPS ((b) and (d)), and PDPD 

representations (c) for two-points (‘c’ for centroid and ‘s’ for safe following distance).
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4.2. Multiple descriptors

PDP can take multiple distance descriptors into account for easy referencing depending 
upon the context of the application. Working with multiple descriptors might become 
useful to differentiate between different movement patterns. Consider for instance 
a traffic scenario where vehicle k is changing its lane from the right lane to the left lane 
(this is depicted as a bottom-to-top movement in Figure 12). The initial position of k with 
respect to its centroid during a certain interval (ie or if ) is represented as k�c whereas the 
final position is shown as kþc . It is evident that for this particular example, the precedence 
between the initial and final position of k is the same for the two descriptors d1 and d2.

By introducing a third descriptor (d3), the change between the initial and final 
position of k becomes visible. If kþc is quite far away from the coming vehicle m, this 
implies a steady and safe lane-changing event. If kþc is quite close to the coming vehicle 
m, this implies a sudden lane-changing, hence can be termed as a dangerous event. In 
a nutshell, we can easily differentiate between safe lane-changing (Figure 12(a)) and 
dangerous lane-changing events (Figure 12(b)) with the aid of a third distance 
descriptor.

Figure 10. A motion scenario of three vehicles k; l and m (a), with PDPS (b) and (d), and PDPD four- 
point representations (c).

Figure 11. Two identical movements at ti and tj (a), PDPS representation using an external point for ti 

and (b) tj (c).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 1385



Hence, having multiple descriptors in PDP may detect dangerous behaviour of vehicles 
at bottlenecks such as tunnels, bridges, cross-overs, roundabouts, or different locations on 
the road.

4.3. Extended PDP representations

The main advantage of PDP is its ability to represent information about movements and 
a possible extension of representing this information could be through an Order 
Neighbourhood Diagram (OND). The OND is an intuitive visualization of PDP, which 
depicts qualitative changes in the motion of the points. Unlike the traffic cellular 
automata models presented by Maerivoet and De Moor (2005), which describe the 
vehicles in different states of space-time diagrams, PDP could represent the vehicles in 
the corresponding nodes of the OND. The OND is a grid representation of nodes and 
edges where the nodes represent the points and the edges represent the conceptual 
neighbours using the precedence between these points. Just like PDPS and PDPD, ONDs 
can also be static and dynamic. Consider, for instance, a lane-changing event in Figures 
13 and 14 with the corresponding static and dynamic ONDs shown in Figures 13(c) and 
14 (c) respectively.

As is evident from Figures 13(c) and 14(c), the movement patterns of vehicles are 
tracked periodically and there is a 90� counter-clockwise rotational shift in the ONDs as 
compared to the actual motion scenario depicted in Figures 13(a) and 14(a). This is 
because we generally represent traffic in an upward direction in the ONDs. Note that 
the information required to generate ONDs is only dependent on the precedence of 
points. Moreover, the aspect of lane-changing is considered by incorporating an extra row 
(central line) in the OND.

For the purpose of simplicity, we make the following assumptions:

● each OND represents a 2-D grid of evenly spaced vertical and horizontal lines known 
as edges. The locations of points are represented as nodes on these edges at 
a specific time point or during a time interval,

Figure 12. Safe lane-changing event (a) and dangerous lane-changing event (b).
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● no edge or node remains isolated or unconnected,
● each point holds a particular position on the nodes of the OND; no intermediate 

position is available across the edges,
● the length of a path followed by a moving point through OND is defined as the sum 

of the lengths of the edges along that path.

Figure 13. A lane-changing event (a), the precedence of vehicles described by each distance 
descriptor (b) and PDPS-ONDs (c).

Figure 14. An overtake movement pattern (a) with the precedence of vehicles described by the two 
distance descriptors d1 and d2 (b). PDPD-ONDs for each interval (c).
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An important difference to highlight here is that the movement of vehicles along the 
road network is represented by moving between rows (horizontal lines) and columns 
(vertical lines) of the OND (Figure 13(c)). If a vehicle changes its lane, it moves across the 
columns, and if the precedence of vehicle changes, the movement is depicted across the 
respective rows of the OND. Note that a longer period might be represented via 
a sequence of ONDs.

