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THE FOURIER TRANSFORM OF THICK DISTRIBUTIONS

RICARDO ESTRADA, JASSON VINDAS, AND YUNYUN YANG

Abstract. We first construct a space W (Rn
c
) whose elements are test functions defined

in Rn
c
= Rn ∪ {∞} , the one point compactification of Rn, that have a thick expansion

at infinity of special logarithmic type, and its dual space W ′ (Rn
c
) , the space of sl−thick

distributions. We show that there is a canonical projection of W ′ (Rn
c
) onto S ′ (Rn) . We

study several sl−thick distributions and consider operations in W ′ (Rn
c
) .

We define and study the Fourier transform of thick test functions of S∗ (R
n) and thick

tempered distributions of S ′
∗ (R

n) . We construct isomorphisms

F∗ : S ′
∗ (R

n) −→ W ′ (Rn
c
) ,

F∗ : W ′ (Rn
c
) −→ S ′

∗ (R
n) ,

that extend the Fourier transform of tempered distributions, namely, ΠF∗ = FΠ and
ΠF∗ = FΠ, where Π are the canonical projections of S ′

∗ (R
n) or W ′ (Rn

c
) onto S ′ (Rn) .

We determine the Fourier transform of several finite part regularizations and of general
thick delta functions.

1. Introduction

The aim of this article is to construct the Fourier transform of thick tempered distri-
butions in several variables. Thick distributions were introduced in one variable in [12]
and in several variables in [36, 37, 38, 39]. Thick distributions have found applications
in understanding problems in several areas, such as quantum field theory [5], engineering
[26, 34], the understanding of singularities in mathematical physics as considered in [4]
or in [6], or in obtaining formulas for the regularization of multipoles [8, 25] that play a
fundamental role in the ideas of the late professor Stora on convergent Feyman amplitudes
[24, 33]. They also appear in other problems, as generalizations of Frahm formulas [16]
involving discontinuous test functions [17, 37]. Thick distributions are the distributional
theory corresponding to the theory given by Blanchet and Faye [2], whose aim is the study
of the dynamics of point particles in high post-Newtonian approximations of general rel-
ativity [3] and who develop such a scheme in the context of finite parts, pseudo-functions
and Hadamard regularization, as studied by Sellier [30, 31]. In this article we consider
spaces with one thick point, located at the origin, but it is possible to consider spaces
with a finite number of such singular points.

The Fourier transform of one-dimensional thick distributions with one special point at
the origin was given in [12]. The transform of thick distributions is shown to belong to a
space W ′ of distributions on the space Rc = R∪{∞} , the one point compactification of
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the real line. Employing this thick Fourier transform it is possible to understand several
puzzles, particularly those found in [5].

The theory of thick distributions in higher dimensions [36] is quite different from that
in one dimension, because the topology of Rn \{0} , n ≥ 2, is quite unlike that of R\{0} ,
since the latter space is disconnected, consisting of two unrelated rays, while the former
is connected, all directions of approach to the point 0 are related, and such behavior
imposes strong restrictions on the singularities. Therefore the thick Fourier transform in
several variables cannot be constructed as a straightforward extension of the transform
in one variable; such construction in several variables, the Fourier transform in S ′

∗ (R
n) ,

is the main aim of this article.
In Section 2 we review some useful results from the theory of thick distributions and then

in Section 3 we collect the Fourier transform of several tempered distributions in order
to find the asymptotic expansion of the Fourier transform of finite part regularizations
of thick test functions. Taking into account the asymptotic behavior of such Fourier
transforms we construct a space W (Rn

c ) whose elements are test functions defined in
Rn

c = Rn ∪ {∞} , the one point compactification of Rn, that have a thick expansion
at infinity of special logarithmic type. We are thus able in Section 4 to define Fourier
transform operators F∗,t and F∗

t , topological isomorphism of S∗ (R
n) to W (Rn

c ) and from
W (Rn

c ) to S∗ (R
n) , respectively; the subscript ‘t’ is used because these are the transforms

of test functions.
We study the dual space W ′ (Rn

c ) , the space of sl−thick distributions in Section 5. We
consider the basic operations in W ′ (Rn

c ) , such as linear changes of variables, derivatives,
and multiplication by polynomials. We study several sl−thick distributions, particularly
the finite part regularization at infinity of power functions and thick delta functions at
infinity. We are therefore able in Section 6 to define and study the Fourier transform of
thick test tempered distributions of S ′

∗ (R
n) . We construct isomorphisms

F∗ : S
′
∗ (R

n) −→ W ′ (Rn
c ) ,

F∗ : W ′ (Rn
c ) −→ S ′

∗ (R
n) ,

that extend the Fourier transform of tempered distributions, namely,

ΠW ′,S′F∗ = FΠS′

∗
,S′ , ΠS′

∗
,S′F∗ = FΠW ′,S′ ,

where ΠW ′,S′ and ΠS′

∗
,S′ are the canonical projections of S ′

∗ (R
n) or W ′ (Rn

c ) onto S ′ (Rn) .
We give the transformation rules for the Fourier transform of derivatives, multiplications,
and linear changes of variables, as well as the Fourier inversion formulas. We determine
the Fourier transform of several finite part regularizations and of general thick delta
functions.

Since we need to employ many spaces, operators, and distributions, following advise of
one referee, we also included an appendix that lists the many notations used.

2. Preliminaries

We shall use basic facts about distributions and general functional analysis as can be
found in the textbooks [14, 21, 22, 29, 32]. However, in this section we recall several
recently introduced or not so well known ideas that will be needed in our analysis. We
will also fix the notation employed; particularly, we use the Fourier transform

F {f (x) ;u} =

∫

Rn

f (x) eix·u dx .
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We will write

(2.1) cm,n =
2Γ (m+ 1/2)π(n−1)/2

Γ (m+ n/2)
=

∫

S

ω2m
j dσ (ω) , C = c0,n .

Notice that c0,n = C = 2πn/2/Γ (n/2) , is the surface area of the unit sphere S of Rn,
denoted as Cn−1 in [36].

2.1. Spaces of thick test functions and spaces of thick distributions. The con-
struction of the space of thick test functions D∗,a (R

n) and its dual, D′
∗,a (R

n) , the space
of thick distributions is as follows [36]. Let a be a fixed point of Rn. Let D∗,a (R

n) denote
the vector space of all smooth functions φ defined in Rn \ {a} , with support of the form
K \ {a} , where K is compact in Rn, that admit a strong asymptotic expansion of the
form

(2.2) φ (a+ x) = φ (a+ rw) ∼

∞∑

j=m

aj (w) rj, as x → 0 ,

where m ∈ Z.We denote D∗,0 (R
n) as D∗ (R

n) . The space D∗,a (R
n) has a natural topology

that makes it a complete locally convex topological vector space [36].

Definition 2.1. The space of distributions on Rn with a thick point at x = a is the dual
space of D∗,a (R

n) . We denote it by D
′

∗,a (R
n) , or just as D

′

∗ (R
n) when a = 0.

In general, we shall denote by Π canonical projections, say from E to F, if they exist
but as ΠE,F when we would like to emphasize the spaces. In particular we will need
the projection operator Π = ΠD′

∗,a(R
n),D′(Rn) : D

′
∗,a (R

n) → D′ (Rn) , dual of the inclusion

i : D (Rn) → D∗,a (R
n) . Observe that D (Rn) , the space of standard test functions, is a

closed subspace of D∗,a (R
n) .

Typical elements of D′
∗,a (R

n) are the finite part regularizations considered in Definition

2.4 and the thick delta functions of order q, g (w) δ
[q]
∗ (x− a) for g ∈ D′ (S) given as

(2.3)
〈
g (w) δ[q]∗ (x− a) , φ

〉
=

1

C
〈g (w) , aq (w)〉 ,

if φ ∈ D∗,a (R
n) has the development (2.2). When g = 1 they are called plain thick delta

functions.
We refer to [36] for the definition of the basic operations on thick distributions, like

derivatives, changes of variables, and multiplication by smooth functions. In general ordi-
nary derivatives are denoted as ∇i, distributional derivatives are denoted as ∇i, following
[15], while thick distributional derivatives are denoted as ∇∗

i .

2.1.1. Other spaces of thick distributions. Let A (Rn) be a space of test functions in Rn

and let A′ (Rn) be the corresponding space of distributions1. Our aim in this section is
to construct the spaces of thick test functions and distributions, A∗,a (R

n) and A′
∗,a (R

n) .
Our construction will apply in multiple cases. For instance, A (Rn) can be E (Rn) , the
space of all smooth functions and thus A′ (Rn) becomes E ′ (Rn) , the space of distributions
with compact support; or A (Rn) can be S (Rn) , so that A′ (Rn) becomes the space of
tempered distributions S ′ (Rn) . The case of K (Rn) and K′ (Rn) played a central role in
the asymptotic analysis of thick distributions [39].

1In the sense of Zemanian [40]; we assume that D (Rn) ⊂ A (Rn) ⊂ E (Rn) densely and continuously
and that differentiation is a continuous map of A (Rn) .
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Definition 2.2. Let A (Rn) be a space of test functions in Rn. The space A∗,a (R
n)

consists of those functions φ defined in Rn \ {a} that can be written as φ1 + φ2, where
φ1 ∈ D∗,a (R

n) and where φ2 ∈ A (Rn) . The topology of A∗,a (R
n) is the finest topology

induced by the map A : D∗,a (R
n)×A (Rn) → A∗,a (R

n) , A (φ1, φ2) = φ1 + φ2. The space
of thick distributions A′

∗,a (R
n) is the corresponding dual space.

The topology of A∗,a (R
n) can actually be described in several ways. Suppose for

instance that ρ ∈ D (Rn) is a test function that satisfies that ρ (x) = 1 in a neighborhood
of x = a. If ‖ ‖1 is a continuous seminorm of D∗,a (R

n) while ‖ ‖2 is a continuous
seminorm of A (Rn) , then ‖φ‖ = max {‖ρφ‖1 , ‖(1− ρ)φ‖2} is a continuous seminorm of
A∗,a (R

n) and the collection of seminorms so constructed form a basis for the continuous
seminorms of A∗,a (R

n) . The elements of A∗,a (R
n) can be described as those smooth

functions defined in Rn \ {a} that show the behavior of thick test functions near x = a

while at infinity show the behavior of the elements of A (Rn) . Similar considerations apply
to the dual spaces.

Naturally one may consider spaces of thick test functions and thick distributions on
smooth manifolds. In particular, considering the one point compactification R

n
c = R

n ∪
{∞} , that can be identified with a sphere in dimension n + 1, we obtain D∗,∞ (Rn

c ) ,
the space of smooth functions in Rn with a thick point at ∞, namely, smooth functions
φ such that ψ (x) = φ

(
x/ |x|2

)
has a thick point at the origin. We can also consider

another simple modification of thick test functions, namely, by considering functions whose
expansion at the thick point is given not in terms of the asymptotic sequence {rj} but in
terms of another asymptotic sequence. The topology of such spaces can be constructed in
a completely analogous fashion. In this article we will need to consider test functions with
expansions in terms of the sequence {rj ln r, rj} , the space Wpre (R

n) of the Definition 4.1.

2.2. Finite parts. Let us now recall the notion of the finite part of a limit [14, Section
2.4]. Let X be a topological space, and let x0 ∈ X. Suppose F, the basic functions, is a
family of strictly positive functions defined for x ∈ V \{x0} , where V is a neighborhood of
x0, such that all of them tend to infinity at x0 and such that, given two different elements
f1, f2 ∈ F, then limx→x0

f1 (x) /f2 (x) is either 0 or ∞.

Definition 2.3. Let G (x) be a function defined for x ∈ V \{x0} with limx→x0
G (x) = ∞.

The finite part of the limit of G (x) as x→ x0 with respect to F exists and equals A if we
can write2 G (x) = G1 (x) + G2 (x) , where G1, the infinite part, is a linear combination
of the basic functions and where G2, the finite part, has the property that the limit
A = limx→x0

G2 (x) exists. We then employ the notation F.p.F limx→x0
G (ε) = A . The

Hadamard finite part limit corresponds to the case when x0 = 0 and F is the family of
functions x−α |ln x|β , where α > 0 and β ≥ 0 or where α = 0 and β > 0, or when x0 = ∞

and F is the family of functions xα |ln x|β , where α > 0 and β ≥ 0 or where α = 0 and
β > 0. We then use the simpler notations F.p. limx→0+ G (x) or F.p. limx→∞G (x) .

Consider now a function f defined in Rn that may or may not be integrable over the
whole space but which is integrable in the region |x| > ε for any ε > 0. Then the radial

2Such a decomposition, if it exists, is unique since any finite number of elements of F has to be linearly
independent.
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finite part integral is defined as

F.p.

∫

Rn

f (x) dx = F.p. lim
ε→0+

∫

|x|>ε

f (x) dx ,

if the finite part limit exists. The notion of finite part integrals and its name were
introduced by Hadamard [19], who used them in his study of fundamental solutions of
partial differential equations.

Definition 2.4. If g is a locally integrable function in Rn \ {0} such that the radial finite
part integral of gφ exists for each φ belonging to a space of thick test functions A∗ (R

n) ,
then we can define a thick3 distribution Pf {g (z) ;x} = Pf (g) ∈ A′

∗ (R
n) as

〈Pf {g (z) ;x} , φ (x)〉 = 〈Pf (g) , φ〉 = F.p.

∫

Rn

g (x)φ (x) dx .

The notation Pf (f (x)) was introduced by Schwartz [29, Chp. 2, §2], who called it a
pseudofunction, a term that is still in use.

A particularly important case of finite part limits is the finite part of a meromorphic
f function at a pole ω, which is exactly the value of the regular part of f, say g, at the
pole: F.p. limλ→ω f (λ) = g (ω) .

Example 2.5. Let x0 > 0 and let ϕ be a continuous function in [x0,∞), that satisfies the
asymptotic relation ϕ (x) = Axβ +Bxβ ln x+ o (x−∞) as x→ ∞. The finite part integral
F (λ) = F.p.

∫∞

x0
xλϕ (x) dx exists for all λ ∈ C, and F will be a meromorphic function,

with a double pole at λ = −β − 1, with singular part B (λ+ β + 1)−2 −A (λ+ β + 1)−1 ,
and the finite part is

(2.4) F.p. lim
λ→−β−1

F (λ) = F.p.

∫ ∞

x0

x−β−1ϕ (x) dx .

Notice that we have two very different finite part limits in (2.4) and in this case they give
the same result; in fact, that is usually true with radial finite part integrals [39] but not
otherwise [15, 35].

3. Some Fourier transforms

We need the Fourier transform of several distributions in Rn for later use, especially
transforms of the type F

{
Pf
(
r−N

)
a (w) ;u

}
where x = rw are polar coordinates, and

where a is a smooth function defined on the unit sphere S. The formulas for such trans-
forms are available [28] but we preferred to present a self consistent approach to their
derivation since these ideas will be useful when considering the Fourier transform of thick
distributions.

We start with the case when a = 1. In this case it is well known that

(3.1) F
{
rλ;u

}
=
πn/22λ+nΓ

(
λ+n
2

)
s−λ−n

Γ
(
−λ

2

) ,

whenever λ 6= −n,−n− 2,−n− 4, . . . [14, 21, 22, 29]. Here u = sv are polar coordinates.
Observe that F

{
rλ;u

}
is in fact analytic at λ = 0, 2, 4, . . . , so that the right side can be

3The same notation is employed for standard distributions.
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computed as a limit –employing (3.2) –, namely,

F
{
r2q;u

}
= lim

λ→2q

πn/22λ+nΓ
(
λ+n
2

)
s−λ−n

Γ
(
−λ

2

) = (2π)n (−1)q ∇2qδ (u) .

This is of course the result we would obtain if we use that F {1;u} = (2π)n δ (u) and that
F {r2qf (x) ;u} = (−1)q ∇2qF {f (x) ;u} . Next, let us now find F {Pf (r−n−2m) ;u} for
m = 0, 1, 2, . . . . We have

(3.2) rλ =
cm,n∇

2mδ (x)

(2m)! (λ+ 2m+ n)
+ Pf

(
1

rn+2m

)
+O (λ+ 2m+ n) ,

as λ → − (2m+ n) , so that we obtain the finite part limit F.p. limλ→−(2m+n) r
λ =

Pf (r−n−2m) . Therefore F {Pf (r−n−2m) ;u} equals

F.p. lim
λ→−(2m+n)

F
{
rλ;u

}
= F.p. lim

λ→−(2m+n)

πn/22λ+nΓ
(
λ+n
2

)
s−λ−n

Γ
(
−λ

2

) .

This finite part limit is actually already computed in the first edition of [29]. It follows
easily from the following lemma [23, 39].

Lemma 3.1. Let k ∈ N. We have that as λ→ −k,

Γ (λ) =
(−1)k

k! (λ+ k)
+

(−1)k ψ (k + 1)

k!
+O (λ+ k) ,

where ψ (λ) = Γ′ (λ) /Γ (λ) is the digamma function so that ψ (k + 1) =
∑k

j=1 1/j − γ, γ
being Euler’s constant. If k = 0, 1, 2, . . . , and f is analytic in a neighborhood of −k,

F.p. lim
λ→−k

Γ (λ) f (λ) =
(−1)k ψ (k + 1)

k!
f (−k) +

(−1)k

k!
f ′ (−k) .

The ensuing result is therefore obtained.

Lemma 3.2. If m = 0, 1, 2, . . . then

F

{
Pf

(
1

rn+2m

)
;u

}
=

(−1)m πn/2

m!Γ
(
n
2
+m

)
(s
2

)2m {
ψ (m+ 1) + ψ

(n
2
+m

)
− 2 ln

(s
2

)}

Our next task is to find the Fourier transform of distributions of the form Pf
(
r−N

)
a (w)

when a = Yk is a spherical harmonic4 of degree k.

Lemma 3.3. If Yk ∈ Hk and λ 6= −n− k,−n− k − 2,−n− k − 4, . . .

(3.3) F
{
rλYk (w) ; sv

}
=
ikπn/22λ+nΓ

(
k+n+λ

2

)

Γ
(
k−λ
2

) s−(λ+n)
Yk (v) .

Proof. Notice that for a general k, the Fourier transform of rλYk (w) , a homogeneous
distribution of degree λ, is homogeneous of degree − (λ+ n) , so that the Funk-Hecke
formula [18, 20] as presented in [9] yields that

F
{
rλYk (w) ; sv

}
= Ck,λs

−(λ+n)
Yk (v) ,

for some constants Ck,λ that depend on k and λ but not otherwise on Yk. Thus, it suffices
to show that for each k (3.3) holds for just one spherical harmonic of degree k. We use

4We denote this as Yk ∈ Hk. For more on spherical harmonics, see [1, 27].
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induction on k. If k = 0 then (3.3) is exactly (3.1). Let us assume it true for k and let us
prove it for k + 1. Indeed, we take Yk+1 (x) = Yk (x̃) xn where x = (x̃, xn) , so that

F
{
rλYk+1 (w) ; sv

}
= −i

∂

∂un

(
ikπn/22λ−1+nΓ

(
k+n+λ−1

2

)

Γ
(
k−λ+1

2

) s1−λ−n
Yk (v)

)

=
−ik+1πn/22λ−1+nΓ

(
k+n+λ−1

2

)

Γ
(
k−λ+1

2

) ∂

∂un

(
Yk (u) s

−λ+1−k−n
)

=
ik+1πn/22λ+nΓ

(
k+1+n+λ

2

)

Γ
(
k+1−λ

2

) s−λ−n
Yk+1 (v) ,

as required. �

Since F
{
rλYk (w) ; sv

}
is analytic at λ = k+2q, q = 0, 1, 2, . . . , at this value of λ (3.3)

is the limit of the expression as λ→ k + 2q. In fact, using the product formula

Yk (u)∇
2mδ (u) =

(−1)k 2km!

(m− k)!
Yk (∇)∇2m−2kδ (u) , m ≥ k ,

from [10, Prop. 3.3], we indeed obtain

F
{
rk+2q

Yk (w) ; sv
}
= lim

λ→k+2q

ikπn/22λ+nΓ
(
k+n+λ

2

)

Γ
(
k−λ
2

)
sλ+n

Yk (v)(3.4)

=
(−i)k (−1)q (2π)n (k + q)!

k!q!
Yk (∇)∇2qδ (u) .

If we now use the Lemma 3.1 as before, we obtain the following formula.

Lemma 3.4. If Yk ∈ Hk and m = 0, 1, 2, . . . then

F

{
Pf

(
1

rn+k+2m

)
Yk (w) ; sv

}
=

(−1)m ikπn/2

m!Γ
(
n
2
+ k +m

)
(s
2

)2m+k {
ψ (1 +m) + ψ

(n
2
+ k +m

)
− 2 ln

(s
2

)}
Yk (v) .

Let now a be a smooth function on the sphere, a ∈ D (S) . Then we can write it in
terms of spherical harmonics as

a (w) =

∞∑

m=0

Ym (w) ,

where Ym = Ym {a} ∈ Hm are given as Ym (w) =
∫
S
Zm (w,v)a (v) dσ (v) ; here Zm (w,v)

is the reproducing kernel of Hm, namely [1, Thm. 5.38]

(n + 2m− 2)

[[ m/2 ]]∑

q=0

(−1)q
n (n+ 2) · · · (n+ 2m− 2q − 4)

2qq! (m− 2q)!
(w · v)m−2q .

We thus obtain the following.
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Proposition 3.5. If β 6= 0, 1, 2, . . . then

F

{
Pf

(
1

rn+β

)
a (w) ;u

}
= Pf

(
sβ
)
Kβ {a (w) ;v} ,

where Kβ {a (w) ;v} = 〈Kβ (w,v) , a (w)〉
w
,and

(3.5) Kβ (w,v) =

∞∑

m=0

κβ,mZm (w,v) , κβ,m =
imπn/22−βΓ

(
m−β
2

)

Γ
(
m+n+β

2

) .

The operator Kβ is analytic for β 6= 0, 1, 2, . . .; for β = q ∈ N we have the next formula.

Proposition 3.6. If q = 0, 1, 2, . . . then

F

{
Pf

(
1

rn+q

)
a (w) ;u

}
= sq (Kq {a (w) ;v}+ Lq {a (w) ;v} ln s) ,

where Kq {a (w) ;v} = 〈Kq (w,v) , a (w)〉
w
,

Kq (w,v) =

∞∑

m=0

κq,mZm (w,v) ,

the constants κq,m being given by (3.5) if m 6= q, q − 2, . . . and as

κq,q−2m =
iqπn/22−q

m!Γ
(
n
2
+ q −m

)
{
ψ (1 +m) + ψ

(n
2
+ q −m

)
+ 2 ln 2

}
,

for 0 ≤ m ≤ [[ q/2 ]]. On the other hand, Lq {a (w) ;v} = 〈Lq (w,v) , a (w)〉
w
,

(3.6) Lq (w,v) =

[[ q/2 ]]∑

m=0

λq,q−2mZq−2m (w,v) , λq,q−2m =
−iq2−q+1πn/2

m!Γ
(
n
2
+ q −m

) .

3.1. The operators Kβ. Notice that Kβ is the analytic continuation of an integral opera-
tor a 

∫
S
Kβ (w,v) a (w) dσ (w) , namely, if ℜe β > 0 then employing polar coordinates

we obtain

F
{
r−n−βa (w) ;u

}
= sβΓ (−β) e−iπβ/2

∫

S

a (w) (w · v + i0)β dσ (w) ,

since in dimension 1 [22] F
{
x−1−β
+ ; t

}
= Γ (−β) e−iπβ/2 (t+ i0)β if β 6= 0, 1, 2, . . . Thus,

(3.7) Kβ (w,v) = Γ (−β) e−iπβ/2 (w · v + i0)β ,

a distributional kernel for β 6= 0, 1, 2, . . . that becomes an integral operator if ℜe β > 0.
Observe that the distribution (t+ i0)β is an entire function of β. The singularity of

Kβ (w,v) at β = q ∈ N is produced by the term Γ (−β) . The formula of the Proposition
3.6 can therefore be derived by computing the finite part of the limit of Kβ (w,v) s

β as
β → q, because the Lemma 3.1 gives

F.p. lim
λ→−q

Γ (λ) aλ =
(−1)q

q!
(ψ (q + 1) + ln a) a−q.

Hence, since (w · v + i0)q = (w · v)q ,

(3.8) Kq (w,v) =
(−1)q e−iπq/2

q!

(
ψ (q + 1) + ln

(
eiπ/2

(w · v + i0)

))
(w · v)q ,
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and

(3.9) Lq (w,v) =
(−1)q e−iπq/2

q!
(w · v)q .

It also interesting to observe the form of K−m (w,v) for m = 1, 2, 3, . . . ,

K−m (w,v) = (m− 1)!im (w · v + i0)−m(3.10)

= (m− 1)!im (w · v)−m − π (−i)m+1 δ(m−1) (w · v)

= −2π (−i)m+1 δ+(m−1) (w · v) ,

where δ+(m−1) (x) is the Heisenberg delta function [14, (2.61), (2.63)].
If β 6= 0, 1, 2, . . . , the coefficients κβ,m never vanish for β 6= −n− q, q = 0, 1, 2, . . ., but

they could vanish for some m when β = −n−q, so that the operator Kβ is an isomorphism
of D (S) for β 6= −n − q, but K−n−q (D (S)) is a subspace of finite codimension of D (S) .
The Fourier inversion formula yields the inverses of the operators Kβ for β ∈ C \Z or for
β ∈ {1− n, 2− n, . . . ,−1} as

(3.11) K−1
β {A (v) ;w} =

1

(2π)n
K−n−β {A (v) ;−w} , A ∈ D (S) .

3.2. The operators Kq and Lq. It is convenient to consider a variant of the operators
Kβ in case β ∈ Z. Let us start with some notation. If q ∈ N we denote as Pq the space of
restrictions of homogeneous polynomials of degree q to S, that is Pq = Hq⊕Hq−2⊕Hq−4⊕
· · · . Let X be a space of functions or generalized functions over S, as D (S) , L2 (S) , or
D′ (S) , that equals the closure in X of the sum H0⊕H1⊕H2⊕· · · 5. Then Xq is the space

X if 1 − n ≤ q ≤ −1; if q ≥ 0, Xq is the sum
⊕̂

X |m6=q,q−2....Hm, while if q ≤ −n then
Xq = X−n−q. Notice that

Xq ⊕ P−n−q = X , q ≤ −n , Xq ⊕ Pq = X , q ≥ 0 .

We define the operators Kq : Dq −→ Dq as ΠKqι, where ι is the canonical injection
of Dq into D (S) and Π the canonical projection of D (S) onto Dq. We can also consider
the Kq as operators from D′

q to itself, by duality or employing the expansion (3.5). The
Propositions 3.5 and 3.6 immediately give the ensuing.

Proposition 3.7. The operators Kq are isomorphisms of the space Xq to itself for6 X =
D (S) or D′ (S) . Its inverses are given as

(3.12) K−1
q {A (v) ;w} =

1

(2π)n
K−n−q {A (v) ;−w} , A ∈ Xq .

Observe that for X = D (S) or D′ (S) we have Xq = Kq (X ) , for q < 0. This is not true
for q ≥ 0, but we have Xq = ΠKq (X ) where Π is the canonical projection of X onto Xq.

The operators Lq : Pq −→ Pq are defined as ΠLqι, where ι is the canonical injection of
Pq into D (S) and Π the canonical projection of D (S) onto Pq. They are isomorphisms of
the space Pq.

5Such closures will be denoted as
⊕̂

X |
∞
m=0

Hm
6The results also holds for X = L2 (S) , but we will not need this case presently.
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4. The Fourier transform of thick test functions

In this section we will construct a space W (Rn) such that it is possible to define an
operator

(4.1) F∗,t : S∗ (R
n) −→ W (Rn) ,

the Fourier transform of test functions, which has the expected properties of such a
transform.

Let us start by observing that if φ is a thick test function in Rn, then in general it is not
locally integrable at the origin, so that, in general, it does not give a unique distribution.
Therefore, we cannot imbed S∗ (R

n) into S ′ (Rn) and consequently, if φ ∈ S∗ (R
n) then in

general we cannot define F (φ) as a distribution of the space S ′ (Rn)7. On the other hand,
any φ ∈ S∗ (R

n) does have regularizations f ∈ S ′ (Rn) ; however f is not unique, since if
f0 is a regularization, then so are all distributions of the form f0+g, where supp g ⊂ {0} ,
that is, where g is a sum of derivatives of the Dirac delta function at the origin. It will
be convenient to use the notation S∗,reg (R

n) for the subspace of S ′ (Rn) whose elements
are the regularizations of thick test functions.

Our first task is then to identify those distributions of the form F (f0) where f0 is a
regularization of a thick test function φ ∈ S∗ (R

n) . It should be clear that if Φ0 = F (f0)
for one such regularization of φ, then so are all distributions of the form Φ0 + p for any
polynomial p and, conversely, if Φ is the Fourier transform of a regularization of φ then
Φ = Φ0 + p for some polynomial p. Observe now that if φ ∈ S∗ (R

n) then φ coincides
with a test function of the space S (Rn) outside any ball around the origin, while at the
origin it has a strong asymptotic expansion of the form φ (x) ∼

∑∞
m=−M am (w) rm, as

r → 0+, where am ∈ D (S). We can therefore readily obtain the properties of the Fourier
transform Φ0 = F (f0) of the pseudofunction f0 = Pf (φ) , the finite part regularization of
φ. Indeed, Φ0 is smooth in all of Rn, and our analysis of the Section 3 combined with the
techniques of [39] or of [14, Chpt. 4] yield the asymptotic expansion of Φ0 (u) as |u| → ∞
as follows: if u = sv are polar coordinates then we have the strong expansion

Φ0 (sv) ∼
∑

m≤−n

s−m−n (K−m−n {am (w) ;v}+ L−m−n {am (w) ;v} ln s)

+

∞∑

m=−n+1

s−m−nK−m−n {am (w) ;v} ,(4.2)

as s→ ∞, uniformly with respect to v. Consequently we introduce the space Wpre (R
n) .

Definition 4.1. The space Wpre (R
n) consists of those smooth functions Φ defined in Rn

that admit a strong asymptotic expansion of the form

(4.3) Φ (sv) ∼

Q∑

q=0

(Aq (v) + Pq (v) ln s) s
q +

∞∑

q=1

A−q (v) s
−q,

where Aq ∈ Kq (D (S)) for q ≤ −n, Aq ∈ D (S) for q > −n, and where the Pq ∈ Pq for
q ∈ N. The topology of Wpre (R

n) is constructed as explained in Subsection 2.1.1.

Our analysis so far yields the ensuing result.

7It is possible to consider F (φ) as a distribution of the Lizorkin distributional spaces, but for our
purposes a different approach is more convenient.
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Theorem 4.2. The Fourier transform is an isomorphism of the vector spaces S∗,reg (R
n)

and Wpre (R
n) .

Notice that we have not defined a topology for the space S∗,reg (R
n) yet; once a topology

is introduced, we shall see that the Fourier transform is not only an algebraic isomorphism,
but actually an isomorphism of topological vector spaces. First, however, we need to
consider the notions of delta part and polynomial part of distributions.

4.1. Delta parts and polynomial parts. In general it is not possible to separate the
contribution to a distribution from a given point; to talk about the “delta part at x0” of
all distributions does not make sense. However, sometimes, we can actually separate the
delta part [8].

Definition 4.3. Let f0 ∈ D′ (Rn \ {0}) be a distribution defined in the complement of the
origin. Suppose the pseudofunction Pf (f0 (x)) exists in D′ (Rn) (respectively in D′

∗ (R
n)).

Let f ∈ D′ (Rn) (respectively in f ∈ D′
∗ (R

n)) be any regularization of f0. Then the delta
part at 0 of f is the distribution f −Pf (f0 (x)) , whose support is the origin8.

It is easy to construct distributions whose delta part is not defined. Indeed, the function
sin r−k is locally integrable in R

n, and thus it gives a well defined regular distribution in
D′ (Rn) . If k > n, then the distributional derivative

(
∇i

)
sin r−k is another well defined

distribution, but its delta part at the origin is not defined, since Pf
(
∇i sin r

−k
)
does not

exist.
It must be emphasized that even though when it exists Pf (f0 (x)) is in a way the

natural regularization of f0, other regularizations appear also very naturally, as we now
illustrate. Consider the distribution Pf

(
r−k
)
in R

n. Then the distributional derivative

∇iPf
(
r−k
)
is a regularization of −kxir

−k−2, the ordinary derivative of r−k; however [13,
(3.16)] if k − n = 2m is an even positive integer, then

(4.4) ∇iPf
(
r−k
)
= Pf

(
−kxir

−k−2
)
−

cm,n

(2m)!k
∇i∆

mδ (x) ,

where cm,n is given by (2.1). Therefore, (−cm,n/ (2m)!k)∇i∆
mδ (x) is the delta part of

the distribution ∇iPf
(
r−k
)
in D′ (Rn) . In the space D′

∗ (R
n) , now for any integer k ∈ Z,

the delta part of the thick derivative ∇∗
iPf

(
r−k
)
is given [36, Thm.7.1] as Cniδ

[−k−n+1]
∗ .9

Another illustration of “natural” regularizations that differ from the finite part is the
following. In Rn for n ≥ 2, and for m ∈ N, the distribution λn+2mPf

(
|λx|−n−2m) is a

regularization of r−n−2m and in D′ (Rn) its delta part is lnλ cm,n∇
2mδ (x) / (2m)!, while

in D′
∗ (R

n) its delta part is lnλCδ
[2m]
∗ , as follows from [36, (5.13), (5.14)]. More generally

[11] let A be a non singular n× n matrix, let b ∈ D (S) , and put Bα (z) = b (z/ |z|) |z|α ,
the extension to D′ (Rn \ {0}) that is homogeneous of degree α. Then in D′

∗ (R
n) we have

Pf {Bα (Az) ;x} = Pf {Bα (z) ;Ax} if α /∈ Z, but if α = k ∈ Z,

(4.5) Pf {Bk (Az) ;x} = Pf {Bk (z) ;Ax} − Cb (w) |Aw|k ln |Aw| δ[−k−n]
∗ (x) ,

so that the distribution Pf {Bk (z) ;Ax} has a non trivial delta part while Pf {Bk (z) ;x}
does not.

8Notice that this delta part is in fact a spherical delta part.
9Naturally, when k − n = 2m ≥ 0, the projection of the thick delta part is precisely the distributional

delta part, and this agrees with [36, (7.7)].
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When f0 is a smooth function defined in Rn\{0} such that the Hadamard regularization
exists at the origin, and f ∈ D′ (Rn) is a regularization of f0, then we call f0 the ordinary
part of f. Thus, for instance, −kxir

−k−2 is the ordinary part of
(
∇i

)
Pf
(
r−k
)
.

In a similar fashion, one may consider the polynomial part of distributions. Not all
distributions have a well defined polynomial part, but all the elements of Wpre (R

n) do.
Let us start with the case of a distribution that is homogeneous of degree q ≥ 0 in Rn\{0} ,
that is Fq (u) = Aq (v) s

q, u = sv being polar coordinates and Aq ∈ D′ (S) . Then we can
write Aq in terms of spherical harmonics as Aq (v) =

∑∞
m=0 Ym,q (v) , where Ym,q ∈ Hm.

Therefore

(4.6) Fq (u) = Eq (u) + F̃q (u) ,

where Eq = Πpol (Fq) is the homogeneous polynomial of degree q given as

(4.7) Eq (u) = Πpol (Fq) = (
∑

k≤q/2

Yq−2k,q (v))s
q,

and F̃q = Fq − Eq is the polynomial free part of Fq.
In the general case when F has the asymptotic expansion of the form

(4.8) F (sv) ∼

Q∑

q=0

(Aq (v) + Pq (v) ln s) s
q +

∞∑

q=1

A−q (v) s
−q,

then the polynomial part of F is the polynomial

(4.9) Πpol (F ) =

Q∑

q=0

Πpol (Aq (v) s
q) .

The polynomial free part of F is F − Πpol (F ) .
It is possible to define the polynomial part of other distributions, not just those with

an asymptotic expansion of the form (4.8), but this construction is enough for our pur-
poses, since it gives the polynomial part in Wpre (R

n) . It should also be noticed that the
polynomial part we constructed is a radial polynomial part, since we have employed polar
coordinates.

The polynomial part allows us to understand why Kq (D (S)) = Dq and Kq (D
′ (S)) = D′

q

for q < −n. In fact we have the following.

Lemma 4.4. Let A ∈ D (S) . If m ∈ N, then A ∈ K−(n+m) (D (S)) if and only if the
function A (v) sm is polynomial free. Similarly, if A ∈ D′ (S) , then A ∈ K−(n+m) (D

′ (S))
if and only if the distribution A (v) sm is polynomial free.

Proof. Follows at once from the Propositions 3.5 and 3.6. �

4.2. The space W (Rn). We can now consider the topology of the spaces Wpre (R
n) and

S∗,reg (R
n) , as well as define the space W (Rn) .

The space S∗,reg (R
n) admits the representation

(4.10) S∗,reg (R
n) = S∗,ord (R

n)⊕D′
{0} (R

n) ,

whereD′
{0} (R

n) is the space of distributions with support at the origin and where S∗,ord (R
n)

is the space of ordinary parts of regularizations of thick test functions. Clearly the Pf op-
erator is an isomorphism of S∗ (R

n) onto S∗,ord (R
n) .We define the topology of S∗,ord (R

n)
by asking Pf to be a topological isomorphism. The space D′

{0} (R
n) has a topology as a
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closed subspace of S ′ (Rn) . The topology of S∗,reg (R
n) is the direct sum topology. No-

tice that the topology of S∗,reg (R
n) is stronger but not equal to the subspace topology

inherited from S ′ (Rn) . We can now complete the Theorem 4.2: The Fourier transform is

a topological isomorphism of the spaces S∗,reg (R
n) and Wpre (R

n) .
We now define the space W (Rn) .

Definition 4.5. The spaceW (Rn) is formed by the polynomial free elements ofWpre (R
n) ,

with the subspace topology. Explicitly, Φ ∈ W if it is smooth in Rn and at infinity it has
an asymptotic expansion

(4.11) Φ (sv) ∼

Q∑

q=0

(Aq (v) + Pq (v) ln s) s
q +

∞∑

q=1

A−q (v) s
−q,

where Aq ∈ Dq for q ∈ Z and the Pq ∈ Pq are homogeneous polynomials of degree q.

The space W (Rn) is exactly the space needed to define the Fourier transform of thick
test functions; the condition Aq ∈ Dq in the expansion (4.11), which is equivalent to the
fact that Φ is polynomial free, will play a very important role in the behavior of the
Fourier transform of thick distributions. Notice in fact that

(4.12) Wpre (R
n) = W (Rn)⊕ P (Rn) ,

as topological vector spaces. Therefore the space W (Rn) can also be constructed as
a quotient space. Namely, if we define the equivalence relation F ∼ G if F − G is a
polynomial, then W (Rn) is canonically isomorphic to Wpre (R

n) / ∼ . Similarly, if we
consider the equivalence relation f ∼ g when supp (f − g) ⊂ {0} in S∗,reg (R

n) , then
S∗ (R

n) ≃ S∗,ord (R
n) ≃ S∗,reg (R

n) / ∼ .

When φ ∈ S∗ (R
n) we shall denote by F∗,t (φ) the element ΠWpre,W (F (Pf (φ)))10 of

W (Rn) , and call it the thick Fourier transform of φ.We can also define a Fourier transform
in W (Rn) , F∗

t : W (Rn) −→ S∗ (R
n) , as

(4.13) F∗
t {Φ (u) ;x} = (2π)n F−1

∗,t {Φ (u) ;−x} .

We immediately obtain the following important result.

Theorem 4.6. The thick Fourier transform F∗,t is a topological isomorphism of S∗ (R
n)

onto W (Rn) . The thick Fourier transform F∗
t is a topological isomorphism of W (Rn)

onto S∗ (R
n) .

5. The space W ′ (Rn
c)

In this section we shall consider the distributions of the space W ′ (Rn) . The first thing
we would like to point out is that the functions of W (Rn) are smooth functions in Rn

with a special type of thick behavior at infinity; therefore the elements of W ′ (Rn) are
actually distributions over the space Rn

c = Rn ∪ {∞} , the one point compactification of
Rn. From now on we shall also employ the more informative notation W ′ (Rn

c ) when we
want to call attention to the dimension n and the simpler notation W ′ when no explicit
mention of n is needed. The elements of W ′ shall be called sl−thick distributions, since
the thick test functions of W have a special type of logarithmic expansion at infinity.

Several distributions defined on Rn admit canonical extensions to W ′ (Rn
c ) . Indeed,

if W (Rn) ⊂ A (Rn) continuously and with dense image, where A (Rn) is a space of

10In general F (Pf (φ)) does not belong to W .
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test functions, then A′ (Rn) is canonically imbedded into W ′ (Rn
c ) . The simplest case is

when A (Rn) = E (Rn) , the space of all smooth functions in Rn, which gives that each
distribution of compact support, f ∈ E ′ (Rn) admits a canonical extension to W ′ (Rn

c ) ,
namely one whose support in Rn

c is precisely the original support of f,

(5.1) 〈f,Φ〉W ′×W = 〈f,Φ〉E ′×E .

Actually we can also take A (Rn) = K (Rn) , so that any distribution f ∈ K′ (Rn) admits
a canonical extension to W ′ (Rn

c ) , given by the Cesàro evaluation,

(5.2) 〈f,Φ〉W ′×W = 〈f,Φ〉 (C)

since 〈f,Φ〉 (C) exists whenever Φ ∈ K (Rn) [14] and W (Rn) ⊂ K (Rn) . We shall employ
the same notation for both the distribution of K′ (Rn) and its canonical extension to
W ′ (Rn

c ) . On the other hand, W (Rn) is not contained in S (Rn) , and this means that
tempered distributions do not have canonical extensions in W ′ (Rn

c ) . In fact, it is not
hard to see that actually all elements of S ′ (Rn) have many extensions to W ′ (Rn

c ) , but it
is not possible to construct a continuous extension procedure, similarly to the situation
explained in [7].

Another important class of sl−thick distributions are the thick deltas at infinity.

Definition 5.1. If G ∈ D′
q then we define G (v) δ

[q]
∞ , the thick delta at infinity of order q

as

(5.3)
〈
G (v) δ[q]∞ ,Φ

〉
W ′×W

=
1

C
〈G,Aq〉D′

q×Dq
,

if Φ ∈ W has the asymptotic expansion (4.11). Similarly, if H ∈ P ′
q = Pq then we define

H (v) δ
[q]
ln,∞ the thick logarithmic delta of order q at infinity as

(5.4)
〈
H (v) δ

[q]
ln,∞,Φ

〉
W ′×W

=
1

C
〈H,Pq〉P ′

q×Pq
.

Sometimes one may construct extensions of a tempered distribution g by considering a
finite part at infinity11, a construction we shall now denote as PfW (g) , or later simply as
Pf (g) if there is no danger of confusion. Consider for example the distribution Pf

(
sλ
)
,

s = |u| , of S ′ (Rn) : this tempered distribution yields the sl−thick distribution PfW
(
sλ
)

obtained from the generally divergent integral
∫
Rn s

λΦ (u) du, Φ ∈ W, by taking the
radial finite part at 0, or at ∞, or at both. Using the ideas of the Example 2.5 we can
see the structure of PfW

(
sλ
)
.

Lemma 5.2. The parametric sl−thick distribution PfW
(
sλ
)
is a meromorphic function

of λ, analytic in the region (C \ Z) ∪ {0, 2, 4, . . .} , with simple poles at λ = m, m ∈
{−n− 1,−n− 3,−n− 5, . . .} ∪ {−1,−2, . . . , 1− n} ∪ {1, 3, 5, . . .} , the residues at these
poles being

(5.5) Resλ=mPfW
(
sλ
)
= −Cδ[−n−m]

∞ (u) ,

and double poles at λ = m, m = −n− 2q ∈ {−n,−n − 2,−n− 4, . . .} with singular part

(5.6)
Cδ

[2q]
ln,∞ (u)

(λ−m)2
+

cq,n∇
2qδ (u)

(2q)! (λ−m)
.

The finite part of PfW
(
sλ
)
at any pole λ = m is precisely PfW (sm) .

11Clearly the finite part at infinity does not exist for all g ∈ S ′ (Rn) .
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Many of the constructions that we have discussed can also be done in the space W ′
pre.

Notice, however, that several distributions of W ′
pre could vanish in W so that their pro-

jection to W ′ could be zero. For instance, the plain thick delta δ
[0]
∞ is not zero in W ′

pre but

it is zero in W ′. If one considers the finite part PfWpre

(
sλ
)
then it would not be analytic

at λ = 0, 2, 4, . . . ; for instance, it has a simple pole at λ = 0 with residue −Cδ
[0]
∞ .

One of the consequences of the fact that W ′ is a space over the compact space Rn
c is

that several of the usual operations on sl−thick distributions could have additional terms
at infinity. This is the case for the linear changes of variables and for the multiplications
by polynomials. Curiously, however, derivatives in W ′ can be defined in the standard way
by duality, since the derivative operators send W to W,

(5.7) 〈∇j (F ) ,Φ〉 = −〈F,∇j (Φ)〉 , F ∈ W ′,Φ ∈ W .

5.1. Linear changes of variables in W ′. Let A be a non-singular n × n matrix. If
Φ ∈ W then the function ΦA given by ΦA (u) = Φ (Au) does not belong to W, in general,
but it belongs to Wpre. Therefore we define the function of W obtained by the change of
variables, τWA (Φ) as

(5.8) τWA (Φ) = ΠWpre,W (ΦA) .

We can then define the change of variables in sl−thick distributions by duality.

Definition 5.3. Let A be a non-singular n× n matrix. If F ∈ W ′ then the distribution
τW

′

A (F ) , the sl−thick version of F (Au) , is defined as

(5.9)
〈
τW

′

A (F ) ,Φ
〉
=

1

|det (A)|

〈
F, τWA−1 (Φ)

〉
.

It is important to observe that if F ∈ K′ (Rn) then it has a canonical extension to
W ′ (Rn

c ) , and the restriction of τW
′

A (F ) (x) to Rn is precisely F (Ax) but in general
τW

′

A (F ) (x) is not the canonical extension of F (Ax) . A simple example is provided by
the delta function at the origin, δ (x) , and the change A = tI for t 6= 0. We have
δ (tx) = |t|−n δ (x) , of course, but

(5.10) τW
′

tI (δ) (x) = |t|−n δ (x)− |t|−n ln t δ
[0]
∞,ln (x) .

Interestingly, if A is an orthogonal matrix, in particular if it is a rotation, and F ∈ K′ (Rn)
then the canonical extension of F (Ax) is precisely τW

′

A (F ) (x) . Therefore we give the
following definitions.

Definition 5.4. A sl−thick distribution F ∈ W ′ is called radial if τW
′

A (F ) = F for all
orthogonal matrices A. We say that F is homogeneous of order λ if

(5.11) τW
′

tI (F ) (x) = tλF (x) , t > 0 .

Notice that a distribution F ∈ K′ (Rn) is radial if and only if its canonical extension is,
but (5.10) shows that a corresponding result does not hold for homogeneous distributions.

On the other hand, a distribution of the form G (v) δ
[q]
∞ is radial if and only if G is

constant, where we observe that the plain thick delta at infinity δ
[q]
∞ is a non zero sl−thick

distribution for q 6= 0, 2, 4, . . . and q 6= −n,−n−2,−n−4, . . . . Furthermore, since the plain

thick logarithmic deltas at infinity δ
[1]
ln,∞, δ

[3]
ln,∞, δ

[5]
ln,∞, . . . vanish, the distributions cδ

[q]
ln,∞ for

q = 0, 2, 4, . . . and c constant are the radial distributions of the form G (v) δ
[q]
ln,∞.
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It is useful to know the sl−thick radial homogeneous distributions.

Proposition 5.5. Let λ ∈ C. Then the set of sl−thick radial homogeneous distributions
of order λ form a vector space of dimension 1, generated by the distribution

(5.12) PfW
(
sλ
)
for λ ∈ (C \ Z) ∪ {0, 2, 4, . . .} ,

δ[−n−m]
∞ for λ = m,(5.13)

m ∈ {−n− 1,−n− 3,−n− 5, . . .} ∪ {1, 2, . . . , n− 1} ∪ {1, 3, 5, . . .} ,

(5.14) δ
[−n−m]
ln,∞ for λ = m, m ∈ {−n,−n − 2,−n− 4, . . .} .

5.1.1. Multiplication by polynomials in W ′. In general if Φ ∈ W then ujΦ (u) is in Wpre

but it does not belong to W. Therefore we define the multiplication operator

(5.15) MW
uj

: W −→ W , Muj
(Φ) = ΠWpre,W (ujΦ) ,

and by duality the operator MW ′

uj
: W ′ −→ W ′ as

(5.16)
〈
MW ′

uj
(F ) ,Φ

〉
=
〈
F,MW

uj
(Φ)
〉
.

The multiplication operators MW
p and MW ′

p , where p is a polynomial, can be defined in a
similar way.

Example 5.6. SometimesMW ′

uj
(F ) resembles a standard multiplication, as in the product

formula

(5.17) MW ′

uj

(
PfW

(
sλ
))

= PfW
(
ujs

λ
)
,

but sometimes extra terms at infinity appear, as in the formula

(5.18) MW ′

uj
(δ (u)) = −ωjδ

[−1]
∞ (u) .

6. The Fourier transform of thick distributions

The Fourier transform of thick tempered distributions f ∈ S ′
∗ (R

n) , F∗ (f) ∈ W ′ (Rn
c )

can now be defined in the usual way,

(6.1) 〈F∗ {f (x) ;u} ,Φ (u)〉 = 〈f (x) ,F∗
t {Φ (u) ;x}〉 , Φ ∈ W (Rn

c ) .

Similarly, the Fourier transform of distributions G ∈ W ′ (Rn
c ) , F

∗ (G) ∈ S ′
∗ (R

n) is defined
as

(6.2) 〈F∗ {G (u) ;x} , φ (x)〉 = 〈G (u) ,F∗,t {φ (x) ;u}〉 , φ ∈ S∗ (R
n) .

Theorem 6.1. The thick Fourier transform F∗ is a topological isomorphism of S ′
∗ (R

n)
onto W ′ (Rn

c ) . The thick Fourier transform F∗ is a topological isomorphism of W ′ (Rn
c )

onto S ′
∗ (R

n) .

The properties of the Fourier transform of thick distributions are similar to those of
the transform in S ′ (Rn) but one must remember that the operations in W ′ (Rn

c ) may or
may not be the standard ones. We have,

(6.3) F∗ {f (Ax) ;u} =
1

|detA|
τW

′

A−1 (F∗ {f (x) ;u}) ,
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for A a non-singular matrix, and in particular, if t 6= 0

(6.4) F∗ {f (tx) ;u} = t−nτW
′

t−nI (F∗ {f (x) ;u}) .

It follows that F∗ and F∗ send radial thick distributions to radial thick distributions, and
homogeneous distributions of degree λ to homogeneous distributions of degree −n − λ.
We also have the usual interchange of multiplication and differentiation,

(6.5) F∗ {xjf (x) ;u} = −i∇uj
F∗ {f (x) ;u} ,

(6.6) F∗

{
∇xj

f (x) ;u
}
= −iMW ′

uj
F∗ {f (x) ;u} ,

where the modified multiplication operator MW ′

uj
is given by (5.16). The formulas for the

inverse transforms are a variant of the usual ones,

(6.7) (F∗)−1 {f (x) ;u} =
1

(2π)n
F∗ {f (x) ;−u} ,

(6.8) (F∗)
−1 {F (u) ;x} =

1

(2π)n
F∗ {F (u) ;−x} .

Another important property is that the Fourier transforms F∗ or F∗ of extensions of
distributions of S ′ (Rn) to S ′

∗ (R
n) or W ′ (Rn

c ) are extensions of the Fourier transform,
that is

(6.9) ΠW ′,S′F∗ {f (x) ;u} = F
{
ΠS′

∗
,S′f (x) ;u

}
,

(6.10) ΠS′

∗
,S′F∗ {F (u) ;x} = F {ΠW ′,S′F (u) ;x} .

We are now ready to give the Fourier transform of several thick distributions.

Example 6.2. Let us compute the Fourier transform F∗

{
δ
[0]
∗ (x) ;u

}
of the plain thick

delta function. Since δ
[0]
∗ (x) is radial and homogenous of degree −n, its transform is

radial and homogeneous of degree 0. Also, the projection of δ
[0]
∗ (x) onto S ′ is the standard

delta function δ (x) , whose transform is the constant function 1. From the Proposition
5.5 it follows that the only radial, homogeneous of degree 0 sl−thick distribution whose
projection to S ′ is the constant distribution 1 is precisely PfW (1) . Hence

(6.11) F∗

{
δ[0]∗ (x) ;u

}
= PfW (1) .

A similar argument yields

(6.12) F∗

{
δ[2m]
∗ (x) ;u

}
=

(−1)m Γ (m+ 1/2) Γ (n/2)

Γ (m+ n/2) Γ (1/2) (2m)!
PfW

(
s2m
)
,

and by inversion,

(6.13) F∗
{
PfW

(
s2m
)
;x
}
=

(−1)m Γ (m+ n/2) Γ (1/2) (2m)!

(2π)n Γ (m+ 1/2)Γ (n/2)
δ[2m]
∗ (x) .

Example 6.3. The ensuing formulas, reminiscent of (3.1), also follow along the same
lines,

(6.14) F∗

{
Pf
(
rλ
)
;u
}
=
πn/22λ+nΓ

(
λ+n
2

)

Γ
(
−λ

2

) PfW
(
s−λ−n

)
,
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(6.15) F∗
{
PfW

(
sλ
)
;x
}
=
πn/22λ+nΓ

(
λ+n
2

)

Γ
(
−λ

2

) Pf
(
r−λ−n

)
,

whenever λ ∈ C \Z. Interestingly, PfW
(
sλ
)
is analytic at 0, 2, 4, . . . so that (6.13) can be

recovered by taking the limit as λ→ 2m in the right side of (6.15).

Example 6.4. Formulas (6.14) and (6.15) are equalities of meromorphic functions and
thus by considering the residues, finite parts, or singular parts at the poles of both
sides we obtain the Fourier transform of several thick distributions. Let start with
m ∈ {−n− 1,−n− 3,−n− 5, . . .} ∪ {−1,−2, . . . , 1− n} ∪ {1, 3, 5, . . .} , so that λ = m is
a simple pole of the function in (6.15). From the Lemma 5.2 the residue of the left side is

F∗
{
−Cδ

[−n−m]
∞ (u) ;x

}
, while if we recall [36, (4.13)] that Resµ=k Pf (r

µ) = Cδ
[−k−n]
∗ (x) ,

we obtain the residue of the right side as Cg (m) δ
[m]
∗ (x) where

(6.16) g (λ) =
πn/22λ+nΓ

(
λ+n
2

)

Γ
(
−λ

2

) .

Therefore

(6.17) F∗
{
δ[−n−m]
∞ (u) ;x

}
= −g (m) δ[m]

∗ (x) ,

and by inversion,

(6.18) F∗

{
δ[m]
∗ (x) ;u

}
= −g (−n−m) δ[−n−m]

∞ (u) ,

since g (m) g (−n−m) = (2π)n . Similarly, consideration of the finite parts of both sides
of (6.15) yields

(6.19) F∗ {PfW (sm) ;x} = g (m)
{
Pf
(
r−m−n

)
+ χmδ

[m]
∗ (x)

}
,

and

(6.20) F∗

{
Pf
(
r−m−n

)
;u
}
= g (−n−m)

{
PfW (sm) + χ−m−nδ

[−n−m]
∞ (u)

}
,

where

(6.21) χm = χ−m−n =
C

2

(
2 ln 2 + ψ

(
m+ n

2

)
+ ψ

(
−m

2

))
.

Studying the coefficients of order −2 at the poles of order 2, m = −n− 2q for q ∈ N gives

(6.22) F∗
{
δ
[2q]
ln,∞ (u) ;x

}
=

(−1)n 21−2qπn/2

q!Γ
(
n+2q
2

) δ[−n−2q]
∗ (x) ,

and

(6.23) F∗

{
δ[−n−2q]
∗ (x) ;u

}
= (−1)n 2n+2q−1πn/2q!Γ

(
n + 2q

2

)
δ
[2q]
ln,∞ (u) .

We have considered the transform of plain thick deltas so far, now we compute the
Fourier transform of general thick deltas.

Example 6.5. Let φ ∈ S∗, with expansion
∑∞

j=m ajr
j at zero and let Φ = F∗,t (φ) ∈ W,

with expansion
∑n−m

q=0 (Aq (v) + Pq (v) ln s) s
q +

∑∞
q=1A−q (v) s

−q at infinity. Then Aq =

Kq (a−n−q) , therefore if G ∈ D
′

q then

〈
Gδ[q]∞ ,Φ

〉
=

1

C
〈G,Aq〉 =

1

C
〈G,Kq (a−n−q)〉 =

1

C
〈Kq (G) , a−n−q〉 =

〈
Kq (G) δ

[−n−q]
∗ , φ

〉
,
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or

(6.24) F∗
{
G (v) δ[q]∞ (u) ;x

}
= Kq {G (v) ;w} δ[−n−q]

∗ (x) ,

giving the transform of all thick deltas at infinity Gδ
[q]
∞ , for arbitrary q ∈ Z, since G needs

to be D
′

q. Similarly, for q ∈ N

(6.25) F∗
{
H (v) δ

[q]
ln,∞ (u) ;x

}
= Lq {H (v) ;w} δ[−n−q]

∗ (x) .

Example 6.6. We now consider the transform of the general thick deltas f (w) δ
[m]
∗ (x) .

Let m = −n − q. Different formulas arise depending on m and q. If 1 − n ≤ m, q ≤ −1
then D

′

q = D
′

m = D
′

so that inversion of (6.24), remembering (3.12), gives

(6.26) F∗

{
f (w) δ[m]

∗ (x) ;u
}
= Km {f (w) ;v} δ[−n−m]

∞ (u) .

If m ≥ 0, that is q ≤ −n, we decompose f ∈ D′ (S) as f = pm + fm where fm ∈ D
′

q = D
′

m

and pm ∈ Pm.We now notice that F∗

(
pδ

[m]
∗

)
is the finite part regularization PfW (Pm (u))

of a homogeneous polynomial of degree m, namely Pm = F
(
ΠS′

∗
,S′

(
fδ

[m]
∗

))
, obtaining

(6.27) F∗

{
f (w) δ[m]

∗ (x) ;u
}
= PfW (Pm (u)) + Km {fm (w) ;v} δ[−n−m]

∞ (u) .

In particular, when m = 0, since F∗

(
δ
[0]
∗

)
= PfW (1) , we obtain

(6.28) F∗

{
f (w) δ[0]∗ (x) ;u

}
=MPfW (1) + K0 {f (w)−M ;v} δ[−n]

∞ (u) ,

where M is the constant M = (1/C) 〈f (w) , 1〉 .
Finally, if m ≤ −n, i.e. q ≥ 0, the decomposition f = pm + fm where fm ∈ D

′

q = D
′

m

and pm ∈ P−n−m = Pq yields

F∗

{
f (w) δ[m]

∗ (x) ;u
}
= (2π)n L−1

−n−m {pm (w) ;−v} δ
[−n−m]
ln,∞ (u)(6.29)

+ Km {fm (w) ;v} δ[−n−m]
∞ (u) .

We will consider the thick Fourier transform of several other distributions in forthcom-
ing papers.

Appendix A. Guide to notation

Constants

cn.m, equation (2.1)

C, surface area of the unit sphere, equation (2.1)

Spaces

D∗,a (R
n) , D∗ (R

n) , paragraph before Definition 2.1

D
′

∗,a (R
n) , D

′

∗ (R
n) , Definition 2.1

A∗,a (R
n) , in particular S∗,a (R

n) , Definition 2.2

A′
∗,a (R

n) , in particular S ′
∗,a (R

n) , Definition 2.2

Xq, in particular Dq and D′
q, Subsection 3.2

Pq, polynomials of degree q on the sphere, Subsection 3.2

S∗,reg (R
n) , paragraph after equation (4.1)

Wpre (R
n) , Definition 4.1

W (Rn) , Definition 4.5

Operators
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Kβ {a (w) ;v} = 〈Kβ (w,v) , a (w)〉
w
, equation (3.5)

Lq {a (w) ;v} = 〈Lq (w,v) , a (w)〉
w
, equation (3.6)

Kq {a (w) ;v} , Subsection 3.2

Lq {a (w) ;v} , Subsection 3.2

delta part, Subsection 4.1

ordinary part, Subsection 4.1

polynomial part, Subsection 4.1

polynomial free part, Subsection 4.1

F∗
t {Φ (u) ;x} and F∗,t {Φ (u) ;x} , Fourier transform of test functions, equation (4.13)

τWA and τW
′

A , Subsection 5.1

MW
uj

and MW ′

uj
, Subsection 5.1.1

F∗ {f (x) ;u} , Fourier transform of thick distributions, equation (6.1)

F∗ {g (u) ;x} , Fourier transform of sl−thick distribution, equation (6.2)

Distributions

g (w) δ
[q]
∗ (x− a) , equation (2.3)

Pf {g (z) ;x} = Pf (g) , Definition 2.4

G (v) δ
[q]
∞ , Definition 5.1

H (v) δ
[q]
ln,∞, Definition 5.1

PfW (g) , paragraph after Definition 5.1
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