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In microwave device and circuit design, many simulations are often
needed to find a set of designs that satisfy one or multiple specifications
chosen by the designer upfront: the feasible region. A novel Bayesian
active learning framework is presented to accurately identify the feasi-
ble region with a low number of simulations. The technique leverages
on a stochastic model to obtain an efficient and automated procedure.
A suitable application example validates the proposed technique and
shows its effectiveness to rapidly obtain many suitable designs.

Introduction: Over the last decades, the increase of available computing
power has moved electronic designers away from hardware-based pro-
totyping, towards computer aided design (CAD) simulations. However,
simulations of modern microwave devices and circuits are expensive,
both in terms of computational time as well as resources, due to the band-
width requirements coupled with the complexity of modern microwave
systems. Hence, several data-efficient techniques have been developed
in recent years to reduce the number of expensive simulations required
during the design process [1–4]. In this work, a novel Bayesian active
learning framework for microwave applications is proposed. Contrary
to optimization problems, where the goal is to find the best solution,
this method identifies the set of all design configurations that satisfies
chosen design specifications. This set of design solutions is called the
feasible region in the rest of the contribution, while the chosen design
specifications are referred to as feasibility conditions. The adopted ac-
tive learning framework requires only a limited number of expensive
CAD simulations (i.e. full-wave simulations) to efficiently identify the
feasible region. This novel methodology is particularly well suited for
design space exploration and reduction.

Goal: The main objective is to define a general methodology for feasi-
ble region discovery, which can be applied to a large range of microwave
design problems. Hence, designers should be able to define multiple fea-
sibility conditions, and the corresponding feasible region must be identi-
fied by an efficient and automated procedure. The proposed solution is a
Bayesian active learning approach that relies on a stochastic model, cou-
pled with a suitable sequential sampling strategy to minimize the number
of expensive simulations needed to build and update such a model.

Bayesian active learning framework: Let us assume that the behaviour
of the microwave system under study depends on a set of geometrical
or electrical parameters, collected in the vector x. Typical examples in-
clude the width and length of a metallic trace or the relative permittivity
of a dielectric. Furthermore, the range of admissible values for each pa-
rameter is specified by the designers, and this defines the design space
for the problem at hand. Finding a solution to the design problem corre-
sponds to finding a point in the design space that satisfies all feasibility
conditions. In general, the larger the design space (either by increasing
the number of design parameters or their range), the higher the com-
plexity of this problem. Our goal is to reduce this complexity by iden-
tifying the feasible region, that is, the area(s) in the design space that
contains only feasible designs. Feasibility conditions are to be defined
upon performance metrics that can be computed via CAD simulations.
These performance metrics, which depend on the values assumed by de-
sign parameters, are called objective functions in this contribution. For
example, in a filter design, the bandwidth can be specified as an objec-
tive function, and the corresponding feasible region is given by all the
values of the design parameters leading to the desired bandwidth. In or-

der to reach the stated goal, a new Bayesian active learning approach is
proposed, which is summarized in Figure 1. The first step is to evalu-
ate via CAD simulations the objective function(s) of interest for a small
set of initial samples in the design space, which are chosen via Latin
hypercube design (LHD) [5]. Based on the initial simulations, a regres-
sion model of each objective function is built. Next, a new sample in the
design space is selected according to a suitable sampling strategy. It is
important to note that the model employed here is stochastic: The sam-
pling strategy chooses the new design point to be evaluated based on the
model prediction at the location of the feasible region. Subsequently, a
new simulation is performed and the model can be updated accordingly.
This iterative process is repeated until a stopping criterion is met. Finally,
the location of the feasible region in the design space can be estimated
from the stochastic model.

In particular, a Gaussian process (GP) is chosen as a stochastic model
due to its flexibility and modelling power [4]. A GP is a distribution over
functions, which can approximate a selected objective function f . In
this framework, each point can be represented with a random Gaussian
variable, with associated mean m and covariance k:

m(x) = E[ f (x)] (1a)

k(x, x′ ) = E[( f (x) − m(x))( f (x′ ) − m(x′ ))], (1b)

where E designates the expectation operator. The radial basis kernel
function with automatic relevance detection (ARD) is used as covari-
ance of the GP model (also called kernel function) [6]:
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where x, x′ are vectors of data points, while σk and �d are tunable
hyper-parameters. GP regression [6] computes the predictive distribu-
tion for new test points x∗, conditioned to the available training data
Dn = {xi, f (xi )}n

i=1. Under the previous assumptions, the predictive dis-
tribution p( f |x∗, Dn) is also Gaussian, and is determined by the mean μ

and variance σ 2 defined as:

