Advanced search
1 file | 170.85 KB Add to list
Author
Organization
Abstract
This paper describes the team (“Tamalli”)’s submission to AmericasNLP2021 shared task on Open Machine Translation for low resource South American languages. Our goal was to evaluate different Machine Translation (MT) techniques, statistical and neural-based, under several configuration settings. We obtained the second-best results for the language pairs “Spanish-Bribri”, “Spanish-Asháninka”, and “Spanish-Rarámuri” in the category “Development set not used for training”. Our performed experiments will serve as a point of reference for researchers working on MT with low-resource languages.
Keywords
Machine Translation, Multilingual, Spanish, Low Resource Languages, South America, LT3

Downloads

  • Dogruoz 2021 NAACL.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 170.85 KB

Citation

Please use this url to cite or link to this publication:

MLA
Parida, Shantipriya, et al. “Open Machine Translation for Low Resource South American Languages (AmericasNLP 2021 Shared Task Contribution).” Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas, edited by Manuel Mager et al., Association for Computational Linguistics (ACL), 2021, pp. 218–23, doi:10.18653/v1/2021.americasnlp-1.24.
APA
Parida, S., Panda, S., Dash, A., Villatoro-Tello, E., Doğruöz, A. S., Ortega-Mendoza, R. M., … Motlicek, P. (2021). Open machine translation for low resource South American languages (AmericasNLP 2021 shared task contribution). In M. Mager, A. Oncevay, A. Rios, I. V. M. Ruiz, G. Neubig, & K. Kann (Eds.), Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas (pp. 218–223). https://doi.org/10.18653/v1/2021.americasnlp-1.24
Chicago author-date
Parida, Shantipriya, Subhadarshi Panda, Amulya Dash, Esau Villatoro-Tello, A. Seza Doğruöz, Rosa M. Ortega-Mendoza, Amadeo Hernández, Yashvardhan Sharma, and Petr Motlicek. 2021. “Open Machine Translation for Low Resource South American Languages (AmericasNLP 2021 Shared Task Contribution).” In Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas, edited by Manuel Mager, Arturo Oncevay, Annette Rios, Ivan Vladimir Meza Ruiz, Graham Neubig, and Katharina Kann, 218–23. Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2021.americasnlp-1.24.
Chicago author-date (all authors)
Parida, Shantipriya, Subhadarshi Panda, Amulya Dash, Esau Villatoro-Tello, A. Seza Doğruöz, Rosa M. Ortega-Mendoza, Amadeo Hernández, Yashvardhan Sharma, and Petr Motlicek. 2021. “Open Machine Translation for Low Resource South American Languages (AmericasNLP 2021 Shared Task Contribution).” In Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas, ed by. Manuel Mager, Arturo Oncevay, Annette Rios, Ivan Vladimir Meza Ruiz, Graham Neubig, and Katharina Kann, 218–223. Association for Computational Linguistics (ACL). doi:10.18653/v1/2021.americasnlp-1.24.
Vancouver
1.
Parida S, Panda S, Dash A, Villatoro-Tello E, Doğruöz AS, Ortega-Mendoza RM, et al. Open machine translation for low resource South American languages (AmericasNLP 2021 shared task contribution). In: Mager M, Oncevay A, Rios A, Ruiz IVM, Neubig G, Kann K, editors. Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas. Association for Computational Linguistics (ACL); 2021. p. 218–23.
IEEE
[1]
S. Parida et al., “Open machine translation for low resource South American languages (AmericasNLP 2021 shared task contribution),” in Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas, Online (Mexico City, Mexico), 2021, pp. 218–223.
@inproceedings{8709864,
  abstract     = {{This paper describes the team (“Tamalli”)’s submission to AmericasNLP2021 shared task on Open Machine Translation for low resource South American languages. Our goal was to evaluate different Machine Translation (MT) techniques, statistical and neural-based, under several configuration settings. We obtained the second-best results for the language pairs “Spanish-Bribri”, “Spanish-Asháninka”, and “Spanish-Rarámuri” in the category “Development set not used for training”. Our performed experiments will serve as a point of reference for researchers working on MT with low-resource languages.}},
  author       = {{Parida, Shantipriya and Panda, Subhadarshi and Dash, Amulya and Villatoro-Tello, Esau and Doğruöz, A. Seza and Ortega-Mendoza, Rosa M. and Hernández, Amadeo and Sharma, Yashvardhan and Motlicek, Petr}},
  booktitle    = {{Proceedings of the First Workshop on Natural Language Processing for Indigenous Languages of the Americas}},
  editor       = {{Mager, Manuel and Oncevay, Arturo and Rios, Annette and Ruiz, Ivan Vladimir Meza and Neubig, Graham and Kann, Katharina}},
  isbn         = {{9781954085442}},
  keywords     = {{Machine Translation,Multilingual,Spanish,Low Resource Languages,South America,LT3}},
  language     = {{eng}},
  location     = {{Online (Mexico City, Mexico)}},
  pages        = {{218--223}},
  publisher    = {{Association for Computational Linguistics (ACL)}},
  title        = {{Open machine translation for low resource South American languages (AmericasNLP 2021 shared task contribution)}},
  url          = {{http://doi.org/10.18653/v1/2021.americasnlp-1.24}},
  year         = {{2021}},
}

Altmetric
View in Altmetric