5. Summary and future directions

Qualitative representation is an important area of artificial intelligence. So far, various 
qualitative representations have been developed, suited for a particular task. As an 
addition to the wide variety of qualitative representations, we have proposed a new 
qualitative approach (PDP) for representing points along a curved directed line through 
a system of relational symbols using different distance descriptors.

PDP uses the commonly available distance information about moving objects to repre-
sent their static and dynamic attributes. The overall goal of PDP is to facilitate the handling 
of the complexity of topological relations using a system of relational symbols. The PDP 
representations might be used for cluster analysis, top-k analysis, and calculating distance 
matrices. In addition, PDP can be potentially used for identifying events of particular 
interest from a certain motion dataset, as we illustrated in Section 3. For computational 
ease and analysis purposes, we discretized continuous time and performed our micro- 
traffic-analyses all at a temporal resolution of 10 Hz (Section 3). This resolution was chosen 
as optimal for the traffic examples after performing a rigorous analysis on a self-generated 
dataset of 26 variants of an overtake movement pattern on a two-lane road network. 
However, working with different resolutions might increase the applicability of PDP for 
specific applications such as finding a lane-changing event in a traffic scenario.

In Section 3, an approach for detecting a particular movement pattern in a given motion 
dataset has been discussed. Another alternative that might speed up the process of 
detection is to split the motion data into chunks (clusters) for analysis purpose rather than 
analyzing the entire data at once, as was suggested by Laube and Imfeld (2002) for the 
REMO-concept. For example, instead of taking all vehicles in the target dataset to generate 
tuples, we may apply a moving window around a vehicle that takes into account only the 
closest neighbours of that vehicle for generating tuples at a given moment (e.g., at t1, take 
only 10 vehicles that are closest to vehicle a for generating tuples). In this way, the motion 
data can be analyzed systematically and the patterns might become more visible when 
objects are grouped based on their absolute and relative motion. Moreover, objects that are 
relatively far away and do not play a significant role in creating or analyzing events are 
excluded to avoid huge calculations.

Furthermore, we have discussed possible extensions of PDP through simple traffic 
motion patterns on a two- and three-lane road network. Besides, an additional visualiza-
tion of PDP using OND has been discussed. The OND visualizations might look complex 
initially when dealing with a large number of vehicles/points; still, they are fast to interpret 
and comprehend.

It is pertinent to mention that the movement of interest can be a straight line, a circle 
(roundabout), or a spline (curved route) in PDP. The addition of extra information such as 
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multiple distance descriptors and interactions with static/external points in PDP can 
potentially help seeking more insight into a practical phenomenon in a qualitative manner.

Another important aspect affecting the performance of PDP is the position of moving 
point objects in real-world scenarios. A small variation in the positions of these point 
objects might affect the ONDs. Similarly, in PDP we have to define the precedence of 
points as a function of certain threshold settings to minimize the effect of noise.

In summary, this study proposed a new qualitative approach to represent moving 
point objects in the spatiotemporal domain. Our approach is not only capable of repre-
senting curved line motion trajectories but can also discern between different moving 
patterns using the relative precedence between the points through multiple distance 
descriptors. This underpins the potential of representing a wide domain of movements 
with certain spatial constraints.

Furthermore, this paper only covers the basics of PDP by using simple micro-traffic 
examples. In the future, we plan to extend PDP to detect subtle motion patterns auto-
matically, which could be useful in the context of traffic safety. Moreover, it would be 
more interesting to add contextual information in PDP. By analysing every possible spatial 
arrangement of points (permutation) in PDP, the similarity analysis will be independent of 
the points’ configuration. This might lead to a well-calibrated pattern matching tool that 
could be beneficial for detecting or searching a particular motion pattern from a motion 
database in the fields related to autonomous vehicles.

The applicability of PDP will be extended to other domains of constrained mobility like 
sports and gait analysis where the movement trajectories vary in length. Hence, a possible 
extension could be applying PDP to complex movement patterns having different lengths 
using the Levenshtein technique (Beernaerts et al. 2018). Also, for the successful applica-
tion of PDP in artificial intelligence applications such as human-robot interaction, it is 
interesting to investigate how PDP could take a qualitative description as input and return 
the respective trajectory in an inverse way. This inverse problem can certainly be handled 
using PDPD and could be a rich basis for studying point configurations and movements.
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