μ(x∗ ) = E[ f∗|x∗, Dn] = KT
xx∗ (Kxx + σ 2

r I )−1 f (x), (3)

σ 2(x∗ ) = V[ f∗|x∗, Dn] = Kx∗x∗ − KT
xx∗ (Kxx + σ 2

r I )−1Kxx∗ , (4)

where Kxx, Kx∗x∗ , Kxx∗ matrices consist of kernel functions (2) evaluated
on pairs of data points, pairs of test points, pairs of a data and a test point,
respectively. Also, V represents the variance operator. σ 2

r is a Gaussian
noise variance, which accounts for an eventual additive noise on data
points. Thus, for each test point, the regression provides an estimate of
the function value and its uncertainty, indicated by μ(x∗ ) and σ 2(x∗ ),
respectively.

Fig. 1 Flowchart of Bayesian active learning for feasible region identifica-
tion. A Gaussian process stochastic model is built on initial design samples
and updated after each new sample evaluation until the stopping criterion is
met
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When multiple feasibility conditions are defined, the correspond-
ing objective function is multi-dimensional: f = { f1, f2, . . . fk}. In this
case, the model consists of one GP for each component of f .

Apart from the regression model, the other pillar of active learning
is the definition of a suitable sequential sampling strategy. Here, the ob-
jective is to individuate the design point that maximizes the information
gain on the location of the feasible region. Such point is chosen as new
sample to update the regression model, as shown in Figure 1. In partic-
ular, the design point maximizing the information-gain function [7] is
chosen as new sample point:

αg(x) = H(p( f |Dn, x)) − Ep(g|Dn )[H(p( f |Dn, x, g))], (5)

where αg is called the acquisition function, H is the entropy operator
and g is one of the intervals defined as follows. Let us suppose that the
feasible region for the problem at hand is the area of the design space
for which f ∈ [a, b], where a and b are suitable scalar values. Then, the
feasible region and its complement are defined by three intervals:

g1 = { f < a}, g2 = {a < f < b}, g3 = { f > b}. (6)

In this framework, the probability densities p( f |Dn, x) and p( f |Dn, x, g}
correspond to a normal distribution and a truncated normal distribution,
respectively, both with mean μ(x) and variance σ 2(x); it follows that
their entropy can be expressed analytically. For instance, on the finite g2

interval the information gain becomes [7]:

αg2 (x) = 1

2
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[
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where Z = �[ b−μ(x)
σ (x) ] − �[ a−μ(x)

σ (x) ] is a normalization constant, and � is
the cumulative density function of the standard normal distribution N .
Then, the acquisition function on the entire domain is the sum of αg(x)
for each interval:

α f (x) =
3∑

i=1

αgi (x). (8)

Now, an optimization problem must be solved to identify the sample
maximizing (5). In this work, an L-BFGS-B gradient-based optimizer
[8] is used for this purpose. Note that the optimization process can be
performed very efficiently: The acquisition function depends only on
the GP model, which is very cheap to evaluate, and the training data Dn,
which has already been computed.

However, the acquisition function in (5) can be adopted only for prob-
lems defined by a single feasibility constraint [7]. In the following, the
information-gain metric defined above is generalized for multiple feasi-
bility constraints. Indeed, (5) can be written as:

αg(x) = H(p( f |Dn, x)) − Ep(g|Dn )[H(p( f |Dn, x, g))]

= 1

2
ln[det(2πe�(x))] −

k∑
i=1

H(p( fi|Dn, x, gi )),
(9)

where � is the covariance matrix of f , while g is the multi-dimensional
interval to be discriminated. Assuming that the components of f are
independent, then � = diag{σ 2

1 , . . . σ 2
k } and (9) for interval g2 becomes:
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Comparing (7) and (10), the information gain on multiple dimensions
is the sum of the gains of each component. Under the same considera-
tions, this result is also valid for the other non-finite g intervals. Finally,

Fig. 2 Geometry of the microstrip band-stop filter under study (top view)

Table 1. Design parameters for the microstrip band-stop filter

Parameter Description Range

L Stub length [2, 2.5] mm

S Line-stub spacing [0.1, 0.2] mm

h Dielectric height [0.10, 0.15] mm

ε Substrate permittivity [9.5, 11]

by applying (8), the acquisition function for multiple constraints can be
expressed as:

α f (x) =
k∑

i=1

α fi (x). (11)

It follows that the overall acquisition function is simply the sum of α f (x)
for each dimension of f .

A suitable criterion must be defined to stop the iterative refinement
of the model, as shown in Figure 1. In this work, an upper bound on the
number of total samples is adopted for simplicity. Note that alternative
criteria can also be employed, based, for example, on the variance of the
regression model [9].

In this application, the main task of the regression model is to eval-
uate whether a point is inside or outside the feasible region. Hence, the
accuracy of the model predictions is evaluated by using a binary classi-
fication metric: the F1 score [10]. Typically the F1 score is evaluated on
a test set, an independent set of samples. Computing the test set requires
to perform CAD simulations over a large number of points in the design
space and to compare the simulation results with the model predictions.
In fact, the F1 score is defined as the harmonic mean between precision
and recall:

precision = true positives

true positives + false positives
, (12)

recall = true positives

true positives + false negatives
, (13)

where ‘true positives’ are the points correctly identified as feasible, while
‘false’ are incorrectly labelled points, which can be either ‘positives’ (if
predicted feasible) or ‘negatives’ (if predicted unfeasible). Note that the
F1 score cannot be integrated in the algorithm as stopping criterion, due
to the large number of simulations required, leading to a high computa-
tional cost.

Application example: The proposed methodology is tested on a mi-
crostrip stop-band filter [11]. This device consists of a dielectric sub-
strate between a top metallization and a bottom ground plane. The ge-
ometry of the top layer consists of two stubs, with identical length and
spacing, folded along the transmission line, as shown in Figure 2. On
this device, a feasible region identification problem is set up as follows.
Four design parameters x = (L, S, h, ε) are considered and described in
Table 1, along with the corresponding range in the design space. Then,
two feasibility conditions are defined on the −3 dB bandwidth (BW ) and
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Fig. 3 Magnitude of the elementS21of the scattering matrix, computed for
300(L, S, h, ε)combinations. Only seven designs are feasible

Fig. 4 Average F1 score (blue line) for 10 different GP models, after 20
samples. The light blue color indicates the variability of the score

central frequency ( f req0) of the filter stop-band:

7.0 GHz ≤ BW ≤ 7.1 GHz, (14a)

13.5 GHz ≤ freq0 ≤ 14 GHz. (14b)

In this way, these two quantities represent the objective function to
be modelled: f = {BW (x), f req0(x)}. In order to evaluate (14) for a
particular set of parameters, the filter frequency response is simulated
via the momentum electromagnetic field simulator of Advanced Design
System [12], by adopting an adaptive frequency sampling in the range
[7 − 21] GHz. Note that the filter response is very dynamic with respect
to the chosen design parameters, as shown in Figure 3, thus making it
a challenging feasible region identification problem. Indeed, Figure 3
shows that, by evaluating 300 (L, S, h, ε) samples randomly chosen in
the design space, only 7 acceptable designs are found. In order to iden-
tify the feasible region, a GP regression model consisting of one GP for
each component of the objective function is built. First, the GP model is
trained on 10 samples chosen via LHD [5]. Then, the model is updated
one sample at a time, by using the proposed information-based acqui-
sition function: For each new samples, the value of f is computed via
an Advanced Design System simulation, by setting design parameters
x which maximizes the total information gain (11). Finally, this proce-
dure is halted after 40 iterations, reaching the maximum computational
budget chosen for this problem: 50 total samples. The model accuracy is
validated by computing the F1 score with 10,000 (L, S, h, ε) validation
samples, which are randomly chosen in the design space. In particu-
lar, Figure 4 shows the model F1 score as a function of the number of
samples used to compute the model. Additionally, in order to verify the
robustness of the proposed methodology with respect to the choice of
initial samples, the model construction is repeated 10 times for different
initial samples chosen via LHD. As demonstrated by Figure 4, the fea-
sible region estimated by the regression model rapidly converges to the

Table 2. Number of classification errors (false positives + false neg-
atives) for each condition (14), occurred out of 10,000 randomly
chosen validation points, on different runs of the proposed algorithm

Run NBW Nfreq0

1 8 1

2 15 3

3 19 2

4 12 0

5 9 0

6 13 0

7 9 0

8 18 2

9 9 2

10 14 1

Average 12.6 1.1

Fig. 5 Example of feasible designs computed for 10,000 random combina-
tions of all parameters, plotted for varying(L, S, h). True positives (green),
false positives (blue) and false negatives (red) are highlighted for the
GP model

one provided by the simulator: The average score reaches 97% after only
32 samples. One can also observe that the F1 scores of all different runs
converges rapidly: The choice of the initial samples has a limited impact
on the model performance. In Table 2, the classification errors (false pos-
itives and false negatives) are indicated for the 10 models computed. On
average, 13.7 errors are recorded over 10,000 samples and most of them
are due to the bandwidth constraint (14a). Among all 10 models com-
puted, the maximum discrepancy between model and simulator results
is 10.8 MHz for the bandwidth estimation and 6.93 MHz for the central
frequency, meaning that errors occur near the edge of the feasible region.
Finally, an illustration of the feasible region is given in Figure 5. The fig-
ure confirms the high modelling accuracy of the proposed technique,
since only few errors are present at the border of the feasible region.

Conclusion: A novel feasible region identification methodology was
presented, based on Bayesian active learning. In particular, this novel ap-
proach is able to classify designs according to one or multiple feasibility
conditions, and it can be applied to a large range of microwave devices
and systems, thanks to the flexibility and modelling power of GP models.
A suitable information-based sampling strategy is adopted in the model-
building phase, which allows for the feasible region identification with
an efficient and automated framework. A suitable application example
validates the proposed methodology.

Acknowledgements: This work has been supported by the Flemish Gov-
ernment under the ‘Onderzoeksprogramma Artificiële Intelligentie (AI)
Vlaanderen’ and the ‘Fonds Wetenschappelijk Onderzoek (FWO)’ pro-
grammes.

© 2021 The Authors. Electronics Letters published by John Wiley &
Sons Ltd on behalf of The Institution of Engineering and Technology

402 ELECTRONICS LETTERS May 2021 Vol. 57 No. 10 wileyonlinelibrary.com/iet-el

http://wileyonlinelibrary.com/iet-el


This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.
Received: 3 July 2020 Accepted: 20 October 2020
doi: 10.1049/ell2.12022

References

1 Stievano, I.S., et al.: On-the-fly estimation of IC macromodels. Electron.
Lett. 42(14), 801–803 (2006)

2 Chemmangat, K., et al.: Parametric macromodelling of linear high fre-
quency systems using multiple frequency scaling and sequential sam-
pling. Electron. Lett. 50(6), 475–476 (2014)

3 Passos, F., et al.: Parametric macromodeling of integrated inductors
for RF circuit design. Microw. Opt. Technol. Lett. 59, 1207–1212
(2017)

4 Koziel, S., Pietrenko-Dabrowska, A.: Performance-Driven Surrogate
Modeling of High-Frequency Structures. 1st edition. Springer, Cham,
Switzerland (2020)

5 Viana, F.A.C., et al.: An algorithm for fast optimal Latin hypercube de-
sign of experiments. Int. J. Numer. Methods Eng. 82(2), 135–156 (2010)

6 Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine
Learning. 1st edition. MIT Press, Cambridge (2008)

7 Knudde, N., et al.: Active learning for feasible region discovery. In:
Proceedings of IEEE ICMLA, Boca Raton, FL, USA, pp. 567–572
(2019)

8 Mokhtari, A., Ribeiro, A.: Global convergence of online limited mem-
ory BFGS. J. Mach. Learn. Res. 16, 3151–3181 (2015)

9 Picheny, V., et al.: Adaptive designs of experiments for accurate approx-
imation of a target region. J. Mech. Des. 132(7), 567–572 (2010)

10 Lipton, Z.C., et al.: Thresholding classifiers to maximize F1 score. arXiv
preprint (2014), arXiv:1402.1892v2

11 Spina, D., et al.: Variability analysis of multiport systems via
polynomial-chaos expansion. IEEE Trans. Microw. Theory Tech. 60(8),
2329–2338 (2012)

12 Advanced Design System. 471.update1.0 (2018), https://www.keysight.
com/be/en/lib/resources/software-releases/ads-201501.html, April 19,
2020. Accessed 2 July 2020.

ELECTRONICS LETTERS May 2021 Vol. 57 No. 10 wileyonlinelibrary.com/iet-el 403

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.keysight.com/be/en/lib/resources/software-releases/ads-201501.html
https://www.keysight.com/be/en/lib/resources/software-releases/ads-201501.html
http://wileyonlinelibrary.com/iet-el

