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Abstract: Seaweed lectins, especially high-mannose-specific lectins from red algae, have been
identified as potential antiviral agents that are capable of blocking the replication of various enveloped
viruses like influenza virus, herpes virus, and HIV-1 in vitro. Their antiviral activity depends
on the recognition of glycoprotein receptors on the surface of sensitive host cells—in particular,
hemagglutinin for influenza virus or gp120 for HIV-1, which in turn triggers fusion events, allowing
the entry of the viral genome into the cells and its subsequent replication. The diversity of glycans
present on the S-glycoproteins forming the spikes covering the SARS-CoV-2 envelope, essentially
complex type N-glycans and high-mannose type N-glycans, suggests that high-mannose-specific
seaweed lectins are particularly well adapted as glycan probes for coronaviruses. This review presents
a detailed study of the carbohydrate-binding specificity of high-mannose-specific seaweed lectins,
demonstrating their potential to be used as specific glycan probes for coronaviruses, as well as the
biomedical interest for both the detection and immobilization of SARS-CoV-2 to avoid shedding of the
virus into the environment. The use of these seaweed lectins as replication blockers for SARS-CoV-2
is also discussed.

Keywords: seaweed lectins; red algae; mannose-specific lectins; N-acetylgalactosamine-specific
lectins; T/Tn-specific lectins; griffithsin; SARS-CoV-2; COVID-19; N-glycosylation; O-glycosylation;
high-mannose glycans; glycan probes

1. Introduction

The occurrence of lectins, formerly designated as hemagglutinins due to their capacity to
agglutinate red blood cells from humans and various animals, in marine seaweeds has been recognized
for a long time, following the pioneering works of Boyd et al. [1] and Blunden et al. [2] on British
marine algae. The carbohydrate-binding specificity of some of these seaweed lectins, especially
high-mannose-specific lectins extracted and purified from red algae (Rhodophyta), has been studied
in detail owing to their ability to induce apoptosis in cancer cells [3–7] and block, at least in vitro,
the replication of various enveloped viruses such as influenza, herpes, and HIV-1 [8–15].

Griffithsin (GRFT) from the red alga Griffithsia sp., exhibited inhibiting properties towards HIV-1 [8].
High-mannose-specific lectins from the red algae Kappaphycus alvarezii (KAA-2) [10,13], Eucheuma serra
(ESA-2) [12], and Halimeda renschii (HRL-40) [14] also recognized high-mannose N-glycans (HM-glycans)
occurring at the surface of the influenza virus [10–12,14] and HIV-1 [8,11,13]. The high-mannose-specific
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lectin from the green alga Boodlea coacta (BCA) [11] interacts more specifically with (Manα1,2)-glycans,
especially as the number of terminal branched Manα1,2 is increased. Very similar antiviral properties
were identified for the cyanobacterial lectins such as OAA from Oscillatoria agardhii [16], cyanovirin-N
(CNV-N) from Nostoc ellipsosporum [17–21], microvirin MVN from Microcystis aeruginosa [22,23],
and scytovirin SVN from Scytonema varium [24]. Antiviral properties of CNV-N were reported
against several viruses including HIV-1 [17], influenza virus [21], herpes virus [18,19], hepatitis C
virus [20], and Ebola virus [19]. Obviously, the antiviral activity of high-mannose-specific seaweed
and cyanobacterial lectins correlates with their capacity to recognize the high-mannose N-glycans
associated to different glycoprotein receptors, e.g., hemagglutinin from influenza virus [14], or gp120
from HIV-1 [13], covering the viral envelopes.

Taking into account the antiviral properties and the well known diversity of N-glycans decorating
the spikes arrayed on the surface of the SARS-CoV-2 envelope, essentially comprised of complex
N-glycans and high-mannose N-glycans [25,26], one can assume that seaweed lectins, especially
high-mannose-specific seaweed lectins, can be useful tools as glycan probes for this type of coronavirus
(Figure 1).
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Figure 1. Molecular organization of the SARS-CoV-2 envelope (coronavirus credit: Maria Voigt/RCSB
PDB). The spikes (colored pale green) protruding at the surface of the virus consist of homotrimers of
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SARS-CoV-2 spikes consist of homotrimers of S-glycoproteins and play a key role in both
the recognition and the subsequent membrane fusion events, resulting in the infection of the host
cells [27,28]. Spikes occur in different conformations, but the closed conformation seems to occur more
frequently at the surface of the viral envelope [29]. The S-glycoprotein consists of two subunits, S1 and
S2, and the S1 subunit containing the receptor binding domain (RBD) is responsible for the binding
to the angiotensin-converting enzyme 2 (ACE2) receptor. Motions in the RBD that are apparently
pH-dependent allow the transition from a closed conformation (all RBD-down state) to an open
conformation (all RBD-up state), and this transition is induced or stabilized upon binding of the RBDs
to the ACE2 receptors at the surface of the host cells [30]. In turn, this recognition of ACE2 triggers the
fusion of the viral envelope to the cell membrane of host cells, which allows the entry of the viral RNA
genome into the cells [31]. The S2 subunit that has been proteolytically cleaved from the S1 subunit at
a S1-S2 cleavage site of the S-glycoprotein, is responsible for this fusion event [32,33]. Finally, infected
cells are now ready for the replication of the virus and the subsequent release of virions out of the
dying host cells. This viral cycle is quite common among viruses, but SARS-CoV-2 is different from
other closely related viruses in that it specifically recognizes ACE2 proteins as potential receptors,
using the RBDs of the S-glycoprotein. This recognition and binding event accounts, at least in part,
for the ability of SARS-CoV-2 to preferentially target host cells that are particularly rich in ACE2 protein
receptors at the cell surface, such as kidney cells [34].

Due to the high number of high-mannose N-glycans of the S-glycoproteins forming the SARS-CoV-2
spikes [25,26,35], high-mannose-specific seaweed lectins appear as relevant glycan probes both for
analytical purposes, e.g., the detection or immobilization of the virions, and for biomedical purposes,
e.g., preventing the replication and fusion events of SARS-CoV-2. In this review, we present a detailed
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analysis of the carbohydrate-binding specificities of seaweed lectins that could be used as glycan
probes for the SARS-CoV-2 coronavirus.

2. Seaweed Lectins of Various Carbohydrate-Binding Specificities

According to their carbohydrate-binding specificity towards simple sugars, (seaweed) lectins can
been classified in five main groups of Man-specific lectins, GlcNAc-specific lectins, Gal/GalNAc-specific
lectins, Fuc-specific lectins, and Sia-specific lectins. Until now, the research on seaweed lectins has
focused especially on the Man-specific lectins, and these lectins have been characterized in more detail.

2.1. Man-Specific Seaweed Lectins

To date, a large number of seaweed lectins have been screened, but only a few lectins have
been studied in detail or have been characterized at the molecular/structural level. In spite of these
limitations, the amino acid sequences and some structural information have become available for some
Man-specific seaweed lectins from the red algae (Rhodophyta), the yellow-green algae (Ochrophyta),
and the green algae (Chlorophyta) (Table 1).

Table 1. List of Man-specific seaweed lectins.

Seaweed Family Seaweed Species Lectin Structural Scaffold Ref.

