Advanced search
1 file | 2.46 MB Add to list

Influence of power take-off modelling on the far-field effects of wave energy converter farms

Gael Verao Fernandez (UGent) , Vicky Stratigaki (UGent) , Nicolas Quartier (UGent) and Peter Troch (UGent)
(2021) WATER. 13(4).
Author
Organization
Abstract
The study of the potential impact of wave energy converter (WEC) farms on the surrounding wave field at long distances from the WEC farm location (also know as “far field” effects) has been a topic of great interest in the past decade. Typically, “far-field” effects have been studied using phase average or phase resolving numerical models using a parametrization of the WEC power absorption using wave transmission coefficients. Most recent studies have focused on using coupled models between a wave-structure interaction solver and a wave-propagation model, which offer a more complex and accurate representation of the WEC hydrodynamics and PTO behaviour. The difference in the results between the two aforementioned approaches has not been studied yet, nor how different ways of modelling the PTO system can affect wave propagation in the lee of the WEC farm. The Coastal Engineering Research Group of Ghent University has developed both a parameterized model using the sponge layer technique in the mild slope wave propagation model MILDwave and a coupled model MILDwave-NEMOH (NEMOH is a boundary element method-based wave-structure interaction solver), for studying the “far-field” effects of WEC farms. The objective of the present study is to perform a comparison between both numerical approaches in terms of performance for obtaining the “far-field” effects of two WEC farms. Results are given for a series of regular wave conditions, demonstrating a better accuracy of the MILDwave-NEMOH coupled model in obtaining the wave disturbance coefficient (Kd) values around the considered WEC farms. Subsequently, the analysis is extended to study the influence of the PTO system modelling technique on the “far-field” effects by considering: (i) a linear optimal, (ii) a linear sub-optimal and (iii) a non-linear hydraulic PTO system. It is shown that modelling a linear optimal PTO system can lead to an unrealistic overestimation of the WEC motions than can heavily affect the wave height at a large distance in the lee of the WEC farm. On the contrary, modelling of a sub-optimal PTO system and of a hydraulic PTO system leads to a similar, yet reduced impact on the “far-field” effects on wave height. The comparison of the PTO systems’ modelling technique shows that when using coupled models, it is necessary to carefully model the WEC hydrodynamics and PTO behaviour as they can introduce substantial inaccuracies into the WECs’ motions and the WEC farm “far-field” effects.
Keywords
Geography, Planning and Development, Aquatic Science, Biochemistry, Water Science and Technology, numerical coupling, MILDwave, NEMOH, WEC farm impacts, WEC farm interactions, PTO system, linear PTO system, hydraulic PTO system, WEC-sim

Downloads

  • PUB301.pdf
    • full text (Published version)
    • |
    • open access
    • |
    • PDF
    • |
    • 2.46 MB

Citation

Please use this url to cite or link to this publication:

MLA
Verao Fernandez, Gael, et al. “Influence of Power Take-off Modelling on the Far-Field Effects of Wave Energy Converter Farms.” WATER, vol. 13, no. 4, 2021, doi:10.3390/w13040429.
APA
Verao Fernandez, G., Stratigaki, V., Quartier, N., & Troch, P. (2021). Influence of power take-off modelling on the far-field effects of wave energy converter farms. WATER, 13(4). https://doi.org/10.3390/w13040429
Chicago author-date
Verao Fernandez, Gael, Vicky Stratigaki, Nicolas Quartier, and Peter Troch. 2021. “Influence of Power Take-off Modelling on the Far-Field Effects of Wave Energy Converter Farms.” WATER 13 (4). https://doi.org/10.3390/w13040429.
Chicago author-date (all authors)
Verao Fernandez, Gael, Vicky Stratigaki, Nicolas Quartier, and Peter Troch. 2021. “Influence of Power Take-off Modelling on the Far-Field Effects of Wave Energy Converter Farms.” WATER 13 (4). doi:10.3390/w13040429.
Vancouver
1.
Verao Fernandez G, Stratigaki V, Quartier N, Troch P. Influence of power take-off modelling on the far-field effects of wave energy converter farms. WATER. 2021;13(4).
IEEE
[1]
G. Verao Fernandez, V. Stratigaki, N. Quartier, and P. Troch, “Influence of power take-off modelling on the far-field effects of wave energy converter farms,” WATER, vol. 13, no. 4, 2021.
@article{8695209,
  abstract     = {{The study of the potential impact of wave energy converter (WEC) farms on the surrounding wave field at long distances from the WEC farm location (also know as “far field” effects) has been a topic of great interest in the past decade. Typically, “far-field” effects have been studied using phase average or phase resolving numerical models using a parametrization of the WEC power absorption using wave transmission coefficients. Most recent studies have focused on using coupled models between a wave-structure interaction solver and a wave-propagation model, which offer a more complex and accurate representation of the WEC hydrodynamics and PTO behaviour. The difference in the results between the two aforementioned approaches has not been studied yet, nor how different ways of modelling the PTO system can affect wave propagation in the lee of the WEC farm. The Coastal Engineering Research Group of Ghent University has developed both a parameterized model using the sponge layer technique in the mild slope wave propagation model MILDwave and a coupled model MILDwave-NEMOH (NEMOH is a boundary element method-based wave-structure interaction solver), for studying the “far-field” effects of WEC farms. The objective of the present study is to perform a comparison between both numerical approaches in terms of performance for obtaining the “far-field” effects of two WEC farms. Results are given for a series of regular wave conditions, demonstrating a better accuracy of the MILDwave-NEMOH coupled model in obtaining the wave disturbance coefficient (Kd) values around the considered WEC farms. Subsequently, the analysis is extended to study the influence of the PTO system modelling technique on the “far-field” effects by considering: (i) a linear optimal, (ii) a linear sub-optimal and (iii) a non-linear hydraulic PTO system. It is shown that modelling a linear optimal PTO system can lead to an unrealistic overestimation of the WEC motions than can heavily affect the wave height at a large distance in the lee of the WEC farm. On the contrary, modelling of a sub-optimal PTO system and of a hydraulic PTO system leads to a similar, yet reduced impact on the “far-field” effects on wave height. The comparison of the PTO systems’ modelling technique shows that when using coupled models, it is necessary to carefully model the WEC hydrodynamics and PTO behaviour as they can introduce substantial inaccuracies into the WECs’ motions and the WEC farm “far-field” effects.}},
  articleno    = {{429}},
  author       = {{Verao Fernandez, Gael and Stratigaki, Vicky and Quartier, Nicolas and Troch, Peter}},
  issn         = {{2073-4441}},
  journal      = {{WATER}},
  keywords     = {{Geography,Planning and Development,Aquatic Science,Biochemistry,Water Science and Technology,numerical coupling,MILDwave,NEMOH,WEC farm impacts,WEC farm interactions,PTO system,linear PTO system,hydraulic PTO system,WEC-sim}},
  language     = {{eng}},
  number       = {{4}},
  pages        = {{20}},
  title        = {{Influence of power take-off modelling on the far-field effects of wave energy converter farms}},
  url          = {{http://dx.doi.org/10.3390/w13040429}},
  volume       = {{13}},
  year         = {{2021}},
}

Altmetric
View in Altmetric
Web of Science
Times cited: