CHALCOGENOUREA DERIVATIVES OF N-HETEROCYCLIC CARBENES
Synthesis and Coordination to Transition Metals (Gold, Silver & Copper)

Marina Saah, David Nelson, Steven P. Nolan, Fady Nahra* and Kristof Van Hecke*
Department of Chemistry, XStruct Bio-Inorganic group, Ghent University, Krijgslaan 281 - S3, 9000 Ghent, Belgium

INTRODUCTION
Over the last decade, NHCs (N-heterocyclic carbenes) have attracted significant attention from the organic and inorganic scientific communities due to their unique structural properties and reactivity. Chalcogen-based NHC derivatives have recently been investigated for their potential to probe the electronic and steric properties of NHCs as well as their interesting coordination chemistry to transition metals [1-4]. Selenium NMR spectroscopy has been used to investigate the \( \pi \)-accepting ability of various NHCs as well as the behavior of that ability when coordinated to transition metals (e.g., Cu, Ag and Au). In addition, the crystallisation pattern (monomer, dimer and rearranged structures) of these Se(NHC)s, when coordinated to the aforementioned transition metals, offers additional information on their electronic and steric properties. We also believe that understanding all of these patterns may help us establishing a clear trend that can be highly useful in coordination chemistry as well as in biomedical applications.

Herein, we focus on continuing our previous work on selenoureas and on extending this research to thioureas by investigating new synthetic routes and studying their coordination patterns to transition metals as well as revealing the structures geometries of these complexes after oxidizing with halogens.

I. SYNTHESIS

- Selenourea and thiourea compounds were synthesised via deprotonation of various imidazolium salts, using K\(_2\)CO\(_3\) as base.

\[
\text{NHC-HCl} \quad \xrightarrow{\text{K}_2\text{CO}_3, \text{Acetonitrile, 60°C, O.N.}} \text{X(NHC)}
\]

- Tellourea compounds were synthesised using a different strategy starting from free NHC ligands.

\[
\text{NHC} \quad \xrightarrow{\text{K}_2\text{CO}_3, \text{Acetonitrile, 60°C, O.N.}} \text{X(NHC)}
\]

II. COORDINATION OF TRANSITION METALSTO SELENOUREAES

Silver complexes

- Monomeric structure

Gold complexes

- Rearranged structure

Copper complexes

- Dimer structure

The geometry of these products are highly affected by:
- Nature of the donor (chalcogen)
- Type of the halogen or inter-halogen
- Stoichiometry of the reaction
- Type of the ligand bound to the chalcogen

SUMMARY

- Synthesis of selenourea and thiourea compounds from NHC salts.
- Synthesis of tellourea compounds from free NHC ligands.
- Coordination of Se(NHC)s to gold, silver and copper chloride.
- Bromination of seleno- and thiourea NHCs.
- All the complexes were characterized by \( ^{77}\text{Se} \) and \( ^{77}\text{Se} \) NMR spectroscopy as well as elemental analysis.
- Several examples were characterized and studied by X-ray crystallography. These complexes can be highly influenced by the NHC/transition metal combination.

We greatly appreciate the support of Ghent University.


CONTACT:
mairina.saah@ugent.be
www.xstruct.ugent.be