Red algae

Agardhiella subulata ASL-1, β-barrel [7]
ASL-2 β-barrel

Carpopeltis flabellata CFA unknown [36]

Eucheuma amakusaensis
EAA-1 β-barrel

[37]EAA-2 β-barrel
EAA-3 β-barrel

Eucheuma cottonii
ECA-1 β-barrel [37]
ECA-2 β-barrel

Eucheuma denticulatum
EDA-1 β-barrel [38]
EDA-2 β-barrel

Eucheuma serra
ESA-1 β-barrel [39,40]
ESA-2 β-barrel

Gracilaria bursa-pastoris GBPL unknown [41]

Grateloupia chiangii GCL β-prism II [15]

Griffthsia sp. griffithsin β-barrel [8]

Kappaphycus alvarezii KAA-2 β-barrel [10]

Kappaphycus striatum KSA-2 β-barrel [38]

Meristiella echinocarpa MEL β-barrel [42]

Meristotheca papulosa MPA-1 β-barrel [42]
MPA-2 β-barrel

Solieria filiformis SfL-1 β-barrel [12]
SfL-2 β-barrel

Solieria robusta SrL β-barrel [3]

Hydropuntia (Gracilaria) fisheri HFA β-sandwich [43]

Porphyra umbilicalis NgL β-sandwich [44]

Yellow-green algae Nannochloropsis gaditana BU14 β-sandwich [45]

Green algae

Boodlea coacta BCA β-prism II [11,46]

Bryopsis plumosa BPL-2 MFP2-like scaffold [47]

Enteromorpha prolifera EPL-1/2 unknown [48]

Halimeda renschii HRL40-1/2 unknown [14]

Ostreococcus tauri OtL β-sandwich [49]
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Man-specific seaweed lectins belong to a few well defined protein families which have been
previously identified and characterized for the molecular organization of their protomers, especially in
plants [50]:

- The GNA (Galanthus nivalis agglutinin)-related family of lectins consists of protomers organized in
a β-prism II or β-trefoil. The red alga Grateloupia chiangii lectin (GCL) and the green alga Boodlea
coacta lectin (BCA) present this type of structural organization.

- The jacalin-related family of lectins contains protomers organized in a β-prism I or β-barrel.
Most of the mannose-specific lectins from red algae belong to this group of lectins, e.g., griffithsin
and lectins from the genera Gracilaria, Eucheuma, Grateloupia, Kappaphycus, and Solieria.

- The legume lectin-related family is made of protomers organized in a β-sandwich or jelly roll fold
(two β-sheets). This structural scaffold occurs in a few lectins from the genera Hydropuntia (red
algae), Nannochloropsis (yellow-green algae), Ostreococcus (green algae), and Porphyra (red algae).

Man-specific seaweed lectins readily accommodate Man, oligomannosides, and high-mannose
type glycan chains. In addition, most of them recognize the tri-mannosyl core Manα1,3-Manα1,6-Man
occurring in both N-acetyllactosaminic type glycans and high-mannose type glycans.

2.1.1. Man-Specific Seaweed Lectins With a β-Prism II Structure

The Grateloupia chiangii lectin (GCL) offers a nice example of a Man-specific red alga lectin
with a β-prism II structure. The β-prism II scaffold consists of three bundles of four antiparallel
β-strands arranged into a flattened trefoil-shaped structure around a central pseudoaxis. The GCL
lectin dimer consists of two covalently linked swapped protomers organized in a β-trefoil in such a
way that both protomers become oriented almost orthogonally (Figure 2A). Each protomer contains
three carbohydrate-binding sites (CBS-I, CBS-II, and CBS-III) that form a shallow depression which
accommodates a Man residue via a network of six hydrogen bonds involving Q31, N35, Y39 residues,
and stacking interactions between the aromatic residues Y39 and Y56 and the pyranose ring of mannose
(CBS-I) (Figure 2B,C). The green algae group, Boodlea coacta, also contains a Man-specific lectin (BCA)
with a β-prism II structure [46].
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The Porphyra umbilicalis lectin (PUL) illustrates the β-sandwich organization of the lectin 
protomer, resulting from the covalent superposition of two strands of β-sheets connected by more or 
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Figure 2. Molecular modeling of lectin from Grateloupia chiangii. (A) Lateral view of the ribbon diagram
of the modeled lectin from Grateloupia chiangii (GCL), in complex with mannose (M, colored purple).
The lectin dimer consists of the association of two differently oriented protomers exhibiting a β-trefoil
fold. Man residues occupying the three CBS of the second protomer are represented. (B) Network of
hydrogen bonds (black dashed lines) anchoring Man (M) to the amino acid residues Q31, N35, and Y39,
forming the CBS-I of GCL. Aromatic residues Y39 and Y56 participating in stacking interactions with
the pyranose ring of Man, are colored orange. (C) Molecular surface (colored slate green) at the CBS-I
of GCL, forming a depression (delineated by a yellow dashed line) harboring the Man (M, colored
purple) linked by a network of hydrogen bonds (black dashed lines) to Q31, N35, and Y39 residues,
and stacking interactions with Y39 and Y56 residues (colored orange).

2.1.2. Man-Specific Seaweed Lectins with a β-Sandwich Structure

The Porphyra umbilicalis lectin (PUL) illustrates the β-sandwich organization of the lectin protomer,
resulting from the covalent superposition of two strands of β-sheets connected by more or less extended
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loops, forming the front and back faces of the β-sandwich, respectively (Figure 3A,B). This type of
structural organization is very common in plant lectins belonging to the Fabaceae or Leguminosae
family, such as Con A [51], pea [52], and lentil [53] lectins. Animal lectins, such as the LMAN1/ERGIC-53
protein [54] or the VIP36 protein [55], also possess a β-sandwich structure. A few amino acid residues
belonging to the loops connecting both strands of β-sheets in the β-sandwich structure (Figure 3B),
form the CBS which accommodates Man and dimannosides via a network of hydrogen bonds with
residues N115, T137, S138, E207 and H210, and stacking interactions with the aromatic residues
F211 and F213 (Figure 3C). The CBS appears as a shallow depression at the molecular surface of the
lectin, in which the Man units become anchored (Figure 3D). Two other Man-specific lectins with a
β-sandwich structure have been identified in the green-yellow alga Nannochloropsis gaditana (BU14),
and in the green alga Ostreococcus tauri (OtL) [49] (Table 1).
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Figure 3. Molecular modeling of Porphyra umbilicalis lectin. (A,B) Back face (A) and lateral view (B) of
the ribbon diagram of the modeled Porphyra umbilicalis lectin (PUL) in complex with a dimannoside
Manα1,2Man (M, colored purple). The calcium ion is colored green. The front (F) and back (B) faces of
the β-sandwich are indicated in B. (C) Network of hydrogen bonds (black dashed lines) anchoring
the dimannoside Manα1,2Man (M) to the amino acid residues forming the CBS of the PUL. Aromatic
residues F113 and F211 interacting with the dimannoside by stacking interactions, are colored orange.
(D) Molecular surface (colored slate green) at the CBS of PUL forming a depression (delineated by a
yellow dashed line) harboring the dimannoside (M, colored purple) linked by a network of hydrogen
bonds (black dashed lines) to N115, T137, S138, E207, and H210 residues, and stacking interactions
with F113 and F211 residues (colored orange). The calcium ion is colored green.

2.1.3. Man-Specific Seaweed Lectins with a β-Prism I Structure

Griffithsin, the Man-specific jacalin-related lectin firstly isolated and characterized from the red
alga Griffithsia sp., is the prototype of a group of giffithsin-like lectins occurring in red algae, especially in
the genera Agardhiella, Eucheuma, Gracilaria, Kappaphycus, Meristiella, Meristotheca, and Solieria (Table 1).
The domain-swapped griffithsin consists of two non-covalently associated domains exhibiting a
β-barrel structure built up from three four-stranded antiparallel β-sheets (Figure 4A). Loops connecting
the β-sheets form three CBS at the top of the β-barrel (Figure 3A,B). A front view of the β-barrel shows
that the CBS adopt a triangular pattern at the top of each protomer (Figure 4D).

Each of the three CBS accommodates Man via a network of nine hydrogen bonds with G26, S27,
Y28, D30, and G44 residues (for the 1st CBS), and two additional stacking interactions with aromatic
residues Y28 and Y110 (Figure 4C). The CBS form a shallow depression largely open at the molecular
surface of the lectin, in which Man is anchored by hydrogen bonds and hydrophobic interactions
(Figure 4D).
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Figure 4. Molecular modeling of griffithsin. (A,B) Lateral (A) and front view (B) of the ribbon diagram
of the domain-swapped griffithsin, in complex with mannose (M) (PDB code 2GUD). (C) Network
of hydrogen bonds (black dashed lines) anchoring mannose (M) to the amino acid residues forming
the CBS of griffithsin. Aromatic residues Y28 and Y110 participating in stacking interactions with the
pyranose ring of Man, are colored orange. (D) Molecular surface (colored slate green) at the CBS of
griffithsin forming a depression (delineated by a yellow dashed line) harboring the Man (M, colored
purple) linked by a network of hydrogen bonds (black dashed lines) to G26, S27, Y28, D30, and G44
residues, and stacking interactions with Y28 and Y110 residues (colored orange).

The CBS of griffithsin also accommodates dimannosides, e.g., Manα1,6Man, via a similar network
of 8 hydrogen bonds and stacking interactions with the Y28 and Y110 residues, but the second Man
unit located at the reducing end of the disaccharide does not participate in the interaction (Figure 5A,B).
A front view of the CBS shows the absence of contact of the second Man of the dimannoside with the
lectin (Figure 5C).
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Figure 5. Molecular modeling of griffithsin. (A) Front view of the ribbon diagram of a domain
of griffithsin, in complex with dimannoside Manα1,6Man (M, colored purple) (PDB code 2HYQ).
(B) Network of hydrogen bonds (black dashed lines) anchoring the dimannoside (M) to the amino
acid residues forming the CBS of griffithsin. Aromatic residues Y28 and Y110 participating in stacking
interactions with the dimannoside, are colored orange. (C) Molecular surface (colored slate green) at the
CBS of griffithsin forming a depression (delineated by a yellow dashed line) harboring the dimannoside
(M, colored purple) linked by a network of hydrogen bonds (black dashed lines) to G26, S27, Y28, D30
and G44 residues, and stacking interactions with Y28 and Y110 residues (colored orange). Note the
absence of contact between the second Man residue of the dimannoside and the CBS of griffithsin.

According to the triangular disposition of the three CBS at the top of the griffithsin protomers,
both CBS can participate in the binding of a complex octasaccharide (Man8) to the lectin (Figure 6A).
The Man8 interact with the lectin via a network of 18 hydrogen bonds with residues G12 (first CBS),
G66, D67, Y68, D70 (second CBS), and G90, G108, D109, Y110, and D112 (third CBS), together with
stacking interactions with aromatic residues Y28 (first CBS), Y68 (second CBS), and Y110 (third CBS)
(Figure 6B). A front view of the protomer linked to Man8 oligosaccharide, shows that the second and
third CBS of griffithsin play a major role in the interaction with the octamannoside (Figure 6C).
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Figure 6. Anchoring of Man8 to griffithsin. (A) Lateral view of the ribbon diagram of griffithsin in
complex with a high-mannose branched chain (M8, colored purple) (PDB code 3LL2). (B) Network of
hydrogen bonds (black dashed lines) anchoring M8 to the amino acid residues forming CBS-I (G12),
CBS-II (G66, D67, Y68, D70), and CBS-III (G90, G108, D109, Y110, D112) of griffithsin. Aromatic residues
Y28, Y68 and Y110 participating in stacking interactions with the M8, are colored orange. (C) Molecular
surface (colored slate green) at the CBS-II and CBS-III of griffithsin, forming a depression (delineated
by a yellow dashed line) harboring M8 (M8, colored purple) linked by a network of hydrogen bonds
(black dashed lines) to G12, G66, D67, Y68, D70, G90, G108, D109, and D112 residues, and stacking
interactions with Y28, Y68, and Y110 residues (colored orange).

The carbohydrate-binding specificity of another Man-specific lectin with a β-prism I structure
from the red alga Kappaphycus alvarezii (KAA-2) towards high-mannose glycans, has been studied in
detail by Sato et al. [10]. The high-mannose glycan-binding activity of the lectin was measured towards
a series of bi- and tri-antennary branched high-mannose glycans (Figure 7).
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Figure 7. Structure of the high-mannose type N-glycans assayed by Sato et al. (2011) to
measure the oligosaccharide-binding specificity of KAA-2 from the red alga Kappaphycus avalvarezii.
The high-mannose N-glycans are aligned according to their decreasing binding activity (expressed
as %) towards KAA-2 (adapted from [10]). Symbols used to represent N-glycans: blue squares:
N-acetylglucosamine, green circles: mannose.

Docking of a pentamannoside (Man5) to the modeled KAA-2 lectin, showed the existence of four
CBS located at both ends of the β-barrel forming each protomer of the KAA-2 dimer (Figure 8A).
The CBS accommodates the pentamannoside via a network of 14 hydrogen bonds with Q9, G11, G12,
R96, E124, G125 and P126 residues, completed by an additional stacking interaction with the aromatic
W10 residue (Figure 8B,C). All the Man units of M5 participate in the binding to the lectin.
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Figure 8. Molecular modeling of Kappaphycus alvarezii lectin. (A) Lateral view of the ribbon diagram of
the modeled KAA-2 from Kappaphycus alvarezii, in complex with a pentamannoside chain (M5, colored
purple). (B) Network of hydrogen bonds (black dashed lines) anchoring M5 to the amino acid residues
Q9, G11, G12, R96, E124, G125 and P126 forming the CBS (red dashed circle) of KAA-1. The aromatic
residue W10 which also participates in stacking interaction with M5, is colored orange. (C) Molecular
surface (colored slate green) at the CBS of KAA-2, forming a large depression (delineated by a yellow
dashed line) harboring M5 (M5, colored purple) linked by a network of hydrogen bonds (black dashed
lines) to Q9, G11, G12, R96, E124, G125 and P126 residues, and a stacking interaction with W10 residue
(colored orange).

Mannose-specific lectins closely-related to griffithsin, which similarly accommodate Man and
oligomannosides, have been characterized in blue green algae (cyanobacteria), e.g., cyanovirin-N (CV-N)
from the cyanobacterium Nostoc ellipsosporum [17], microvirin MVN from Microcystis aeruginosa [22,23],
scytovirin SVN from Scytonema varium [24], and the Oscillatoria agardhii agglutinin OAA [16]. All of
these cyanobacterial lectin domains also consist of a β-barrel structure [9].

2.2. Seaweed Lectins with GalNAc/T/Tn- and Neu5Ac-Specificity

Other seaweed lectins display a quite different binding-specificity towards GalNAc and T/Tn
antigen (Table 2) and towards Neu5Ac/sialic acid ending N-glycans of the N-acetyllactosaminic type
(Table 3). However, at present no sequence and structural information is available to get an insight into
the molecular aspects of their carbohydrate-binding specificity.

Table 2. List of GalNAc/T/Tn-specific seaweed lectins.

Seaweed Family Seaweed Species Lectin Structural Scaffold Ref.

Rhodophyceae Aglaothamnion oosumiense AOL1 unknown [56]

Chlorophyceae Codium fragile CFL unknown [57,58]

Table 3. List of Neu5Ac-specific seaweed lectins.

Seaweed Family Seaweed Species Lectin Structural Scaffold Ref.

Rhodophyceae

Gracilaria tikvahiae GTL unknown [59]

Palmaria palmata PPL unknown [60]

Solieria chordalis ScL β-barrel [61]

Phaeophyceae Fucus vesiculosus ? * unknown [62]

* The protein nature of the so-called Fucus vesiculosus lectin needs further confirmation.
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3. Structural Organization and Glycosylation of S Glycoproteins Forming the Spikes of
SARS-CoV-2 Virus

The spikes arrayed on the surface of SARS-CoV-2, each result from the non-covalent association
of three similar S-glycoproteins in an homotrimer structural scaffold that protrudes outside the virus
surface (Figure 1).

The spike S-glycoprotein consists of a single polypeptide chain of 1273 amino acids (140 kDa),
containing 22 potential N-glycosylation sites 17NLT, 61NVT, 74NGT, 122NAT, 149NKS, 165NCT,
234NNIT, 282NNGT, 331NIT, 343NAT, 603NTS, 616NCT, 657NNS, 709NNS, 717NFT, 801NFS, 1074NFT,
1098NGT, 1134NNT, 1158NHT, 1173NAS, 1194NES (seven potential N-glycosylation sites 17NLT,
603NTS, 657NNS, 1134NNNT, 1158NHT, 1173NAS and 1194NES, are apparently not glycosylated) and
three O-glycosylation sites T323, S325 and T678 are actually glycosylated [25,26,35].

As shown below the complete amino acid sequence of the S glycoprotein of SARS-CoV-2 is made
of two S1 and S2 subunits. The RBD of subunit S1 is highlighted in green and the S1/S2 cleavage site for
cathepsin and serine protease TMPRSS2 is highlighted in red. All the N-glycosylation sites NXT/NXS
are highlighted in dark blue and the O-glycosylation sites are shown in bold letters highlighted
in yellow:
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A detailed study of the N- and O-glycans attached to the potential N- and O-glycosylation sites 
decorating the amino acid sequence of the S-glycoprotein of SARS-CoV-2 (Figure 9), revealed that 
almost all the putative N-glycosylation sites are occupied by a glycan chain, with the exception of the 
seven potential N-glycosylation sites 17NLT, 603NTS, 657NNS, 1134NNT, 1158NHT, 1173NAS and 
1194NES. All potential O-glycosylation sites T323, S323 and T678, exhibited core-1 type O-glycans 
[25,26]. 

A detailed study of the N- and O-glycans attached to the potential N- and O-glycosylation sites
decorating the amino acid sequence of the S-glycoprotein of SARS-CoV-2 (Figure 9), revealed that almost
all the putative N-glycosylation sites are occupied by a glycan chain, with the exception of the seven
potential N-glycosylation sites 17NLT, 603NTS, 657NNS, 1134NNT, 1158NHT, 1173NAS and 1194NES.
All potential O-glycosylation sites T323, S323 and T678, exhibited core-1 type O-glycans [25,26].

A large diversity was observed in the types of N-glycans present at the potential
N-glycosylation sites:

- N-glycosylation sites 149NKS, 165NCT, 282NGT, 657NNS, 709NNS, 801NFT, 1074NGT, 1098NGT
and 1194NES (often not glycosylated), are almost exclusively occupied by often sialylated, bi-, tri-
and tetra-antennary N-glycans of the complex type (Figure 10)

- N-glycosylation sites 61NVT, 331NIT, 343NAT and 616NCT, are almost exclusively occupied by
N-glycans of the high-mannose type (Figure 10)

- The remaining N-glycosylation 74NGT, 122NAT, 234NIT and 717NFT, contain a mix of N-glycans
of both types, complex N-glycans and high-mannose N-glycans (Figure 10)

- Both O-glycosylated sites T323, S325, harbor core-1 mucin type O-glycans: GalNAc,
T-antigen GalNAcGal, sialylated T-antigen GalNAcGalNeuAc2, and core-2 sialylated O-glycans
GalNAcGalNeuAc(GlcNAcGal), and GalNAcGalNeuAc(GlcNAcGalNeuAc) (Figure 10)
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Figure 9. Structure of S-glycoprotein of SARS-CoV-2. (A) Ribbon diagram of the heavily glycosylated
S-glycoprotein of SARS-CoV-2 (PDB code 6VXX). The RBD bearing 2 N-glycans is colored green
and circled by a red dotted line. N-glycans (biantennary core (GlcNAc)2(Man)5) are colored cyan.
(B Molecular surface representation of the glycosylated S-glycoprotein of SARS-CoV-2. The molecular
surface of RBD is colored green.

Bi- and tri-antennary glycans are predominantly represented, across all categories of the complex
N-glycans and high-mannose N-glycans. Moreover, high-mannose glycans predominantly occur at the
top of the S-glycoprotein whereas complex N-glycans are localized at the bottom of the glycoprotein,
close to the viral envelope surface.

An interesting note is that the RBD (highlighted in green in both the amino acid sequence and
tridimensional structure of the S-glycoprotein of SARS-CoV-2), only contains two N-glycosylation
sites, 331NIT and 343NAT, predominantly occupied by high-mannose N-glycans that should be readily
accessible to Man-specific seaweed and cyanobacterial lectins.

Most of the complex glycans are sialylated on their Gal residues. Therefore, one can assume that
Neu5Ac-specific lectins that have been identified in red algae (Table 3), would recognize the sialylated
glycans of SARS-CoV-2. Conversely, the O-glycosylation sites T323 and S325, are rather buried at the
top of the S-glycoprotein, in such a way that the O-glycans are not identified as key targets for the
binding of GalNAc/T-Tn-specific lectins to the S-glycoprotein trimer. However, O-glycosylation site
T678 is pretty well exposed at the bottom of the S-glycoprotein and therefore, should be accessible
to the GalNAc/T-Tn-specific lectins. Accordingly, seaweed lectins with the corresponding specificity
should not be relevant glycan probes for SARS-CoV-2, except for the single exposed O-glycosylation
site T678 (Table 2)

The apparent diversity in glycosylation identified in SARS-CoV-2 and, especially the complex
glycans and high-mannose N-glycans, has also been reported for the SARS-CoV virus [63], suggesting
Man-specific seaweed lectins can be used as glycan probes for other pathogenic coronaviruses.

The three-dimensional structure of the spike RBD of the S-glycoprotein and the S-glycoprotein
monomer, has been solved at atomic resolution, using either X-ray radiocrystallography or cryo-
electron microscopy (Table 4). The three-dimensional organization of the spike of SARS-CoV-2 has
been also solved in the prefusion conformation, essentially by electron microscopy at lower resolution
(Table 4). All these structures confirm the high degree of glycosylation of the S-glycoprotein of
SARS-CoV-2 and the lower glycosylation of the RBD, which possesses only two well-exposed sites
for N-glycosylation (331NIT and 343NAT) and two rather buried sites for O-glycosylation (T323 and
S325) (Figure 11). In addition to RBD, the highly glycosylated N-glycans associated to 234NIT and
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282NGT, would play a prominant role in the binding of SARS-CoV-2 to ACE2 receptors of the host
cells [25,26,35].
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Figure 10. Diversity of the N-glycans of the biantennary complex type (left frame) and high-mannose
type (upper right frame), and O-glycans (lower right frame), identified in the S-glycoprotein forming
the spikes at the surface of the SARS-CoV-2 envelope [26]. Symbols used to represent the N- and
O-glycans: blue squares: N-acetylglucosamine (GlcNAc), green circles: mannose (Man), yellow circles:
galactose (Gal), red triangle: fucose (Fuc), purple diamonds: sialic acid (Neu5Ac), yellow square:
N-acetylgalactosamine (GalNAc).
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Table 4. List of the RBD (Receptor-binding domain) and S-GPT (S-Glycoprotein trimer) solved by either
X-ray radiocrystallography and/or cryo-electron miscroscopy (Cryo-Em). Tbp: to be published (atomic
coordinates available at the PDB but results are unpublished by the authors).

RBD/S-GPT PDB Code RX/Cryo-Em Resolution (Å) Ref.

RBD 6W41 RX 3.084 Å [64]
RBD 6XC2, 6XC3, 6XC4, 6XC7 RX 2.3 Å–3.11 Å [65]
RBD 6XDG Cryo-Em 3.9 Å [66]
RBD 6XE1 RX 2.75 Å [67]
RBD 6YLA, 6YM0, 6YOM RX, Cryo-Em 2.42 Å–4.36 Å Tbp
RBD 6YZ7, 6Z2M, 6ZH9 RX 2.71 Å–3.31 Å Tbp
RBD 6ZCZ, 6ZER, 6ZFO RX, Cryo-Em 2.65 Å–4.4 Å [68]
RBD 7BWJ RX 2.85 Å [69]
RBD 7BZ5 RX 1.84 Å [70]
RBD 7C01 RX 2.88 Å [28]
RBD 7C8V RX 2.15 Å Tbp
RBD 7JMP RX 1.712 Å [71]

S-GPT 6VYB Cryo-Em 3.2 Å [72]
S-GPT 6WPT Cryo-Em 3.1 Å–3.7 Å [73]
S-GPT 6X2A Cryo-Em 2.9 Å–3.6 Å [74]
S-GPT 6X6P Cryo-Em 3.22 Å [29]
S-GPT 6X79 Cryo-Em 2.9 Å [75]
S-GPT 6XCN Cryo-Em 3.42 Å–3.66 Å [76]
S-GPT 6XEY Cryo-Em 3.27 Å [77]
S-GPT 6XF5,6XF6 Cryo-Em 3.45 Å–4.0 Å Tbp
S-GPT 6XKL Cryo-Em 3.21 Å [78]
S-GPT 6XLU,6XM0,6XM3,6XM4,6XM5 Cryo-Em 2.4 Å–3.1 Å [31]
S-GPT 6XR8 Cryo-Em 2.9 Å [79]
S-GPT 6XS6 Cryo-Em 3.7 Å [80]
S-GPT 6Z43 Cryo-Em 3.3 Å Tbp
S-GPT 6Z97 Cryo-Em 3.4 Å [81]
S-GPT 6ZDH Cryo-Em 3.7 Å [68]
S-GPT 6ZGE,6ZGH,6ZGG,6ZGI,6ZHD Cryo-Em 2.6 Å–6.8 Å Tbp
S-GPT 6ZOX,6ZOY,6ZOZ,6ZP0,6ZP1,6ZP2 Cryo-Em 3.0 Å–3.5 Å [29]
S-GPT 6ZOW,6ZP5, 6ZP7 Cryo-Em 3.0 Å–3.3 Å [82]
S-GPT 6ZWV Cryo-Em 3.5 Å [83]
S-GPT 7BYR Cryo-Em 3.84 Å [84]
S-GPT 7CN9 Cryo-Em 4.7 Å [85]
S-GPT 7JJI Cryo-Em 3.6 Å [86]

The spikes S-glycoprotein trimers covering the SARS-CoV-2 virions, mediate the binding to the
ACE2 receptor through their RBD (S1 subunit), and the subsequent fusion of the viral membrane with
the cell membrane (S2 subunit). The spike S-glycoprotein exhibits some flexibility and conformational
motions of the S-glycoprotein are pH-dependent [30]. However, neutralizing antibodies readily
recognize the closed conformation (all RBD-down) of the spikes, which is highly encouraging for the
future development of antibody candidates as potential therapeutic or prophylactic agents (vaccines)
against the SARS-CoV-2 [77].
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Figure 11. Surface glycosylation of SARS-CoV-2 virus. (A) Overall structure of SARS-CoV-2 showing the
spikes (colored green) arrayed on the surface of the virus (Coronavirus Credit: Maria Voigt/RCSB PDB).
(B,D) Sagital views of the ribbon diagram (B) and the molecular surface (D), showing the structural
organization of the spike (PDB code 6ZGE). The three S-glycoproteins forming the SARS-CoV-2 spike
are colored yellow, pink, and purple, respectively. The RBD in each S-glycoprotein is colored green.
(C,E) Front views of the ribbon diagram (C) and the molecular surface (E), showing the structural
organization of the spike. N-glycan chains occupying the putative N-glycosylation sites in the three
S-glycoproteins, are colored cyan and represented in spheres.

4. Man-Specific Seaweed Lectins Interact with N-glycans Decorating the S-Glycoprotein
from SARS-CoV-2

High-mannose-specific lectins from red algae and BCA from the green alga Boodlea coacta,
were shown to possess antiviral properties against various enveloped virus including influenza, herpes,
and hepatitis C viruses, and HIV-1 (Table 5). In addition, griffithsin exhibited antiviral properties
against SARS-CoV coronavirus. Obviously, these antiviral properties depend on the ability of seaweed
lectins to specifically recognize and bind high-mannose N-glycans that cover the virus envelope.

A detailed study of the binding-activity towards pyridylaminated (PA-)-oligosaccharides measured
for Man-specific lectins of red algae (KAA-2 from Kappaphycus alvarezii [10,13] and HRL-40 from Halimeda
renschii [14]), green algae (BCA from Boodlea coacta [11]) and the cyanobacterium OAA from Oscillatoria
agardhii [16]), showed that all these lectins readily interact with some of the high mannose N-glycans
present at the surface of both the influenza virus and HIV-1 envelope, associated to hemagglutinin
(influenza virus) or gp120 (HIV-1) glycoproteins (Figure 11). The binding of BCA differs from that
measured for other algal lectins due to its preference for the recognition of the Manα1,2 linkage [11];
depending on the number of terminal Manα1,2 that decorate the high-mannose branched glycans of
the viral envelope, the binding varies from 0 (n = 0) to 100% (n = 3) (Figure 12).
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Table 5. List of seaweed lectins tested for their antiviral properties against enveloped viruses possessing
exposed glycans.

Seaweed Family Lectin Virus Glycan
Recognized Ref.

Rhodophyceae

ESA-2 (Eucheuma serra) Influenza High-mannose [12]

GCL (Grateloupia chiangii) Influenza High-mannose [15]
Herpes

Griffithsin (Griffithsia sp.)
HIV-1

High-mannose [8]
Hepatitis C
SARS-CoV [9]

HRL-40 (Halimeda renschii)) Influenza High-mannose [14]

KAA-2 (Kappaphycus alvarezii) Influenza High-mannose [10]
HIV-1 [13]

Chlorophyceae BCA (Boodlea coacta) Influenza High-mannose [11]
HIV-1

* Cyanobacteria

MVN (Microcystis aeruginosa) HIV-1 High-mannose [22]

MVL (Microcystis viridis) HIV-1 High-mannose [23]

CV-N (Nostoc ellipsosprum)

HIV-1

High-mannose

[17,18]
Herpes [18]
Ebola [19]

Hepatitis C [20]
Influenza [21]

OAA (Oscillatoria agardhii) HIV-1 High-mannose [16]

SVN (Scytonema varium) HIV-1 High-mannose [24]

* Cyanobacteria lectins with antiviral properties were included.
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Figure 12. Comparative analysis of the binding activity (expressed as %) of the Man-specific lectins
KAA-2 from Kappaphycus alvarezii, HLR-40 from Halimeda renschii, BCA from the green alga Boodlea
coacta, and OAA from the blue-green alga (cyanobacterium) OAA from Oscillatoria agardhii (adapted
from Mu et al. [14] and Sato et al. [11,16]). Symbols used to represent high-mannose glycans: blue
squares: N-acetylglucosamine, green circles: mannose. High-mannose glycans identified in the
S-glycoprotein of the SARS-CoV-2 are indicated by a red star.
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An interesting note is that some of the high-mannose glycans of both the hemagglutinin of the
influenza virus and the gp120 of HIV-1 recognized by the lectins, also decorate the S-glycoprotein
forming the spikes occurring at the surface of the SARS-CoV-2 envelope. Accordingly, the algal
Man-specific lectins should similarly interact with the SARS-CoV-2 through the recognition of their
spike S-glycoproteins. In this respect, griffithsin (GRFT) was shown to inhibit both the replication and
cytopathy of the coronavirus SARS-CoV [36].

Looking at the high-mannose type glycans associated to the glycosylation sites N61, N77 (absent
from the 3D structure of the S-glycoprotein monomer (PDB code 6VXX)), N122, N234, N331, N343,
N616 and N717 occupied by the high-mannose glycans recognized by the Man-specific lectins KAA-2
(Kappaphycus alvarezii), HRL-40 (Halimeda ronschii), BCA (Boodlea coacta) and OAA (Oscillatoria agadhii),
shows they are the best exposed at the surface of the S-glycoprotein monomer (Figure 13A,B). This is
particularly true for the high-mannose glycans specifically recognized by the Manα1,2-specific lectin
BCA, which are almost exclusively localized in the external/upper part of the S-glycoprotein monomer
(Figure 13B).
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mannose recognized by lectins KAA-2, HRL-40, BCA and OAA, are nicely exposed at the surface of 
the trimer and are thus readily available for interacting with Man-specific seaweed lectins (Figure 
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Figure 13. Glycosylation pattern of the monomeric S-glycoprotein of SARS-CoV-2. (A) High-mannose
type glycans (colored yellow) of the monomeric S-glycoprotein of SARS-CoV-2 susceptible to be
specifically recognized by Man-specific lectins KAA-2 and HRL-40 from the red algae Kappaphycus
alvarezii [10,13] and Halimeda ronschii [14], and OAA from the blue-green alga (cyanobacterium)
Oscillatoria agarddhii [16], are well exposed at the top of the protein. Other complex N-glycans
decorating the monomer weakly or not recognized by the lectins, are colored cyan. (B) High-mannose
type glycans (colored yellow) of the monomeric S-glycoprotein of SARS- CoV-2 susceptible to be
specifically recognized by the Manα1,2-specific lectin BCA from the green alga Boodlea coacta [11]. Other
complex N-glycans decorating the monomer weakly or not recognized by BCA, are colored cyan.

A front view of the trimeric S-glycoprotein of SARS-CoV-2 clearly shows that most of the
high-mannose recognized by lectins KAA-2, HRL-40, BCA and OAA, are nicely exposed at the surface
of the trimer and are thus readily available for interacting with Man-specific seaweed lectins (Figure 14).



Mar. Drugs 2020, 18, 543 16 of 25Mar. Drugs 2020, 18, x 16 of 25 

 

A B 

Figure 14. Glycosylation of trimeric S-glycoprotein of SARS-CoV-2. (A) Front view of the trimeric S-
glycoprotein of SARS-CoV-2 showing the high-mannose type glycans (colored yellow) specifically 
recognized by Man-specific lectins KAA-2 and HRL-40 from the red algae Kappaphycus alvarezii [10,13] 
and Halimeda renschii [14], and OAA from the blue-green alga (cyanobacterium) Oscillatoria agarddhii 
[16]. Other complex N-glycans decorating the monomer weakly or not recognized by the lectins, are 
colored cyan. (B) Front view of the trimeric S-glycoprotein of SARS-CoV-2 showing the high-mannose 
type glycans (colored yellow) specifically recognized by the Manα1,2-specific lectin BCA from the 
green alga Boodlea coacta [11]. Other complex N-glycans decorating the monomer weakly or not 
recognized by BCA, are colored cyan. 

5. Interaction of Other Seaweed Lectins with Different Specificities with the S-Glycoprotein from 
SARS-CoV-2 

Due to the diversity of the glycans decorating the S-glycoprotein of SARS-CoV-2, namely 
(sialylated) N-glycans of the complex type and O-glycans, seaweed lectins with different specificities 
should bind to the spikes covering the viral envelope. In this respect, seaweed lectins that specifically 
recognize GalNAc and the T/Tn antigens (O-glycans) and seaweed lectins specific for terminal 
Neu5Ac residues, could interact with the S-glycoprotein of SARS-CoV-2 (Table 2). Looking at the 
localization of both types of glycans at the surface of the S-glycoprotein, shows that O-glycans are 
attached to the rather buried T323 and S325 residues of S-glycoprotein, that most probably prevents 
their recognition by GalNAc/T/Tn-specific seaweed lectins [25]. However, another more exposed O-
glycosylation site has been identified at T678 [26] (Figure 15). Thus, with the exception of O-glycan 
site T678 that could be recognized by GalNAc/T-Tn-specific seaweed lectins, only Neu5Ac-specific 
seaweed lectins could readily interact with the sialylated complex type N-glycans well exposed at the 
surface of the S-glycoprotein, even though most of them are located at the bottom of the S-
glycoprotein and thus, are less accessible to the lectins. 

Figure 14. Glycosylation of trimeric S-glycoprotein of SARS-CoV-2. (A) Front view of the trimeric
S-glycoprotein of SARS-CoV-2 showing the high-mannose type glycans (colored yellow) specifically
recognized by Man-specific lectins KAA-2 and HRL-40 from the red algae Kappaphycus alvarezii [10,13]
and Halimeda renschii [14], and OAA from the blue-green alga (cyanobacterium) Oscillatoria agarddhii [16].
Other complex N-glycans decorating the monomer weakly or not recognized by the lectins, are colored
cyan. (B) Front view of the trimeric S-glycoprotein of SARS-CoV-2 showing the high-mannose type
glycans (colored yellow) specifically recognized by the Manα1,2-specific lectin BCA from the green
alga Boodlea coacta [11]. Other complex N-glycans decorating the monomer weakly or not recognized
by BCA, are colored cyan.

5. Interaction of Other Seaweed Lectins with Different Specificities with the S-Glycoprotein
from SARS-CoV-2

Due to the diversity of the glycans decorating the S-glycoprotein of SARS-CoV-2, namely
(sialylated) N-glycans of the complex type and O-glycans, seaweed lectins with different specificities
should bind to the spikes covering the viral envelope. In this respect, seaweed lectins that specifically
recognize GalNAc and the T/Tn antigens (O-glycans) and seaweed lectins specific for terminal Neu5Ac
residues, could interact with the S-glycoprotein of SARS-CoV-2 (Table 2). Looking at the localization of
both types of glycans at the surface of the S-glycoprotein, shows that O-glycans are attached to the
rather buried T323 and S325 residues of S-glycoprotein, that most probably prevents their recognition
by GalNAc/T/Tn-specific seaweed lectins [25]. However, another more exposed O-glycosylation site
has been identified at T678 [26] (Figure 15). Thus, with the exception of O-glycan site T678 that
could be recognized by GalNAc/T-Tn-specific seaweed lectins, only Neu5Ac-specific seaweed lectins
could readily interact with the sialylated complex type N-glycans well exposed at the surface of the
S-glycoprotein, even though most of them are located at the bottom of the S-glycoprotein and thus,
are less accessible to the lectins.



Mar. Drugs 2020, 18, 543 17 of 25Mar. Drugs 2020, 18, x 17 of 25 

 

 
Figure 15. Ribbon diagram of the monomeric S-glycoprotein of SARS-CoV-2 showing the buried 
character of the O-glycosylated T323 and S325 amino acid residues (red dashed circle). High-mannose 
type glycans recognized by Man-specific seaweed lectins are colored yellow. Another exposed O-
glycosylated T678 occurs in the S-glycoprotein (red arrow). Other often sialylated complex type N-
glycans, well exposed at the surface of the S-glycoprotein monomer, are colored blue. 

6. Bioinformatics 

The atomic coordinates of griffithsin GRFT from Griffithsia sp., including the unliganded lectin 
(PDB code 2GTY) [87], and lectin complexed to mannose (PDB code 2GUD) [87], 6α-mannobiose 
(PDB code 2HYQ) [88] and high-mannose branched carbohydrate (PDB code 3LL2) [89], were taken 
from the Protein Data Bank PDB (http://www.rcsb.org/pdb/) [90]. Similarly, the atomic coordinates 
of the unliganded and complexed to α3, α6-mannopentaose forms of the cyanobacterial Man-specific 
lectin BOA from Burkholderia oklahomensis (PDB code 4GU8 and 4GK9) [91] and the unliganded form 
of OAA from Oscillatoria agardhii (PDB code 3OBL) [92] were also obtained from the PDB. 

Homology modeling of other lectins including the -prism II folded GCL from Grateloupia 
chiangii [15], the β-barrel folded KAA-2 from Kappaphycus alvarezii [10], and the β-sandwich folded 
NgL from Porphyra umbilicalis [44], was performed with the YASARA Structure program [93] using 
various protein templates from the PDB, depending on the overall structural scaffold to which they 
belong. PROCHECK [94], ANOLEA [95], and the calculated QMEAN scores [96,97], were used to 
assess the geometric and thermodynamic qualities of the three-dimensional models. 

Docking of simple sugars and oligosaccharides was performed with YASARA and SwissDock 
[98]. Hydrophilic/hydrophobic regions at the surface of the lectins were calculated and displayed 
with Chimera [99]. Molecular cartoons were drawn with Chimera [99] and YASARA [93]. 

7. Discussion 

The S-glycoprotein on the surface of the SARS-CoV-2 virus is a highly glycosylated protein. Due 
to the exposed localization of high-mannose glycans at the top of the S-glycoprotein trimers many of 
these glycans are readily accessible to carbohydrate-binding proteins. Seaweed lectins represent well 
adapted glycan probes for the specific recognition of this type of viruses. In this respect, the Man-
specific lectin griffithsin (GRFT) of the red alga Griffithsia sp., readily recognized the high mannose 
N-glycans located on the very similarly glycosylated SARS-CoV S-glyco- protein [9,63]. More 
generally, in agreement with their capacity to specifically recognize high- mannose glycoprotein 

Figure 15. Ribbon diagram of the monomeric S-glycoprotein of SARS-CoV-2 showing the buried
character of the O-glycosylated T323 and S325 amino acid residues (red dashed circle). High-mannose
type glycans recognized by Man-specific seaweed lectins are colored yellow. Another exposed
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N-glycans, well exposed at the surface of the S-glycoprotein monomer, are colored blue.

6. Bioinformatics

The atomic coordinates of griffithsin GRFT from Griffithsia sp., including the unliganded lectin
(PDB code 2GTY) [87], and lectin complexed to mannose (PDB code 2GUD) [87], 6α-mannobiose (PDB
code 2HYQ) [88] and high-mannose branched carbohydrate (PDB code 3LL2) [89], were taken from
the Protein Data Bank PDB (http://www.rcsb.org/pdb/) [90]. Similarly, the atomic coordinates of the
unliganded and complexed to α3, α6-mannopentaose forms of the cyanobacterial Man-specific lectin
BOA from Burkholderia oklahomensis (PDB code 4GU8 and 4GK9) [91] and the unliganded form of OAA
from Oscillatoria agardhii (PDB code 3OBL) [92] were also obtained from the PDB.

Homology modeling of other lectins including the β-prism II folded GCL from Grateloupia
chiangii [15], the β-barrel folded KAA-2 from Kappaphycus alvarezii [10], and the β-sandwich folded
NgL from Porphyra umbilicalis [44], was performed with the YASARA Structure program [93] using
various protein templates from the PDB, depending on the overall structural scaffold to which they
belong. PROCHECK [94], ANOLEA [95], and the calculated QMEAN scores [96,97], were used to
assess the geometric and thermodynamic qualities of the three-dimensional models.

Docking of simple sugars and oligosaccharides was performed with YASARA and SwissDock [98].
Hydrophilic/hydrophobic regions at the surface of the lectins were calculated and displayed with
Chimera [99]. Molecular cartoons were drawn with Chimera [99] and YASARA [93].

