Advanced search
1 file | 10.00 MB Add to list

Quantum error correction thresholds for non-Abelian Turaev-Viro codes

Alexis Schotte (UGent)
(2021)
Author
Promoter
(UGent) and (UGent)
Organization
Abstract
We consider a two-dimensional quantum memory of qubits on a torus which encode the extended Fibonacci string-net code, and devise strategies for error correction when those qubits are subjected to depolarizing noise. Building on the concept of tube algebras, we construct a set of measurements and of quantum gates which map arbitrary qubit errors to the string-net subspace and allow for the characterization of the resulting error syndrome in terms of doubled Fibonacci anyons. Tensor network techniques then allow to quantitatively study the action of Pauli noise on the string-net subspace. We perform Monte Carlo simulations of error correction in this Fibonacci code, and compare the performance of several decoders. For the case of a fixed-rate sampling depolarizing noise model, we find an error correction threshold of 4.7% using a clustering decoder. To the best of our knowledge, this is the first time that a threshold has been estimated for a two-dimensional error correcting code for which universal quantum computation can be performed within its code space.
Keywords
quantum computing, quantum error correction, topological order, tensor networks

Downloads

  • PhD thesis AlexisSchotte.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 10.00 MB

Citation

Please use this url to cite or link to this publication:

MLA
Schotte, Alexis. Quantum Error Correction Thresholds for Non-Abelian Turaev-Viro Codes. Universiteit Gent. Faculteit Wetenschappen, 2021.
APA
Schotte, A. (2021). Quantum error correction thresholds for non-Abelian Turaev-Viro codes. Universiteit Gent. Faculteit Wetenschappen.
Chicago author-date
Schotte, Alexis. 2021. “Quantum Error Correction Thresholds for Non-Abelian Turaev-Viro Codes.” Universiteit Gent. Faculteit Wetenschappen.
Chicago author-date (all authors)
Schotte, Alexis. 2021. “Quantum Error Correction Thresholds for Non-Abelian Turaev-Viro Codes.” Universiteit Gent. Faculteit Wetenschappen.
Vancouver
1.
Schotte A. Quantum error correction thresholds for non-Abelian Turaev-Viro codes. Universiteit Gent. Faculteit Wetenschappen; 2021.
IEEE
[1]
A. Schotte, “Quantum error correction thresholds for non-Abelian Turaev-Viro codes,” Universiteit Gent. Faculteit Wetenschappen, 2021.
@phdthesis{8699471,
  abstract     = {{We consider a two-dimensional quantum memory of qubits on a torus which encode the extended Fibonacci string-net code, and devise strategies for error correction when those qubits are subjected to depolarizing noise.  Building on the concept of tube algebras, we construct a set of measurements and of quantum gates which map arbitrary qubit errors to the string-net subspace and allow for the characterization of the resulting error syndrome in terms of doubled Fibonacci anyons.  Tensor network techniques then allow to quantitatively study the action of Pauli noise on the string-net subspace.  We perform Monte Carlo simulations of error correction in this Fibonacci code, and compare the performance of several decoders.  For the case of a fixed-rate sampling depolarizing noise model, we find an error correction threshold of 4.7% using a clustering decoder.  To the best of our knowledge, this is the first time that a threshold has been estimated for a two-dimensional error correcting code for which universal quantum computation can be performed within its code space.}},
  author       = {{Schotte, Alexis}},
  keywords     = {{quantum computing,quantum error correction,topological order,tensor networks}},
  language     = {{eng}},
  pages        = {{ix, 140}},
  publisher    = {{Universiteit Gent. Faculteit Wetenschappen}},
  school       = {{Ghent University}},
  title        = {{Quantum error correction thresholds for non-Abelian Turaev-Viro codes}},
  year         = {{2021}},
}