7. Discussion

The S-glycoprotein on the surface of the SARS-CoV-2 virus is a highly glycosylated protein. Due to
the exposed localization of high-mannose glycans at the top of the S-glycoprotein trimers many of these
glycans are readily accessible to carbohydrate-binding proteins. Seaweed lectins represent well adapted
glycan probes for the specific recognition of this type of viruses. In this respect, the Man-specific lectin
griffithsin (GRFT) of the red alga Griffithsia sp., readily recognized the high mannose N-glycans located
on the very similarly glycosylated SARS-CoV S-glyco- protein [9,63]. More generally, in agreement with
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their capacity to specifically recognize high- mannose glycoprotein targets exposed at the surface of
enveloped viruses, e.g., hemagglutinin of influenza virus, gp120 of HIV-1 or the spike S-glycoprotein of
SARS-CoV and SARS-CoV-2, Man-specific seaweed lectins can interfere with the mechanisms allowing
the infectious viruses to recognize the corresponding receptors and trigger the fusion events necessary
for entering the susceptible cells. As previously reported [9], GRFT was shown to inhibit both the
replication and cytopathy of the closely-related coronavirus SARS-CoV. Accordingly, other Man-specific
seaweed lectins could act as blockers, at least in vitro, of the replication for the SARS-CoV-2 virus,
and display antiviral properties as already shown for cyanobacterial Man-specific lectins towards a
broad range of enveloped viruses including influenza virus, Ebola virus, herpes virus, hepatitis C virus
and HIV-1.

Moreover, the binding of seaweed lectins to SARS-CoV-2 virus could be applied in biomedical
research, e.g., using Man-specific seaweed lectins (1) for detection purposes of the virus on various
contaminated surfaces such as doorknobs or furniture elements, (2) as an efficient barrier to avoid the
shedding into the environment of contaminating virions and, (3) as control reagents for the occurrence
of viral particles in biotic/abiotic samples. Depending on the case, whether properly labelled,
e.g., fluorochrome-labelled, Man-specific seaweed lectins could be used directly as glycan probes
or unlabelled lectins could be further detected using properly labelled, e.g., fluorochrome-labelled,
specific anti-lectin antibodies.

The antiviral properties of Man-specific seaweed lectins and the application of these lectins as
blocking agents for the replication of enveloped viruses still requires more investigation. So far,
the antiviral properties of Man-specific seaweed lectins, have been demonstrated essentially in in vitro
conditions (Table 5). Indeed, only few studies have shown to block the replication of SARS-CoV and
other coronaviruses in vivo [100]. O’Keefe et al. (2010) reported on the use of GRFT to prevent the
SARS-CoV infection both in vitro and in vivo, and showed that GRFT treatment reduces mortality
and morbidity in a lethal infection mouse model [100]. Millet et al., (2016), further pointed out the
inhibitory effect of GRFT towards Middle East respiratory syndrome coronavirus MERS-CoV [101]
Time-course experiments revealed that GRFT inhibits MERS-CoV infection at the early step when
the virus binds the host cells. Next to seaweed lectins, closely related plant lectins with different
carbohydrate-binding specificities have been investigated in vitro for their antiviral activity against
SARS-CoV and another coronavirus FIPV, responsible for feline infectious peritonitis [102]. Although
plant lectins specific for Gal, GalNAc and GlcNAc, exhibited some antiviral activity, a much higher
antiviral activity towards both coronaviruses was reported especially for Man-specific lectins belonging
to the family of GNA-related lectins, such as GNA from Galanthus nivalis (snowdrop), NPA from
Narcissus pseudonarcissus (daffodil) and APA from Allium porrum (leek). In addition, two targets for these
Man-specific lectins in the replication cycle of SARS-CoV have been identified, one in the early phase of
the replication cycle during viral attachment, and a second target at the end of the infection cycle [102].
More recently, the lectin FRIL from hyacinth bean (Lablab purpureus), which specifically recognizes
N-glycans of the complex type occurring on the surface of coronavirus envelope, was demonstrated to
neutralize SARS-CoV-2 and prevent both viral protein production and cytopathic effects in host (mice)
cells [90].

At the molecular level, the mechanism of action for Man-specific lectins is primarily referred
to a masking effect of the molecular surface of S-glycoprotein RBDs due to their interaction with
the Man-containing glycans, thus hampering the proper attachment of the virions to the host cell
receptors and preventing the viral replication. However, the identification of a second target for HHA,
the Man-specific lectin from Hippeastrum hybridum, at the end of the SARS-CoV infection cycle [102],
suggests that Man-specific lectins interfere not only with the virus entry in the host cells but also
with the virus release from the host cells. The spike S-glycoprotein most probably is the main glycan
target for Man-specific lectins but the specific recognition of other Man-containing targets cannot be
excluded. In this respect, the heavily glycosylated ACE2 receptor could also serve as relevant target
for Man-specific lectins.
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Although lectins remain attractive anti-coronavirus candidates, at present it remains difficult
to correctly assess the actual role of these natural compounds in the therapeutic armamentarium,
to fight against SARS-CoV-2, the coronavirus responsible for the highly transmissible infectious
COVID-19 [103–106].
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Abbreviations

AOL1 Aglaothamnion oosumiense lectin
APA Allium porrum agglutinin
ASL Agardhiella subulata lectin
BCA Boodlea coacta lectin
BOA Burkholderia oklahomensis agglutinin
BPL2 Lectin 2 of Bryopsis plumosa
BU14 Nannochloropsis gaditana lectin
CBS Carbohydrate-binding site
CFA Carpopeltis flabellata agglutinin
CFL Codium fragile lectin
CV-N Cyanovirin-N (Nostoc ellipsosporum)
EEA Eucheuma amakusanensis lectin
ECA Eucheuma cottonii lectin
EDA Eucheuma denticulatum lectin
EPL Enteromorpha prolifera lectin
ESA Eucheuma serra lectin

FRIL
Flt3 receptor interacting lectin from hyacinth bean
(Lablab purpureus)

Fuc Fucose
Gal Galactose
GalNAc N-acetylgalactosamine
GBPL Gracilaria bursa-pastoris lectin
GCL Grateloupia chiangii lectin
GlcNAc N-acetylglucosamine
GNA Galanthus nivalis (snowdrop) agglutinin
GPT Glycoprotein trimer
GRFT Griffithsin
GTL Gracilaria tikvahiae lectin
HFA Hydropuntia (Gracilaria) fisheri agglutinin
HIV-1 Human Immunodeficiency Virus
HRL40 Halimeda renschii lectin
KAA-2 Lectin 2 of Kappaphycus alvarezii
KSA-2 Lectin 2 of Kappaphycus striatum
Man Mannose
MEL Meristiella echinocarpa lectin
MPL Meristotheca papulosa agglutinin
MVL Microcystis viridis lectin
MVN Microvirin (Microcystis aeruginisa)
Neu5Ac N-acetylneuraminic acid (sialic acid)
OAA Oscillatoria agardhii lectin
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OtL Ostreococcus tauri lectin
PDB Protein Data Bank
PPL Palmaria palmata lectin
PUL Porphyra umbilicalis lectin
RBD Receptor binding domain
SARS-CoV-2 Severe acute respiratory syndrome-coronavirus
Sia Sialic acid
ScL Solieria chordalis lectin
SfL Solieria filiformis lectin
SrL Solieria robusta lectin
SVN Scytovirin (Scytonema varium)
T/Tn T and Tn antigens (Thomsen Friedenreich antigens)
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